
RECENTLY, the development of

new types of sophisticated field-

programmable devices (FPDs) has

dramatically changed the process

of designing digital hardware.

Unlike previous generations of

hardware technology in which

board level designs included large

numbers of SSI (small-scale inte-

gration) chips containing basic

gates, virtually every digital design

produced today consists mostly of

high-density devices. This is true

not only of custom devices such as

processors and memory but also

of logic circuits such as state ma-

chine controllers, counters, regis-

ters, and decoders. When such

circuits are destined for high-vol-

ume systems, designers integrate

them into high-density gate arrays.

However, the high nonrecurring

engineering costs and long manufac-

turing time of gate arrays make them

unsuitable for prototyping or other low-

volume scenarios. Therefore, most pro-

totypes and many production designs

now use FPDs. The most compelling

advantages of FPDs are low startup

cost, low financial risk, and, because

the end user programs the device,

quick manufacturing turnaround and

easy design changes.

The FPD market has grown over the

past decade to the point where there is

now a wide assortment of devices to

choose from. To choose a product, de-

signers face the daunting task of re-

searching the best uses of the various

chips and learning the intricacies of

vendor-specific software. Adding to the

difficulty is the complexity of the more

sophisticated devices. To help sort out

the confusion, we provide an overview

of the various FPD architectures

and discuss the most important

commercial products, emphasiz-

ing devices with relatively high log-

ic capacity.

Evolution of FPDs
The first user-programmable

chip that could implement logic cir-

cuits was the programmable read-

only memory (PROM), in which

address lines serve as logic circuit

inputs and data lines as outputs.

Logic functions, however, rarely re-

quire more than a few product

terms, and a PROM contains a full

decoder for its address inputs.

PROMs are thus inefficient for real-

izing logic circuits, so designers

rarely use them for that purpose.

The first device developed

specifically for implementing log-

ic circuits was the field-programmable

logic array, or simply PLA for short. A

PLA consists of two levels of logic gates:

a programmable, wired-AND plane fol-

lowed by a programmable, wired OR

plane. A PLA’s structure allows any of

its inputs (or their complements) to be

ANDed together in the AND plane; each

AND plane output can thus correspond

to any product term of the inputs.

Similarly, users can configure each OR
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plane output to produce the logical

sum of any AND plane output. With this

structure, PLAs are well-suited for im-

plementing logic functions in sum-of-

products form. They are also quite

versatile, since both the AND and OR

terms can have many inputs (product

literature often calls this feature “wide

AND and OR gates”).

When Philips introduced PLAs in the

early 1970s, their main drawbacks were

expense of manufacturing and some-

what poor speed performance. Both

disadvantages arose from the two lev-

els of configurable logic; programma-

ble logic planes were difficult to

manufacture and introduced significant

propagation delays. To overcome these

weaknesses, Monolithic Memories

(MMI, later merged with Advanced

Micro Devices) developed PAL devices.

As Figure 1 shows, PALs feature only a

single level of programmability—a pro-

grammable, wired-AND plane that

feeds fixed-OR gates. To compensate

for the lack of generality incurred by the

fixed-OR plane, PALs come in variants

with different numbers of inputs and

outputs and various sizes of OR gates.

To implement sequential circuits, PALs

usually contain flip-flops connected to

the OR gate outputs.

The introduction of PAL devices pro-

foundly affected digital hardware de-

sign, and they are the basis of some of

the newer, more sophisticated archi-

tectures that we will describe shortly.

Variants of the basic PAL architecture

appear in several products known by

various acronyms. We group all small

FPDs, including PLAs, PALs, and PAL-

like devices, into the single category of

simple programmable-logic devices

(SPLDs), whose most important char-

Terminology

CPLD (complex PLD): an arrangement of multiple SPLD-like blocks on a single
chip. Alternative names are enhanced PLD (EPLD), superPAL, and
megaPAL.

FPD (field-programmable device): any integrated circuit used for implement-
ing digital hardware that allows the end user to configure the chip to re-
alize different designs. Programming such a device often involves placing
the chip into a special programming unit, but some chips can also be
configured “in system.” Another name for FPDs is programmable logic de-
vices (PLDs); although PLDs are the same type of chips as FPDs, we pre-
fer the term FPD because historically PLD denoted relatively simple devices.

FPGA (field-programmable gate array): an FPD featuring a general structure
that allows very high logic capacity. Whereas CPLDs feature logic re-
sources with a wide number of inputs (AND planes), FPGAs offer nar-
rower logic resources. FPGAs also offer a higher ratio of flip-flops to logic
resources than do CPLDs.

HCPLD (high-capacity PLD): term coined in trade literature refers to both CPLDs
and FPGAs. We do not use this term here.

Interconnect: the wiring resources in an FPD.
Logic block: a relatively small circuit block replicated in an FPD array. A circuit

implemented in an FPD is first decomposed into smaller subcircuits that
can each be mapped into a logic block. The term occurs mostly in the
context of FPGAs but can also refer to a block of circuitry in a CPLD.

Logic capacity: the amount of digital logic that we can map into a single FPD,
usually measured in units of the equivalent number of gates in a tradi-
tional gate array. In other words, we measure an FPD’s capacity as its
comparable gate array size. Thus, we can refer to logic capacity as the
number of two-input NAND gates.

Logic density: the amount of logic per unit area in an FPD.
PAL (programmable array logic): a relatively small FPD containing a pro-

grammable AND plane followed by a fixed-OR plane.
PLA (programmable logic array): a relatively small FPD that contains two lev-

els of programmable logic—an AND plane and an OR plane. (Although
PLA structures are sometimes embedded into full-custom chips, we refer
here only to user-programmable PLAs provided as separate integrated cir-
cuits.)

Programmable switch: a user-programmable switch that can connect a logic
element to an interconnect wire or one interconnect wire to another.

Speed performance: the maximum operable speed of a circuit implemented
in an FPD. For combinational circuits, it is set by the longest delay through
any path, and for sequential circuits, it is the maximum clock frequency
at which the circuit functions properly

SPLD (simple PLD): usually a PLA or a PAL.
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Figure 1. PAL structure.
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acteristics are low cost and very high

pin-to-pin speed performance.

Advances in technology have pro-

duced devices with higher capacities

than SPLDs. The difficulty with increas-

ing a strict SPLD architecture’s capaci-

ty is that the programmable-logic plane

structure grows too quickly as the num-

ber of inputs increases. The only feasi-

ble way to provide large-capacity

devices based on SPLD architectures is

to programmably interconnnect multi-

ple SPLDs on a single chip. Many FPD

products on the market today have this

basic structure and are known as com-

plex programmable-logic devices.

Altera pioneered CPLDs, first in their

Classic EPLD chips, and then in the Max

5000, 7000, and 9000 series. Because of

a rapidly growing market for large FPDs,

other manufacturers developed CPLD

devices, and many choices are now

available. CPLDs provide logic capaci-

ty up to the equivalent of about 50 typi-

cal SPLD devices, but extending these

architectures to higher densities is diffi-

cult. Building FPDs with very high logic

capacity requires a different approach.

The highest capacity general-purpose

logic chips available today are the tra-

ditional gate arrays sometimes referred

to as mask-programmable gate arrays.

An MPGA consists of an array of pre-

fabricated transistors customized for the

user’s logic circuit by means of wire con-

nections. Because the silicon foundry

performs customization during chip fab-

rication, the manufacturing time is long,

and the user’s setup cost is high.

Although MPGAs are clearly not

FPDs, we mention them here because

they motivated the design of the field-

programmable equivalent, FPGAs. Like

MPGAs, an FPGA consists of an array of

uncommitted circuit elements (logic

blocks) and interconnect resources,

but the end user configures the FPGA

through programming. Figure 2 shows a

typical FPGA architecture. As the only

type of FPD that supports very high log-

ic capacity, FPGAs have engendered a

major shift in digital-circuit design.

Figure 3 illustrates the logic capaci-

ties available in each FPD category.

“Equivalent gates” refers loosely to the

number of two-input NAND gates. The

chart serves as a guide for selecting a

device for an application according to

the logic capacity needed. However, as

we explain later, each type of FPD is in-

herently better suited for some appli-

cations than for others. There are also

special-purpose devices optimized for

specific applications (for example, state

machines, analog gate arrays, large in-

terconnection problems). Since such

devices have limited use, we do not de-

scribe them here.

User-programmable switch
technologies

User-programmable switches are the

key to user customization of FPDs. The

first user-programmable switch devel-

oped was the fuse used in PLAs.

Although some smaller devices still use

fuses, we will not discuss them here be-

cause newer technology is quickly re-

placing them. For higher density

devices, CMOS dominates the IC in-

dustry, and different approaches to im-

plementing programmable switches are

necessary. For CPLDs, the main switch

technologies (in commercial products)

I/O block

Logic
block

Figure 2. FPGA structure.
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are floating gate transistors like those

used in EPROM (erasable programma-

ble read-only memory) and EEPROM

(electrically erasable PROM). For

FPGAs, they are SRAM (static RAM) and

antifuse. Table 1 lists the most impor-

tant characteristics of these program-

ming technologies.

To use an EPROM or EEPROM tran-

sistor as a programmable switch for

CPLDs (and many SPLDs), the manu-

facturer places the transistor between

two wires to facilitate implementation

of wired-AND functions. Figure 4 shows

EPROM transistors connected in a

CPLD’s AND plane. An input to the AND

plane can drive a product wire to logic

level 0 through an EPROM transistor, if

that input is part of the corresponding

product term. For inputs not involved

in a product term, the appropriate

EPROM transistors are programmed as

permanently turned off. The diagram of

an EEPROM-based device would look

similar to the one in Figure 4.

Although no technical reason pre-

vents application of EPROM or EEP-

ROM to FPGAs, current commercial

FPGA products use either SRAM or an-

tifuse technologies. The example of

SRAM-controlled switches in Figure 5 il-

lustrates two applications, one to con-

trol the gate nodes of pass-transistor

switches and the other, the select lines

of multiplexers that drive logic block in-

puts. The figure shows the connection

of one logic block (represented by the

AND gate in the upper left corner) to an-

other through two pass-transistor

switches and then a multiplexer, all

controlled by SRAM cells. Whether an

FPGA uses pass transistors, multiplex-

ers, or both depends on the particular

product.

Antifuses are originally open circuits

that take on low resistance only when

programmed. Antifuses are manufac-

tured using modified CMOS technolo-

gy. As an example, Figure 6 (next page)

depicts Actel’s PLICE (programmable-

logic interconnect circuit element), an

tifuse structure.1 The antifuse, posi-

tioned between two interconnect wires,

consists of three sandwiched layers:

conductors at top and bottom and an

insulator in the middle. Unpro-

grammed, the insulator isolates the top

and bottom layers; programmed, the in-

sulator becomes a low-resistance link.

Table 1. Summary of FPD programming technologies.

Switch type Reprogrammable? Volatile? Technology

Fuse No No Bipolar
EPROM Yes No UVCMOS

(out of circuit)
EEPROM Yes No EECMOS

(in circuit)
SRAM Yes Yes CMOS

(in circuit)
Antifuse No No CMOS+

+5V

EPROM

Input wire

EPROM

Input wire

Product
wire

Figure 4. EPROM programmable
switches.

SRAM

Logic block

Logic block 

Logic block

Logic block

SRAM SRAM

Figure 5. SRAM-controlled programmable switches.



F I E L D - P R O G R A M M A B L E  D E V I C E S

46 IEEE DESIGN & TEST OF COMPUTERS

PLICE uses polysilicon and n+ diffusion

as conductors and a custom-developed

compound, ONO (oxide-nitride-ox-

ide),1 as an insulator. Other antifuses

rely on metal for conductors, with

amorphous silicon as the middle lay-

er.2,3

CAD for FPDs
Computer-aided design programs are

essential in designing circuits for im-

plementation in FPDs. Such software

tools are important not only for CPLDs

and FPGAs, but also for SPLDs. A typi-

cal CAD system for SPLDs includes soft-

ware for the following tasks: initial

design entry, logic optimization, device

fitting, simulation, and configuration.

Figure 7 illustrates the SPLD design

process. To enter a design, the designer

creates a schematic diagram with a

graphical CAD tool, describes the de-

sign in a simple hardware description

language, or combines these methods.

Since initial logic entry is not usually in

an optimized form, the system applies

algorithms to optimize the circuits.

Then additional algorithms analyze the

resulting logic equations and fit them

into the SPLD. Simulation verifies cor-

rect operation, and the designer returns

to the design entry step to fix errors.

When a design simulates correctly, the

designer loads it into a programming

unit to configure an SPLD. In most CAD

systems, the designer performs the orig-

inal design entry step manually, and all

other steps are automatic.

The steps involved in CPLD design

are similar to those for SPLDs, but the

CAD tools are more sophisticated.

Because the devices are complex and

can accommodate large designs, it is

more common to use different design

entry methods for different modules of

a circuit. For instance, the designer

might use a small hardware description

language such as ABEL for some mod-

ules, a symbolic schematic capture tool

for others, and a full-featured hardware

description language such as VHDL for

still others. Also, the device-fitting

process may require steps similar to

those described next for FPGAs, de-

pending on the CPLD’s sophistication.

Either the CPLD manufacturer or a third

party supplies the necessary software

for these tasks.

The FPGA design process is similar to

that of CPLDs but requires additional

tools to support increased chip com-

plexity. The major difference is in de-

vice fitting, for which FPGAs need at

least three tools: a technology mapper

to transform basic logic gates into the

FPGA’s logic blocks, a placement tool

to choose the specific logic blocks, and

a router to allocate wire segments to in-

terconnect the logic blocks. With this

added complexity, the CAD tools take a

fairly long time (often more than an

hour or even several hours) to com-

plete their tasks.

Commercially available FPDs
This overview provides examples of

commercial FPD products and their ap-

plications. We encourage readers in-

terested in more details to contact the

manufacturers or distributors for the lat-

est data sheets. Most FPD manufactur-

ers provide data sheets on the World

Wide Web at http://www.company-

name.com.

SPLDs. As a staple of digital hard-

ware designers for the past two

decades, SPLDs are very important de-

vices. They have the highest speed per-

formance of all FPDs and are

inexpensive. Because they are straight-

forward and well understood, we dis-

cuss them only briefly here.

Two of the most popular SPLDs are

the AMD (Advanced Micro Devices)

16R8 and 22V10 PALs. Both of these de-

vices are industry standards, widely sec-

Silicon substrate
n+ diffusion

Dielectric

PolysiliconWire

Wire

Antifuse

Oxide

Figure 6. Actel’s PLICE antifuse structure.
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ond-sourced by other companies. The

designation 16R8 means that the PAL

has a maximum of 16 inputs (eight ded-

icated inputs and eight input/outputs)

and a maximum of eight outputs, and

that each output is registered (R) by a D

flip-flop. Similarly, the 22V10 has a max-

imum of 22 inputs and ten outputs. The

V means versatile—that is, each output

can be registered or combinational.

Another widely used and second-

sourced SPLD is the Altera Classic

EP610. This device is similar in com-

plexity to PALs, but offers more flexibil-

ity in the production of outputs and has

larger AND and OR planes. The EP610’s

outputs can be registered, and the flip-

flops are configurable as D, T, JK, or SR.

Many other SPLD products are avail-

able from a wide array of companies.

All share common characteristics such

as logic planes (AND, OR, NOR, or

NAND), but each offers unique features

suitable for particular applications. A

partial list of companies that offer SPLDs

includes AMD, Altera, ICT, Lattice,

Cypress, and Philips-Signetics. The com-

plexity of some of these SPLDs ap-

proaches that of CPLDs.

CPLDs. As we said earlier, CPLDs

consist of multiple SPLD-like blocks on

a single chip. However, CPLD products

are much more sophisticated than

SPLDs, even at the level of their basic

SPLD-like blocks. In the following de-

scriptions, we present sufficient details

to compare competing products, em-

phasizing the most widely used devices.

Altera Max. Altera has developed

three families of CPLD chips: Max 5000,

7000, and 9000. We focus on the 7000

series because of its wide use and state-

of-the-art logic capacity and speed per-

formance. Max 5000 represents an older

technology that offers a cost-effective

solution; Max 9000 is similar to Max

7000 but offers higher logic capacity

(the industry’s highest for CPLDs).

Figure 8 depicts the general archi-

tecture of the Altera Max 7000 series. It

consists of an array of logic array blocks

and a set of interconnect wires called a

programmable interconnect array

(PIA). The PIA can connect any logic

array block input or output to any oth-

er logic array block. The chip’s inputs

and outputs connect directly to the PIA

and to logic array blocks. A logic array

block is a complex, SPLD-like structure,

and so we can consider the entire chip

an array of SPLDs.

Figure 9 shows the structure of a log-

ic array block. Each logic array block

PIA

Logic
array
block

I/O
block

Figure 8. Altera Max 7000 series architecture.
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Figure 9. Altera Max 7000 logic array block.
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consists of two sets of eight macrocells

(shown in Figure 10). A macrocell is a

set of programmable product terms

(part of an AND plane) that feeds an OR

gate and a flip-flop. The flip-flops can

be D, JK, T, or SR, or can be transpar-

ent. As Figure 10 shows, the product se-

lect matrix allows a variable number of

inputs to the OR gate in a macrocell.

Any or all of the five product terms in

the macrocell can feed the OR gate,

which can have up to 15 extra product

terms from macrocells in the same log-

ic array block. This product term flexi-

bility makes the Max 7000 series more

efficient in chip area than classic SPLDs,

because typical logic functions need no

more than five product terms, and the

architecture supports wider functions

when necessary. Variable-size OR gates

of this sort are not available in basic

SPLDs (see Figure 1), but similar fea-

tures exist in other CPLD architectures.

Max 7000 devices are available in

both EPROM and EEPROM technolo-

gies. Until recently, even with EEPROM,

Max 7000 chips were programmable

only out of circuit in a special-purpose

programming unit; in 1996, however,

Altera released the 7000S series, which

is in-circuit reprogrammable.

AMD Mach. AMD offers a CPLD fam-

ily comprising five subfamilies called

Mach. Each Mach device consists of

multiple PAL-like blocks (or optimized

PALs). Mach 1 and 2 consist of opti-

mized 22V16 PALs, Mach 3 and 4 con-

sist of several optimized 34V16 PALs,

and Mach 5 is similar to Mach 3 and 4

but offers enhanced speed perfor-

mance. All Mach chips use EEPROM

technology, and together the five sub-

families provide a wide range of selec-

tion, from small, inexpensive chips to

larger, state-of-the-art ones. We will fo-

cus on Mach 4 because it represents the

most advanced currently available

parts in the family.

Figure 11 depicts a Mach 4 chip,

showing the multiple 34V16 PAL-like

blocks and the interconnect, called the

central switch matrix. The in-circuit

programmable chips range in size from

6 to 16 PAL-like blocks, corresponding

roughly to 2,000 to 5,000 equivalent

gates. All connections between PAL-like

blocks (even from a PAL-like block to

itself) pass through the central switch

matrix. Thus, the device is not merely a

collection of PAL-like blocks but a sin-

gle, large device. Since all connections

travel through the same path, circuit

timing delays are predictable.

Figure 12 illustrates a Mach 4 PAL-like

block. It has 16 outputs and a total of 34

inputs (16 of which are the fed-back out-

puts), so it corresponds to a 34V16 PAL.

However, there are two key differences

Product
select
matrixPIA

Local logic
array block
interconnect

Clear
(global clear
not shown)

Global clock

Array clock

To PIA

Set

Inputs from other
macrocells in
logic array block

State

S
D Q

R

Figure 10. Max 7000 macrocell.
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Clock
(4)

I/O (8)
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Figure 11. AMD Mach 4 structure.
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between this block and a normal PAL:

1) a product term (PT) allocator be-

tween the AND plane and the macro-

cells (the macrocells comprise an OR

gate, an EXOR gate, and a flip-flop), and

2) an output switch matrix between the

OR gates and the I/O pins. These fea-

tures make a Mach 4 chip easier to use

because they decouple sections of the

PAL-like block. More specifically, the

product term allocator distributes and

shares product terms from the AND

plane to OR gates that require them, al-

lowing much more flexibility than the

fixed-size OR gates in regular PALs. The

output switch matrix enables any

macrocell output (OR gate or flip-flop)

to drive any I/O pin connected to the

PAL-like block, again providing greater

flexibility than a PAL, in which each

macrocell can drive only one specific

I/O pin. Mach 4’s combination of in-sys-

tem programmability and high flexibil-

ity allow easy hardware design changes.

Lattice pLSI and ispLSI. Lattice offers

a complete range of CPLDs, with two

main product lines: the pLSI and the

ispLSI. Each consists of three families of

EEPROM CPLDs with different logic ca-

pacities and speed performance. The

ispLSI devices are in-system program-

mable.

Lattice’s earliest generation of CPLDs

is the pLSI and ispLSI 1000 series. Each

chip consists of a collection of SPLD-

like blocks and a global routing pool to

connect the blocks. Logic capacity

ranges from about 1,200 to 4,000 gates,

and pin-to-pin delays are 10 ns. Lattice

also offers the 2000 series—relatively

small CPLDs with between 600 and

2,000 gates. The 2000 series features a

higher ratio of macrocells to I/O pins

and higher speed performance than the

1000 series. At 5.5-ns pin-to-pin delays,

the 2000 series provides state-of-the-art

speed.

Lattice’s 3000 series consists of the

company’s largest CPLDs, with up to

5,000 gates and 10- to 15-ns pin-to-pin

delays. Compared with the chips dis-

cussed so far, the functionality of the

3000 series is most similar to that of the

Mach 4. Unlike the other Lattice CPLDs,

the 3000 series offers enhancements to

support more recent design styles, such

as IEEE Std 1149.1 boundary scan.

Figure 13 shows the general structure

of a Lattice pLSI or ispLSI device.

Around the chip’s outside edges are

bidirectional I/Os, which connect to

both the generic logic blocks and the

global routing pool. As the magnified

view on the right side of the figure

shows, the generic logic blocks are

small PAL-like blocks consisting of an

AND plane, a product term allocator,

and macrocells. The global routing

pool is a set of wires that span the chip

to connect generic logic block inputs

and outputs. All interconnects pass

through the global routing pool, so tim-

ing between logic levels is fully pre-

dictable, as it is for the AMD Mach

devices.

Cypress Flash370. Cypress has re-

cently developed CPLD products simi-

lar to the AMD and Lattice devices in

several ways. Cypress Flash370 CPLDs
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use flash EEPROM technology and of-

fer speed performance of 8.5 to 15 ns

pin-to-pin delays. The Flash370s are not

in-system programmable. To meet the

needs of larger chips, the devices pro-

vide more I/O pins than competing

products, with a linear relationship be-

tween the number of macrocells and

the number of bidirectional I/O pins.

The smallest parts have 32 macrocells

and 32 I/O pins; the largest have 256

macrocells and 256 pins.

Figure 14 shows that Flash370s have

a typical CPLD architecture with multi-

ple PAL-like blocks connected by a pro-

grammable interconnect matrix. Each

PAL-like block contains an AND plane

that feeds a product term allocator that

directs from 0 to 16 product terms to

each of 32 OR gates. The feedback path

from the macrocell outputs to the pro-

grammable interconnect matrix con-

tains 32 wires. This means that a

macrocell can be buried (not drive an

I/O pin), and yet the I/O pin that the

macrocell would have driven can still

serve as an input. This capability is an-

other type of flexibility available in PAL-

like blocks but not in normal PALs.

Xilinx XC7000. Although primarily a

manufacturer of FPGAs, Xilinx also of-

fers the XC7000 series of CPLDs. The two

main XC7000 families are the 7200 se-

ries (originally marketed by Plus Logic

as Hiper EPLDs) and the 7300 series de-

veloped by Xilinx. The 7200s are mod-

erately small devices with about a 600

to 1,500 gate capacity, and they offer

speed performance of about 25-ns pin-

to-pin delays. Each chip consists of a

collection of SPLD-like blocks contain-

ing nine macrocells each. Unlike those

in other CPLDs, a macrocell includes

two OR gates, each of which becomes

an input for a 2-bit arithmetic logic unit.

The ALU can produce any functions of

its two inputs, and its output feeds a

configurable flip-flop. The 7300 series

is an enhanced version of the 7200 with

greater capacity (up to 3,000 gates) and

higher speed performance. Xilinx also

has announced a new CPLD family, the

XC9500, which will offer in-circuit pro-

grammability with 5-ns pin-to-pin delays

and up to 6,200 logic gates.

Altera Flashlogic. Previously known

as Intel’s Flexlogic, these devices feature

in-system programmability and on-chip

SRAM blocks, a unique feature among

CPLD products. Figure 15a illustrates the

Flashlogic architecture, a collection of

PAL-like blocks called configurable

function blocks (CFBs), each of which

represents an optimized 24V10 PAL.

Flashlogic’s basic structure is similar

to other products already discussed.

However, one feature sets it apart from
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all other CPLDs: Instead of containing

AND/OR logic, a CFB can serve as a 

10-ns SRAM block. Figure 15b shows a

CFB configured as a PAL, and Figure

15c shows another configured as an

SRAM. In the SRAM configuration, the

PAL block becomes a 128-word by 10-

bit read/write memory. Inputs that

would normally feed the AND plane in

the PAL become address lines, data

lines, or control signals for the memo-

ry. Flip-flops and tristate buffers are still

available in the SRAM configuration.

In the Flashlogic device, the AND/OR

logic plane’s configuration bits are

SRAM cells connected to EPROM or

EEPROM cells. Applying power loads

the SRAM cells with a copy of the non-

volatile EPROM or EEPROM, but the

SRAM cells control the chip’s configu-

ration. The user can reconfigure the

chips in system by downloading new in-

formation into the SRAM cells. The user

can make the SRAM cell reprogram-

ming nonvolatile by writing the SRAM

cell contents back to the EPROM cells.

ICT PEEL Arrays. ICT PEEL (pro-

grammable, electrically-erasable logic)

Arrays are large PLAs that include logic

macrocells with flop-flops and feed-

back to the logic planes. Figure 16 il-

lustrates this structure, which consists

of a programmable AND plane that

feeds a programmable OR plane. The

OR plane’s outputs are partitioned into

groups of four, and each group can be

input to any of the logic cells. The log-

ic cells provide registers for the sum

terms and can feed back the sum terms

to the AND plane. Also, the logic cells

connect sum terms to I/O pins.

Because they have a PLA-like struc-

ture, the logic capacity of PEEL Arrays

is difficult to measure compared to the

CPLDs discussed so far, but we estimate

a capacity of 1,600 to 2,800 equivalent

gates. Containing relatively few I/O pins,

the largest PEEL Array comes in a 40-pin

package. Since they do not consist of

SPLD-like blocks, PEEL Arrays do not fit

well into the CPLD category.

Nevertheless, we include them here be-

cause they exemplify PLA-based (rather

than PAL-based) devices and offer larg-

er capacity than a typical SPLD.

The PEEL Array logic cell, shown in

Figure 17, includes a flip-flop, config-

urable as D, T, or JK, and two multi-

plexers. Each multiplexer produces a

logic cell output, either registered or

combinational. One logic cell output

can connect to an I/O pin, and the oth-

er output is buried. An interesting fea-

ture of the logic cell is that the flip-flop

clock, preset, and clear are full sum-of-

product logic functions. Distinguishing

PEEL Arrays from all other CPLDs,

which simply provide product terms for

these signals, this feature is attractive for

some applications. Because of their

PLA-like OR plane, PEEL Arrays are es-

pecially well suited to applications that

require very wide sum terms.

CPLD applications. Their high

speeds and wide range of capacities

make CPLDs useful for many applica-

tions, from implementing random glue

logic to prototyping small gate arrays.

An important reason for the growth of

the CPLD market is the conversion of

designs that consist of multiple SPLDs

into a smaller number of CPLDs.

CPLDs can realize complex designs

such as graphics, LAN, and cache con-

trollers. As a rule of thumb, circuits that

can exploit wide AND/OR gates and do

not need a large number of flip-flops are

good candidates for CPLD implemen-

tation. Finite state machines are an ex-

cellent example of this class of circuits.

A significant advantage of CPLDs is that

they allow simple design changes

through reprogramming (all commer-

cial CPLD products are reprogramma-

ble). In-system programmable CPLDs

even make it possible to reconfigure

hardware (for example, change a pro-

tocol for a communications circuit)

without powering down.

Designs often partition naturally into

the SPLD-like blocks in a CPLD, pro-

ducing more predictable speed perfor-

mance than a design split into many

small pieces mapped into different ar-

eas of the chip. Predictability of circuit

implementation is one of the strongest

advantages of CPLD architectures.

FPGAs. As one of the fastest growing

segments of the semiconductor indus-

try, the FPGA marketplace is volatile.

The pool of companies involved

changes rapidly, and it is difficult to say

which products will be most significant

when the industry reaches a stable

state. We focus here on products cur-

rently in widespread use. In describing

each device, we list its capacity in two-

input NAND gates as given by the ven-

dor. Gate count is an especially

contentious issue in the FPGA industry,

and so the numbers given should not

be taken too seriously. In fact, wags
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have coined the term “dog gates,” a ref-

erence to the often-cited ratio between

human and dog years, to indicate the

dubiousness of vendors’ figures.

The two basic categories of FPGAs on

the market today are SRAM- and anti-

fuse-based FPGAs. In the first category,

Xilinx and Altera lead in number of

users, their major competitor being

AT&T. For antifuse-based products,

Actel, Quicklogic, and Cypress are the

leading manufacturers.

Xilinx FPGAs. Xilinx FPGAs have an

array-based structure, each chip com-

prising a two-dimensional array of log-

ic blocks interconnected by horizontal

and vertical routing channels (see

Figure 2). Xilinx introduced the first

FPGA series, the XC2000, in about 1985

and now offers three more generations:

XC3000, XC4000, and XC5000. Although

the XC3000 devices are still widely used,

we focus on the more recent and more

popular XC4000 family. The XC4000 de-

vices range in capacity from about

2,000 to more than 15,000 equivalent

gates. The XC5000 family provides sim-

ilar features at a more attractive price

with some penalty in speed. Xilinx has

recently announced an antifuse-based

FPGA family, the XC8100. The XC8100

has many interesting features, but since

it is not yet in widespread use, we do

not discuss it here.

The XC4000 features a configurable

logic block (CLB) based on lookup ta-

bles. A lookup table is a 1-bit-wide mem-

ory array; the memory address lines are

logic block inputs, and the 1-bit mem-

ory output is the lookup table output. A

lookup table with K inputs corresponds

to a 2K ×1-bit memory, and the user can

realize any K-input logic function by

programming the logic function’s truth

table directly into the memory. In the

configuration shown in Figure 18, an

XC4000 CLB contains two four-input

lookup tables fed by CLB inputs, and a

third lookup table fed by the other two.

This arrangement allows the CLB to im-

plement a wide range of logic functions

of up to nine inputs, two separate four-

input functions, or other possibilities.

Each CLB also contains two flip-flops.

The XC4000 chips have features de-

signed to support the integration of en-

tire systems. For instance, each CLB

contains circuitry that allows it to effi-

ciently perform arithmetic (that is, a cir-

cuit that implements a fast carry

operation for adder-like circuits). Also,

users can configure the lookup tables

as read/write RAM cells. A new addi-

tion, the 4000E allows configuration as

a dual-port RAM with a single write and

two read ports, and RAM blocks can be

synchronous RAM. Each XC4000 chip

includes very wide AND planes around

the periphery of the logic block array to

facilitate implementation of circuit

blocks such as wide decoders.

Besides its logic, the other key feature

that distinguishes an FPGA is its inter-

connect structure. Horizontal and ver-

tical channels characterize the XC4000

interconnect. Each channel contains
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short wire segments that span a single

CLB (the number of segments in each

channel varies for each member of the

XC4000 family), longer segments that

span two CLBs, and very long segments

that span the chip’s entire length or

width. Programmable switches are

available (see Figure 5) to connect CLB

inputs and outputs to the wire segments

or to connect one wire segment to an-

other. A small section of an XC4000

routing channel appears in Figure 19.

The figure shows only the wire seg-

ments in a horizontal channel—not the

vertical routing channels, CLB inputs

and outputs, and the routing switches.

An important point about the Xilinx in-

terconnect is that signals must pass

through switches to reach one CLB

from another, and the total number of

switches traversed depends on the par-

ticular set of wire segments used. Thus,

an implemented circuit’s speed perfor-

mance depends in part on how CAD

tools allocate the wire segments to in-

dividual signals.

Altera Flex 8000 and Flex 10K.

Altera’s Flex 8000 series combines

FPGA and CPLD technologies. The de-

vices consist of a three-level hierarchy

much like that of CPLDs. However, the

lowest level of the hierarchy is a set of

lookup tables, rather than an SPLD-like

block, and so we categorize the Flex

8000 as an FPGA. The SRAM-based Flex

8000 features a four-input lookup table

as its basic logic block. Logic capacity

of the 8000 series ranges from about

4,000 to more than 15,000 gates.

Figure 20 illustrates the overall Flex

8000 architecture. The basic logic

block, called a logic element, contains

a four-input lookup table, a flip-flop,

and special-purpose carry circuitry for

arithmetic circuits (similar to the Xilinx

XC4000). The logic element also in-

cludes cascade circuitry that allows ef-

ficient implementation of wide AND

functions. Figure 21 shows details of the

logic element.

This design groups logic elements into

sets of eight, called logic array blocks (a

term borrowed from Altera’s CPLDs). As

shown in Figure 22 on the next page,

each logic array block contains local in-

terconnection, and each local wire can

connect any logic element to any other

logic element within the same logic ar-

ray block. The local interconnect also

connects to the Flex 8000’s FastTrack

global interconnect. Like the long wires

in the Xilinx XC4000, each FastTrack wire

extends the full width or height of the de-

vice. However, a major difference be-

tween Flex 8000 and Xilinx chips is that

FastTrack consists only of long lines,

making the Flex 8000 easy for CAD tools

to configure automatically. All FastTrack

horizontal wires are identical. Therefore,

interconnect delays in the Flex 8000 are

more predictable than in FPGAs that

employ many shorter segments because
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Figure 20. Altera Flex 8000 architecture.
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the longer paths contain fewer pro-

grammable switches. Moreover, con-

nections between horizontal and vertical

lines pass through active buffers, further

enhancing predictability.

The Flex 10K family offers all the Flex

8000 features with the addition of vari-

able-size blocks of SRAM called embed-

ded array blocks. As Figure 23 shows,

each row of a Flex 10K chip has an em-

bedded array block on one end. Users

can configure each embedded array

block to serve as an SRAM block with a

variable aspect ratio: 256×8, 512×4,

1K×2, or 2K×1. Alternatively, CAD tools

can configure an embedded array block

to implement a complex logic circuit,

such as a multiplier, by employing it as a

large, multioutput lookup table. Altera

CAD tools provide several macrofunc-

tions that implement useful logic circuits

in embedded array blocks. Counting the

embedded array blocks as logic gates,

Flex 10K offers the highest logic capaci-

ty of any FPGA, although obtaining an

accurate number is difficult.

AT&T ORCA. AT&T’s SRAM-based 

FPGAs, called Optimized Reconfig-

urable Cell Arrays (ORCAs), feature an

overall structure similar to that of Xilinx

FPGAs. The ORCA logic block contains

an array of programmable-function

units (Figure 24) based on lookup ta-

bles. A programmable-function unit is

unique among lookup-table-based log-

ic blocks: It is configurable as four 4-in-

put lookup tables, two 5-input lookup

tables, or one 6-input lookup table. A

key element of this architecture is that

when the programmable-function unit

serves as four 4-input lookup tables, sev-

eral of the lookup tables’ inputs must

come from the same programmable-

function unit input. While this restraint

reduces the programmable-function

unit’s flexibility, it also significantly re-

duces the chip’s wiring cost. The pro-

grammable-function unit includes

arithmetic circuitry, as do the Xilinx

XC4000 and the Altera Flex 8000, and

like the XC4000, is configurable as a

RAM block. A recently announced ver-

sion of the ORCA chip also allows dual-

port and synchronous RAM.

ORCA’s interconnect structure is also

different from other SRAM-based

FPGAs. Each programmable-function

unit connects to an interconnect con-

figured in four-bit buses. This structure

supports system level designs more ef-

ficiently, since buses are common in

such applications.

The ORCA2 series extends the fami-

ly, offering a capacity of up to 40,000

logic gates. ORCA2 features a two-level

hierarchy of programmable-function
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units based on the original ORCA

architecture.

Actel FPGAs. Actel offers three main

FPGA families: Act 1, Act 2, and Act 3.

Although the three generations have

similar features, we focus on the most

recent devices. Unlike the FPGAs de-

scribed so far, Actel’s devices use anti-

fuse technology and a structure similar

to traditional gate arrays. Their design

arranges logic blocks in rows with hor-

izontal routing channels between adja-

cent rows (Figure 25). Actel logic

blocks, based on multiplexers, are

small compared to those based on

lookup tables. Figure 26 illustrates the

Act 3 logic block, which consists of an

AND and an OR gate connected to a

multiplexer-based circuit block. In com-

bination with the two logic gates, the

arrangement of the multiplexer circuit

enables a single logic block to realize a

wide range of functions. About half the

logic blocks in an Act 3 device also con-

tain a flip-flop.

Actel’s horizontal routing channels

consist of various-length wire segments

with antifuses to connect logic blocks

to wire segments or one wire to anoth-

er. Although not shown in Figure 25,

vertical wires also overlie the logic

blocks, forming signal paths that span

multiple rows. The speed performance

of Actel chips is not fully predictable be-

cause the number of antifuses traversed

by a signal depends on how CAD tools

allocate the wire segments during cir-

cuit implementation. However, a rich

selection of wire segment lengths in

each channel and algorithms that guar-

antee strict limits on the number of an-

tifuses traversed by any two-point

connection improve speed perfor-

mance significantly.

Quicklogic pASIC. Actel’s main com-

petitor in antifuse-based FPGAs is

Quicklogic, which has two device fam-

ilies, pASIC and pASIC2. The pASIC, il-

lustrated in Figure 27a, has similarities

to several other FPGAs: Like Xilinx

FPGAs, it has an array-based structure;

like Actel FPGAs, its logic blocks use

multiplexers; and like Altera Flex 8000s,

its interconnect consists only of long

lines. The pASIC2 is a recently intro-

duced enhanced version, which we will

not discuss here. Cypress also offers de-

vices using the pASIC architecture, but

we discuss only Quicklogic’s version.

Quicklogic’s ViaLink antifuse struc-

ture (see Figure 27b) consists of a metal

top layer, an amorphous-silicon insulat-
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ing layer, and a metal bottom layer.

Compared to Actel’s PLICE antifuse,

ViaLink offers very low on-resistance—

about 50 ohms (PLICE’s is about 300

ohms)—and a low parasitic capaci-

tance. ViaLink antifuses are present at

every crossing of logic block pins and in-

terconnect wires, providing generous

connectivity. Figure 28 shows the pASIC

multiplexer-based logic block. It is more

complex than Actel’s logic module, with

more inputs and wide (six-input) AND

gates on the multiplexer select lines.

Every logic block also contains a flip-

flop.

FPGA applications. FPGAs have

gained rapid acceptance over the past

decade because users can apply them

to a wide range of applications: random

logic, integrating multiple SPLDs, device

controllers, communication encoding

and filtering, small- to medium-size sys-

tems with SRAM blocks, and many more.

Another interesting FPGA application

is prototyping designs to be implement-

ed in gate arrays by using one or more

large FPGAs. (A large FPGA corresponds

to a small gate array in terms of capaci-

ty). Still another application is the emu-

lation of entire large hardware systems

via the use of many interconnected

FPGAs. QuickTurn4 and others have de-

veloped products consisting of the

FPGAs and software necessary to parti-

tion and map circuits for hardware em-

ulation.

An application only beginning devel-

opment is the use of FPGAs as custom

computing machines. This involves us-

ing the programmable parts to execute

software, rather than compiling the soft-

ware for execution on a regular CPU. For

information, we refer readers to the pro-

ceedings of the IEEE Workshop on

FPGAs for Custom Computing Machines,

held for the last four years.5

As mentioned earlier, pieces of de-

signs often map naturally to the SPLD-

like blocks of CPLDs. However, designs

mapped into an FPGA break up into

logic-block-size pieces distributed

through an area of the FPGA. Depending

on the FPGA’s interconnect structure,

the logic block interconnections may

produce delays. Thus, FPGA perfor-

mance often depends more on how

CAD tools map circuits into the chip than

does CPLD performance.

THE LOW COST OF FPDS makes them

attractive to small firms and large com-

panies alike. Their fast manufacturing

turnaround is an essential element of

their market success. Although their

large, slow programmable switches pre-

vent FPDs from providing the speed per-

formance and logic capacity of MPGAs,

improvements in architecture and CAD

tools will overcome these disadvantages.

Over time FPDs will become the domi-

nant technology for implementing digi-

tal circuits.
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