Set No. 1

 II B.Tech I Semester Supplimentary Examinations, February 2008 SIGNALS AND SYSTEMS
 (Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Electronics & Control Engineering and Electronics & Telematics)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- ****
- 1. (a) Define orthogonal signal space and bring out clearly its application in representing a signal.
 - (b) Obtain the condition under which two signals f1(t) & f2(t) are said to be orthogonal to each other. Hence, prove that Sin $n\omega_0 t$ and Cos $m\omega_0 t$ are orthogonal to each other for all integer values of m,n. [6+10]
- 2. (a) Explain about even and odd functions.
 - (b) Obtain the trigonometric fourier series for the periodic waveform as shown in figure 2 [6+10]

- 3. (a) Distinguish between Fourier series and Fourier transform.
 - (b) State the conditions for the existence of Fourier transform of a signal.
 - (c) Find the Fourier transform of the signum function and plot it's amplitude and phase spectra. [4+4+8]
- 4. (a) There are several possible ways of estimating an essential bandwidth of nonband limited signal. For a low pass signal, for example, the essential bandwidth may be chosen as a frequency where the amplitude spectrum of the signal decays to k percent of its peak value. The choice of k depends on the nature of application. Choosing k=5 determine the essential bandwidth of g(t)=exp(-at) u(t).
 - (b) Differentiate between signal bandwidth and system bandwidth. [12+4]
- 5. (a) The signal $v(t) = \cos \omega_0 t + 2 \sin 3\omega_0 t + 0.5 \sin 4\omega_0 t$ is filtered by an RC low pass filter with 3 dB frequency $f_C = 2f_O$
 - i. Find $G_i(f)$
 - ii. Find $G_0(f)$

Set No. 1

- (b) Let G(f) denote the Fourier transform of real valued energy signal g(t), and $R_g(\tau)$ its autocorrelation function, show that [8+8] $\int_{-\infty}^{\infty} \left[\frac{dR_g(\tau)}{d\tau} \right]^2 d\tau = 4\pi^2 \int_{-\infty}^{\infty} f^2 |G(f)|^4 df.$
- 6. (a) Explain briefly impulse sampling.
 - (b) Define sampling theorem for time limited signal and find the nyquist rate for the following signals. [8+8]
 - i. rect300t
 - ii. $-10 \sin 40\pi t \cos 300\pi t$.
- 7. (a) The system function of a causal LTI system is $H(s) = \frac{s+1}{s^2+2s+2}$. Determine the response y(t) when the input is $x(t) = e^{-|t|}$
 - (b) State and prove initial value and final value theorems. [8+8]
- 8. (a) Using the Power Series expansion technique, find the inverse Z-transform of the following X(Z):
 - i. $X(Z) = \frac{Z}{2Z^2 3Z + 1}$ $|Z| < \frac{1}{2}$ ii. $X(Z) = \frac{Z}{2Z^2 - 3Z + 1}$ |Z| > 1
 - (b) Find the inverse Z-transform of $X(Z) = \frac{Z}{Z(Z-1)(Z-2)^2} \qquad |Z| > 2$ [8+8]

II B.Tech I Semester Supplimentary Examinations, February 2008 SIGNALS AND SYSTEMS

(Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Electronics & Control Engineering and Electronics & Telematics)

Time: 3 hours

Max Marks: 80

[4+4]

Answer any FIVE Questions

All Questions carry equal marks

1. (a) A rectangular function defined as

$$f(t) = \begin{cases} A & 0 < t < \frac{\Pi}{2} \\ -A & \frac{\Pi}{2} < t < \frac{3\Pi}{2} \\ A & \frac{3\Pi}{2} < t < 2\Pi \end{cases}$$

Approximate the above function by A cost between the intervals $(0,2\pi)$ such that the mean square error is minimum. [8]

(b) Prove the following

i.
$$\delta(n) = u(n) - u(n-1)$$

ii. $u(n) = \sum_{k=\alpha}^{n} \delta(K)$

- 2. (a) Prove that Sinc(o)=1 and plot Sinc function.
 - (b) Determine the Fourier series representation of that Signal $x(t) = 3 \cos(\Pi t/2 + \Pi/4)$ using the method of inspection. [6+10]
- 3. (a) Explain how Fourier Transform can be derived from Fourier Series.
 - (b) Find the Fourier Transform of the signal $x(t) = \frac{2}{1+t^2}$ [8+8]
- 4. (a) Find the impulse response of the system shown figure 4a. Find the transfer function. What would be its frequency response? Sketch the response.

Figure 4a

- (b) Differentiate between signal bandwidth and system bandwidth. [12+4]
- 5. (a) State and Prove Properties of cross correlation function.
 - (b) If $V(f) = AT \sin 2\pi fT/2\pi fT$ find the energy contained in V(t). [8+8]
- 6. (a) Determine the Nyquist rate corresponding to each of the following signals.

i.
$$x(t) = 1 + \cos 2000 \text{ pt} + \sin 4000 \pi t$$

ii. $x(t) = \frac{\sin 4000\pi t}{\pi t}$

(b) The signal. Y(t) is generated by convolving a band limited signal $x_1(t)$ with another band limited signal $x_2(t)$ that is

 $y(t) = x_1(t) * x_2(t)$ where $x_1(j\omega) = 0 \quad for \quad |\omega| > 1000\Pi$ $x_2(j\omega) = 0 \quad for \quad |\omega| > 2000\Pi$ Impulse train sampling is performed on y(t) to obtain $y_p(t) = \sum_{n=-\infty}^{\infty} y(nT)\delta(t-nT)$ Specify the range of values for sampling period T which ensures t

Specify the range of values for sampling period T which ensures that y(t) is recoverable from $y_p(t)$. [8+8]

- 7. (a) State the properties of the ROC of L.T.
 - (b) Determine the function of time x(t) for each of the following laplace transforms and their associated regions of convergence. [8+8]

i.
$$\frac{(s+1)^2}{s^2-s+1}$$
 Re $\{S\} > \frac{1}{2}$
ii. $\frac{s^2-s+1}{(s+1)^2}$ Re $\{S\} > -1$

8. (a) Find the Z-transform of the following Sequences.

i.
$$x[n] = a^{-n} u[-n-1]$$

ii. $x[n] = u[-n]$
iii. $x[n] = -a^n u[-n-1]$

(b) Derive relationship between z and Laplace Transform. [8+8]

II B.Tech I Semester Supplimentary Examinations, February 2008 SIGNALS AND SYSTEMS

(Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Electronics & Control Engineering and Electronics & Telematics)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Sketch the single sided and double sided spectra of the following signal $x(t)=2Sin(10\pi t \pi/6)$
 - (b) Show that the functions $\sin n\omega_0 t$ and $\sin m\omega_0 t$ are orthogonal over any interval (to , to + $2\pi/\omega_0$) for integer values of n and m. [8+8]
- 2. (a) Derive polar Fourier series from the exponential Fourier series representation and hence prove that $D_n = 2 |C_n|$
 - (b) Show that the magnitude spectrum of every periodic function is Symmetrical about the vertical axis passing through the origin. [8+8]
- 3. (a) Obtain the Fourier Transform of the following:
 - i. $\mathbf{x}(t) = \mathbf{A} \operatorname{Sin} (2\pi f_c t) \mathbf{u}(t)$
 - ii. $\mathbf{x}(\mathbf{t}) = \mathbf{f}(\mathbf{t}) \operatorname{Cos} (2\pi f_c \mathbf{t} + \phi)$
 - (b) State and prove the following properties of Fourier Transform [8+8]
 - i. Multiplication in time domain
 - ii. Convolution in time domain.
- 4. (a) Explain the difference between the following systems.
 - i. Linear and Non-linear systems.
 - ii. Causal and Non-Causal systems.
 - (b) Consider a stable LTI system characterized by the differential equation $\frac{dy(t)}{dt} + 2 y(t) = x(t)$. Find its impulse response. [8+8]
- 5. (a) Explain briefly detection of periodic signals in the presence of noise by correlation.
 - (b) Explain briefly extraction of a signal from noise by filtering. [8+8]
- 6. Determine the Nyquist sampling rate and Nyquist sampling interval for the signals $[4 \times 4]$
 - (a) $\sin c(100\Pi t)$.
 - (b) $\sin \tau (100 \Pi t)$.
 - (c) $\sin c(100\Pi t) + \sin c(50\Pi t)$.

Set No. 3

- (d) $\sin c(100\Pi t) + 3\sin c^2(60\Pi t)$.
- 7. (a) State the properties of the ROC of L.T.
 - (b) Determine the function of time x(t) for each of the following laplace transforms and their associated regions of convergence. [8+8]

i.	$\frac{(s+1)^2}{s^2-s+1}$	${ m Re}\left\{S\right\} > 1/2$
ii.	$\frac{s^2 - s + 1}{(s+1)^2}$	$\operatorname{Re}\left\{S\right\} > -1$

8. (a) Find the Z-transform of the following Sequences.

i.
$$x[n] = a^{-n} u[-n-1]$$

ii. $x[n] = u[-n]$
iii. $x[n] = -a^n u[-n-1]$

(b) Derive relationship between z and Laplace Transform. [8+8]

II B.Tech I Semester Supplimentary Examinations, February 2008 SIGNALS AND SYSTEMS

(Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Electronics & Control Engineering and Electronics & Telematics)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define orthogonal signal space and bring out clearly its application in representing a signal.
 - (b) Obtain the condition under which two signals f1(t) & f2(t) are said to be orthogonal to each other. Hence, prove that Sin $n\omega_0 t$ and Cos $m\omega_0 t$ are orthogonal to each other for all integer values of m,n. [6+10]
- 2. (a) Derive polar Fourier series from the exponential Fourier series representation and hence prove that $D_n = 2 |C_n|$
 - (b) Show that the magnitude spectrum of every periodic function is Symmetrical about the vertical axis passing through the origin. [8+8]
- 3. (a) Obtain the Fourier transform of the following functions:
 - i. Impulse function $\delta(t)$
 - ii. DC Signal
 - iii. Unit step function.
 - (b) State and prove frequency-shifting property of Fourier Transform. [12+4]
- 4. (a) What is a LTI System? Explain its properties. Derive an expression for the transfer function of a LTI system.
 - (b) Obtain the conditions for the distortion less transmission through a system. What do you understand by the term signal bandwidth? [8+8]
- 5. (a) For the signal $g(t) = 2a/(t^2+a^2)$, determine the essential Band width B Hz of g(t) such that the energy contained in the spectral components of g(t) of frequencies below B Hz is 99% of signal energy E_q .
 - (b) Show that the auto correlation function of $g(t)=C \cos(\omega_0 t + \theta_0)$ is given by $R_g(\tau)=(c^2/2) \cos \omega_0 \tau$, and the corresponding PSD is $S_g(\omega) = (c^2 \pi/2) \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_o)\right].$ [8+8]
- 6. (a) Explain Flat top sampling.
 - (b) A Band pass signal with a spectrum shown in figure 6b is ideally sampled. Sketch the spectrum of the sampled signal when $f_s = 20,30$ and 40 Hz. Indicate if and how the signal can be recovered. [8+8]

Set No. 4

- 7. Consider the following signals, find laplace transform and region of convergence for each signal
 - (a) $e^{-2t}u(t) + e^{-3t}u(t)$
 - (b) $e^{-4t}u(t) + e^{-5t}\sin 5t \ u(t)$
 - (c) State properties of laplace transform. [6+6+4]
- 8. (a) Using the Power Series expansion technique, find the inverse Z-transform of the following X(Z):

i.
$$X(Z) = \frac{Z}{2Z^2 - 3Z + 1}$$
 $|Z| < \frac{1}{2}$
ii. $X(Z) = \frac{Z}{2Z^2 - 3Z + 1}$ $|Z| > 1$

(b) Find the inverse Z-transform of
$$X(Z) = \frac{Z}{Z(Z-1)(Z-2)^2} \qquad |Z| > 2$$