

Table of Contents

Copyright... 1
Prentice Hall Modern Semiconductor Design Series................................... 4
Preface to the Fourth Edition.. 5
Preface to the Third Edition.. 7
Preface to the Second Edition... 8
Preface.. 9
About the Author... 12
Chapter 1. Digital Systems and VLSI.. 13

Section 1.1. Why Design Integrated Circuits?... 15
Section 1.2. Integrated Circuit Manufacturing.. 17
Section 1.3. CMOS Technology... 30
Section 1.4. Integrated Circuit Design Techniques.. 33
Section 1.5. IP-Based Design... 45
Section 1.6. A Look into the Future.. 52
Section 1.7. Summary.. 53
Section 1.8. References.. 54
Section 1.9. Problems.. 54

Chapter 2. Fabrication and Devices... 55
Section 2.1. Introduction... 57
Section 2.2. Fabrication Processes.. 57
Section 2.3. Transistors.. 64
Section 2.4. Wires and Vias.. 86
Section 2.5. Fabrication Theory and Practice... 96
Section 2.6. Reliability... 110
Section 2.7. Layout Design and Tools.. 115
Section 2.8. References.. 131
Section 2.9. Problems.. 132

Chapter 3. Logic Gates... 135
Section 3.1. Introduction... 137
Section 3.2. Combinational Logic Functions.. 137
Section 3.3. Static Complementary Gates... 140
Section 3.4. Switch Logic... 169
Section 3.5. Alternative Gate Circuits.. 171
Section 3.6. Low-Power Gates... 181
Section 3.7. Delay through Resistive Interconnect... 187
Section 3.8. Delay through Inductive Interconnect... 199
Section 3.9. Design-for-Yield.. 205
Section 3.10. Gates as IP... 207
Section 3.11. References.. 210
Section 3.12. Problems... 211

Chapter 4. Combinational Logic Networks... 217
Section 4.1. Introduction... 219
Section 4.2. Standard Cell-Based Layout.. 219
Section 4.3. Combinational Network Delay.. 231
Section 4.4. Logic and Interconnect Design... 247
Section 4.5. Power Optimization.. 258
Section 4.6. Switch Logic Networks... 263
Section 4.7. Combinational Logic Testing.. 267
Section 4.8. References... 274
Section 4.9. Problems.. 274

Chapter 5. Sequential Machines.. 279
Section 5.1. Introduction... 281

Modern VLSI Design: IP-Based Design, Fourth Edition

Section 5.2. Latches and Flip-Flops.. 281
Section 5.3. Sequential Systems and Clocking Disciplines.. 293
Section 5.4. Performance Analysis... 304
Section 5.5. Clock Generation... 322
Section 5.6. Sequential System Design... 324
Section 5.7. Power Optimization... 341
Section 5.8. Design Validation.. 342
Section 5.9. Sequential Testing... 344
Section 5.10. References... 352
Section 5.11. Problems... 352

Chapter 6. Subsystem Design... 357
Section 6.1. Introduction... 359
Section 6.2. Combinational Shifters... 361
Section 6.3. Adders... 364
Section 6.4. ALUs.. 372
Section 6.5. Multipliers... 372
Section 6.6. High-Density Memory.. 381
Section 6.7. Image Sensors... 394
Section 6.8. Field-Programmable Gate Arrays... 397
Section 6.9. Programmable Logic Arrays... 399
Section 6.10. Buses and Networks-on-Chips... 403
Section 6.11. Data Paths.. 427
Section 6.12. Subsystems as IP... 429
Section 6.13. References... 434
Section 6.14. Problems.. 434

Chapter 7. Floorplanning... 437
Section 7.1. Introduction... 439
Section 7.2. Floorplanning Methods.. 439
Section 7.3. Global Interconnect... 451
Section 7.4. Floorplan Design... 462
Section 7.5. Off-Chip Connections.. 464
Section 7.6. References... 473
Section 7.7. Problems.. 474

Chapter 8. Architecture Design... 483
Section 8.1. Introduction.. 485
Section 8.2. Hardware Description Languages.. 485
Section 8.3. Register-Transfer Design.. 507
Section 8.4. Pipelining... 521
Section 8.5. High-Level Synthesis.. 530
Section 8.6. Architectures for Low Power... 551
Section 8.7. GALS Systems... 556
Section 8.8. Architecture Testing.. 557
Section 8.9. IP Components... 562
Section 8.10. Design Methodologies... 563
Section 8.11. Multiprocessor System-on-Chip Design.. 571
Section 8.12. References.. 577
Section 8.13. Problems.. 577

Appendices.. 581
Appendix A. A Chip Designer’s Lexicon... 583
Appendix B. Hardware Description Languages... 601

Section B.1. Introduction... 601
Section B.2. Verilog... 601
Section B.3. VHDL.. 606

References... 611
Inside Front Cover.. 625
Inside Back Cover.. 627

Modern VLSI Design: IP-Based Design, Fourth Edition

Modern VLSI Design
IP-Based Design

Fourth Edition

Wayne Wolf

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Modern VLSI Design: IP-Based Design, Fourth Edition Page 1 Return to Table of Contents

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Wolf, Wayne Hendrix.
 Modern VLSI design : IP-based design / Wayne Wolf.—4th ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-714500-4 (hardback : alk. paper) 1. Digital integrated circuits—
Computer-aided design. 2. Logic circuits--Computer-aided design. 3. Design
protection. 4. Intellectual property. I. Title.
 TK7874.65.W65 2008
 621.39'5—dc22
 2008040479

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

Illustrated and typeset by the author. This book was typeset using FrameMaker. Illustrations were drawn using
Adobe Illustrator, with layout plots generated by cif2ps.

ISBN-13: 978-0-13-714500-3
ISBN-10: 0-13-714500-4
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, December 2008

Modern VLSI Design: IP-Based Design, Fourth Edition Page 2 Return to Table of Contents

for Nancy and Alec

Modern VLSI Design: IP-Based Design, Fourth Edition Page 3 Return to Table of Contents

Prentice Hall Modern Semiconductor Design Series

James R. Armstrong and F. Gail Gray
VHDL Design Representation and Synthesis

Mark Gordon Arnold
Verilog Digital Computer Design: Algorithms into Hardware

Jayaram Bhasker
A VHDL Primer, Third Edition

Mark D. Birnbaum
Essential Electronic Design Automation (EDA)

Eric Bogatin
Signal Integrity: Simplifed

Douglas Brooks
Signal Integrity Issues and Printed Circuit Board Design

Ken Coffman
Real World FPGA Design with Verilog

Alfred Crouch
Design-for-Test for Digital IC’s and Embedded Core Systems

Dennis Derickson and Marcus Müller (Editors)
Digital Communications Test and Measurement

Greg Edlund
Timing Analysis and Simulation for Signal Integrity Engineers

Daniel P. Foty
MOSFET Modeling with SPICE: Principles and Practice

Tom Granberg
Handbook of Digital Techniques for High-Speed Design

Nigel Horspool and Peter Gorman
The ASIC Handbook

Geoff Lawday, David Ireland, and Greg Edlund
A Signal Integrity Engineer’s Companion

Mike Peng Li
Jitter, Noise, and Signal Integrity at High-Speed

Farzad Nekoogar and Faranak Nekoogar
From ASICs to SOCs: A Practical Approach

Farzad Nekoogar
Timing Verification of Application-Specific Integrated Circuits (ASICs)

Samir Palnitkar
Design Verification with e

David Pellerin and Scott Thibault
Practical FPGA Programming in C

Christopher T. Robertson
Printed Circuit Board Designer’s Reference: Basics

Chris Rowen
Engineering the Complex SOC

Madhavan Swaminathan and A. Ege Engin
Power Integrity Modeling and Design for Semiconductors and Systems

Wayne Wolf
FPGA-Based System Design

Wayne Wolf
Modern VLSI Design, Fourth Edition: IP-Based Design

Modern VLSI Design: IP-Based Design, Fourth Edition Page 4 Return to Table of Contents

xv

Preface to the Fourth Edition

I set for myself two goals in producing this fourth edition of Modern VLSI Design. First, I wanted to
update the book for more modern technologies and design methods. This includes obvious changes like
smaller design rules. But it also includes emphasizing more system-level topics such as IP-based
design. Second, I wanted to continue to improve the book’s treatment of the fundamentals of logic
design. VLSI is often treated as circuit design, meaning that traditional logic design topics like
pipelining can easily become lost.

In between the third and fourth editions of this book, I respun the third edition as FPGA-Based System
Design. That book added new FPGA-oriented material to material from Modern VLSI Design. In this
edition, I’ve decided to borrow back some material from the FPGA book. The largest inclusion was the
section on sequential system performance. I had never been happy with my treatment of that material.
After 10 years of trying, I came up with a more acceptable description of clocking and timing in the
FPGA book and I am now bringing it back to VLSI. I included material on busses, Rent’s Rule,
pipelining, and hardware description languages. I also borrowed some material on FPGAs themselves to
flesh out that treatment from the third edition. An increasing number of designs include FPGA fabrics to
add flexibility; FPGAs also make good design projects for VLSI classes. Material on IP-based design is
presented at several levels of hierarchy: gates, subsystems, and architecture.

As part of this update, I eliminated the CAD chapter from this edition because I finally decided that
such detailed treatment of many of the CAD tools is not strictly necessary. I also deleted the chapter on
chip design.

Chip design has changed fundamentally in the past 20 years since I started to work on this book. Chip
designers think less about rectangles and more about large blocks. To reflect this shift, I added a new
chapter on system-on-chip design. Intellectual property is a fundamental fact of life in VLSI
design—either you will design IP modules or you will use someone else’s IP modules.

In addition to changing the chapters themselves, I also substantially revised the problems at the end of
each chapter. These new problems better reflect the new material and they provide new challenges for
students.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 5 Return to Table of Contents

xvi Preface to the Fourth Edition

While I was at it, I also made some cosmetic changes to the book. I changed the typesetting to use the
same format for left- and right-hand pages, an unfortunate necessity with today’s tools. I also added
margin headers—those phrases you see in the left-hand margin.

I have set up a new Web site for my books: look for “Wayne Wolf books” using your favorite search
engine or use the URL http://www.waynewolf.us. This site includes overheads and errata for this book
plus some useful links on VLSI design.

I’d like to thank Saibal Mukhopadhyay for his advice on low power, Jeremy Tolbert for his help with
Spice, Massoud Pedram for his advice on thermal issues, Shekhar Borkhar for his advice on reliability,
Deepu Talla and Cathy Wicks for the Da Vinci die photo, Axel Jantsch for his advice on networks-on-
chips, Don Bouldin for his many helpful suggestions on IP-based design and other topics, Yuan Xie for
his advice on both reliability and 3-D, Shekhar Borkar for his help on reliability, and my editor, Bernard
Goodwin, for his everlasting patience. All errors in the book are, of course, mine.

Wayne Wolf
Atlanta, Georgia

Modern VLSI Design: IP-Based Design, Fourth Edition Page 6 Return to Table of Contents

xvii

Preface to the Third Edition

This third edition of Modern VLSI Design includes both incremental refinements and new topics. All
these changes are designed to help keep up with the fast pace of advancements in VLSI technology and
design.

The incremental refinements in the book include improvements in the discussion of low power design,
the chip project, and the lexicon. Low power design was discussed in the second edition, but has
become even more complex due to the higher leakages found at smaller transistor sizes. The PDP-8
used in previous editions has been replaced with a more modern data path design. Designing a complete
computer is beyond the scope of most VLSI courses, but a data path makes a good class project. I have
also tried to make the lexicon a more comprehensive guide to the terms in the book.

This edition shows more major improvements to the discussions of interconnect and hardware
description languages. Interconnect has become increasingly important over the past few years, with
interconnect delays often dominating total delay. I decided it was time to fully embrace the importance
of interconnect, especially with the advent of copper interconnect. This third edition now talks more
thoroughly about interconnect models, crosstalk, and interconnect-centric logic design.

The third editon also incorporates a much more thorough discussion of hardware description languages.
Chapter 8, which describes architectural design, now introduces VHDL and Verilog as the major
hardware description languages. Though these sections are not meant to be thorough manuals for these
languages, they should provide enough information for the reader to understand the major concepts of
the languages and to be able to read design examples in those languages.

As with the second edition, you can find additional helpful material on the World Wide Web at http://
www.ee.princeton.edu/~wolf/modern-vlsi. This site includes overheads useful either for teaching or for
self-paced learning. The site also includes supplementary materials, such as layouts and HDL
descriptions. Instructors may request a book of answers to the problems in the book by calling Prentice
Hall directly.

I’d like to thank Al Casavant and Ken Shepard for their advice on interconnect analysis and Joerg
Henkel for his advice on design. I’d also like to thank Fred Rosenberger for his many helpful comments
on the book. As always, any mistakes are mine.

Wayne Wolf
Princeton, New Jersey

Modern VLSI Design: IP-Based Design, Fourth Edition Page 7 Return to Table of Contents

xviii

Preface to the Second Edition

Every chapter in this second edition of Modern VLSI Design has been updated to reflect the challenges
looming in VLSI system design. Today’s VLSI design projects are, in many cases, mega-chips which
not only contain tens (and soon hundreds) of millions of transistors, but must also run at very high
frequencies. As a result, I have emphasized circuit design in a number of ways: the fabrication chapter
spends much more time on transistor characteristics; the chapter on gate design covers a wider variety
of gate designs; the combinational logic chapter enhances the description of interconnect delay and adds
an important new section on crosstalk; the sequential logic chapter covers clock period determination
more thoroughly; the subsystems chapter gives much more detailed descriptions of both multiplication
and RAM design; the floorplanning chapter spends much more time on clock distribution.

Beyond being large and fast, modern VLSI systems must frequently be designed for low power
consumption. Low-power design is of course critical for battery-operated devices, but the sheer size of
these VLSI systems means that excessive power consumption can lead to heat problems. Like testing,
low-power design cuts across all levels of abstraction, and you will find new sections on low power
throughout the book.

The reader familiar with the first edition of this book will notice that the combinational logic material
formerly covered in one chapter (Chapter 3) has been split into two chapters, one of logic gates and
another on combinational networks. This split was the result of the great amount of material added on
circuit design added to the early chapters of the book. Other, smaller rearrangements have also been
made in the book, hopefully aiding clarity.

You can find additional helpful material on the World Wide Web at http://www.ee.princeton.edu/~wolf/
modern-vlsi. This site includes overheads useful either for teaching or for self-paced learning. The site
also includes supplementary materials, such as layouts and VHDL descriptions. Instructors may request
a book of answers to the problems in the book by calling Prentice Hall directly.

I would especially like to thank Derek Beatty, Luc Claesen, John Darringer, Srinivas Devadas, Santanu
Dutta, Michaela Guiney, Alex Ishii, Steve Lin, Rob Mathews, Cherrice Traver, and Steve Trimberger
for their comments and suggestions on this second edition.

Wayne Wolf
Princeton, New Jersey

Modern VLSI Design: IP-Based Design, Fourth Edition Page 8 Return to Table of Contents

xix

Preface

This book was written in the belief that VLSI design is system design. Designing fast inverters is fun,
but designing a high-performance, cost-effective integrated circuit demands knowledge of all aspects of
digital design, from application algorithms to fabrication and packaging. Carver Mead and Lynn
Conway dubbed this approach the tall-thin designer approach. Today’s hot designer is a little fatter than
his or her 1979 ancestor, since we now know a lot more about VLSI design than we did when Mead and
Conway first spoke. But the same principle applies: you must be well-versed in both high-level and
low-level design skills to make the most of your design opportunities.

Since VLSI has moved from an exotic, expensive curiosity to an everyday necessity, universities have
refocused their VLSI design classes away from circuit design and toward advanced logic and system
design. Studying VLSI design as a system design discipline requires such a class to consider a
somewhat different set of areas than does the study of circuit design. Topics such as ALU and
multiplexer design or advanced clocking strategies used to be discussed using TTL and board-level
components, with only occasional nods toward VLSI implementations of very large components.
However, the push toward higher levels of integration means that most advanced logic design projects
will be designed for integrated circuit implementation.

I have tried to include in this book the range of topics required to grow and train today’s tall,
moderately-chubby IC designer. Traditional logic design topics, such as adders and state machines, are
balanced on the one hand by discussions of circuits and layout techniques and on the other hand by the
architectural choices implied by scheduling and allocation. Very large ICs are sufficiently complex that
we can’t tackle them using circuit design techniques alone; the top-notch designer must understand
enough about architecture and logic design to know which parts of the circuit and layout require close
attention. The integration of system-level design techniques, such as scheduling, with the more
traditional logic design topics is essential for a full understanding of VLSI-size systems.

In an effort to systematically cover all the problems encountered while designing digital systems in
VLSI, I have organized the material in this book relatively bottom-up, from fabrication to architecture.
Though I am a strong fan of top-down design, the technological limitations which drive architecture are
best learned starting with fabrication and layout. You can’t expect to fully appreciate all the nuances of
why a particular design step is formulated in a certain way until you have completed a chip design
yourself, but referring to the steps as you proceed on your own chip design should help guide you. As a

Modern VLSI Design: IP-Based Design, Fourth Edition Page 9 Return to Table of Contents

xx Preface

result of the bottom-up organization, some topics may be broken up in unexpected ways. For example,
placement and routing are not treated as a single subject, but separately at each level of abstraction:
transistor, cell, and floor plan. In many instances I purposely tried to juxtapose topics in unexpected
ways to encourage new ways of thinking about their interrelationships.

This book is designed to emphasize several topics that are essential to the practice of VLSI design as a
system design discipline:

• A systematic design methodology reaching from circuits to architecture. Modern logic
design includes more than the traditional topics of adder design and two-level minimiza-
tion—register-transfer design, scheduling, and allocation are all essential tools for the design
of complex digital systems. Circuit and layout design tell us which logic and architectural
designs make the most sense for CMOS VLSI.

• Emphasis on top-down design starting from high-level models. While no high-perfor-
mance chip can be designed completely top-down, it is excellent discipline to start from a com-
plete (hopefully executable) description of what the chip is to do; a number of experts estimate
that half the application-specific ICs designed execute their delivery tests but don’t work in
their target system because the designer didn’t work from a complete specification.

• Testing and design-for-testability. Today’s customers demand both high quality and short
design turnaround. Every designer must understand how chips are tested and what makes them
hard to test. Relatively small changes to the architecture can make a chip drastically easier to
test, while a poorly designed architecture cannot be adequately tested by even the best testing
engineer.

• Design algorithms. We must use analysis and synthesis tools to design almost any type of
chip: large chips, to be able to complete them at all; relatively small ASICs, to meet perfor-
mance and time-to-market goals. Making the best use of those tools requires understanding
how the tools work and exactly what design problem they are intended to solve.

The design methodologies described in this book make heavy use of computer-aided design (CAD)
tools of all varieties: synthesis and analysis; layout, circuit, logic, and architecture design. CAD is more
than a collection of programs. CAD is a way of thinking, a way of life, like Zen. CAD’s greatest
contribution to design is breaking the process up into manageable steps. That is a conceptual advance
you can apply with no computer in sight. A designer can—and should—formulate a narrow problem
and apply well-understood methods to solve that problem. Whether the designer uses CAD tools or
solves the problem by hand is much less important than the fact that the chip design isn’t a jumble of
vaguely competing concerns but a well-understood set of tasks.

I have explicitly avoided talking about the operation of particular CAD tools. Different people have
different tools available to them and a textbook should not be a user’s guide. More importantly, the
details of how a particular program works are a diversion—what counts is the underlying problem
formulations used to define the problem and the algorithms used to solve them. Many CAD algorithms

Modern VLSI Design: IP-Based Design, Fourth Edition Page 10 Return to Table of Contents

Preface xxi

are relatively intuitive and I have tried to walk through examples to show how you can think like a CAD
algorithm. Some of the less intuitive CAD algorithms have been relegated to a separate chapter;
understanding these algorithms helps explain what the tool does, but isn’t directly important to manual
design.

Both the practicing professional and the advanced undergraduate or graduate student should benefit
from this book. Students will probably undertake their most complex logic design project to date in a
VLSI class. For a student, the most rewarding aspect of a VLSI design class is to put together
previously-learned basics on circuit, logic, and architecture design to understand the tradeoffs between
the different levels of abstraction. Professionals who either practice VLSI design or develop VLSI CAD
tools can use this book to brush up on parts of the design process with which they have less-frequent
involvement. Doing a truly good job of each step of design requires a solid understanding of the big
picture.

A number of people have improved this book through their criticism. The students of COS/ELE 420 at
Princeton University have been both patient and enthusiastic. Profs. C.-K. Cheng, Andrea La Paugh,
Miriam Leeser, and John “Wild Man” Nestor all used drafts in their classes and gave me valuable
feedback. Profs. Giovanni De Micheli, Steven Johnson, Sharad Malik, Robert Rutenbar, and James
Sturm also gave me detailed and important advice after struggling through early drafts. Profs. Malik and
Niraj Jha also patiently answered my questions about the literature. Any errors in this book are, of
course, my own.

Thanks to Dr. Mark Pinto and David Boulin of AT&T for the transistor cross section photo and to
Chong Hao and Dr. Michael Tong of AT&T for the ASIC photo. Dr. Robert Mathews, formerly of
Stanford University and now of Performance Processors, indoctrinated me in pedagogical methods for
VLSI design from an impressionable age. John Redford of DEC supplied many of the colorful terms in
the lexicon.

Wayne Wolf
Princeton, New Jersey

Modern VLSI Design: IP-Based Design, Fourth Edition Page 11 Return to Table of Contents

xxii

About the Author

Wayne Wolf is Rhesa “Ray” S. Farmer Jr. Distinguished Chair in Embedded Computing Systems and
Georgia Research Alliance Eminent Scholar at the Georgia Institute of Technology. Before joining
Georgia Tech, he was with Princeton University from 1989 to 2007 and AT&T Bell Laboratories from
1984 to 1989. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from Stanford
University in 1980, 1981, and 1984, respectively. His research interests include VLSI systems,
embedded computing, cyber-physical systems, and embedded computer vision. He has chaired several
conferences, including CODES, EMSOFT, CASES, and ICCD. He was founding editor-in-chief of
ACM Transactions on Embedded Computing Systems and founding co-editor-in-chief of Design
Automation for Embedded Systems. He is a Fellow of the ACM and IEEE. He received the ASEE/CSE
and HP Frederick E. Terman Award in 2003 and the IEEE Circuits and Systems Education Award in
2006.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 12 Return to Table of Contents

1

Digital Systems
and VLSI

Highlights:

VLSI and Moore’s Law.

CMOS technology.

Hierarchical design.

The VLSI design process.

IP-based design.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 13 Return to Table of Contents

2 Chapter 1: Digital Systems and VLSI

year

tr

an
si

st
or

s

100

101

100

102

100

103

104

105

106

107

108

memory
CPU

19701960 1980 1990

integrated
circuit
invented

2000

109

2010

Moore’s Law (Figure 1-3).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 14 Return to Table of Contents

1.1 Why Design Integrated Circuits? 3

1.1 Why Design Integrated Circuits?

This book describes design methods for integrated circuits. That may
seem like a specialized topic. But, in fact, integrated circuit (IC) tech-
nology is the enabling technology for a whole host of innovative devices
and systems that have changed the way we live. Jack Kilby and Robert
Noyce received the 2000 Nobel Prize in Physics for their invention of
the integrated circuit; without the integrated circuit, neither transistors
nor computers would be as important as they are today. VLSI systems
are much smaller and consume less power than the discrete components
used to build electronic systems before the 1960s. Integration allows us
to build systems with many more transistors, allowing much more com-
puting power to be applied to solving a problem. Integrated circuits are
also much easier to design and manufacture and are more reliable than
discrete systems; that makes it possible to develop special-purpose sys-
tems that are more efficient than general-purpose computers for the task
at hand.

applications of VLSI Electronic systems now perform a wide variety of tasks in daily life.
Electronic systems in some cases have replaced mechanisms that oper-
ated mechanically, hydraulically, or by other means; electronics are
usually smaller, more flexible, and easier to service. In other cases
electronic systems have created totally new applications. Electronic
systems perform a variety of tasks, some of them visible, some more
hidden:

• Personal entertainment systems such as portable MP3 players and
DVD players perform sophisticated algorithms with remarkably lit-
tle energy.

• Electronic systems in cars operate stereo systems and displays; they
also control fuel injection systems, adjust suspensions to varying ter-
rain, and perform the control functions required for anti-lock braking
(ABS) systems.

• Digital electronics compress and decompress video, even at high-
definition data rates, on-the-fly in consumer electronics.

• Low-cost terminals for Web browsing still require sophisticated
electronics, despite their dedicated function.

• Personal computers and workstations provide word-processing,
financial analysis, and games. Computers include both central pro-
cessing units (CPUs) and special-purpose hardware for disk access,
faster screen display, etc.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 15 Return to Table of Contents

4 Chapter 1: Digital Systems and VLSI

• Medical electronic systems measure bodily functions and perform
complex processing algorithms to warn about unusual conditions.
The availability of these complex systems, far from overwhelming
consumers, only creates demand for even more complex systems.

The growing sophistication of applications continually pushes the
design and manufacturing of integrated circuits and electronic systems
to new levels of complexity. And perhaps the most amazing characteris-
tic of this collection of systems is its variety—as systems become more
complex, we build not a few general-purpose computers but an ever
wider range of special-purpose systems. Our ability to do so is a testa-
ment to our growing mastery of both integrated circuit manufacturing
and design, but the increasing demands of customers continue to test the
limits of design and manufacturing.

advantages of VLSI While we will concentrate on integrated circuits in this book, the prop-
erties of integrated circuits—what we can and cannot efficiently put in
an integrated circuit—largely determine the architecture of the entire
system. Integrated circuits improve system characteristics in several
critical ways. ICs have three key advantages over digital circuits built
from discrete components:

• Size. Integrated circuits are much smaller—both transistors and
wires are shrunk to micrometer sizes, compared to the millimeter or
centimeter scales of discrete components. Small size leads to advan-
tages in speed and power consumption, since smaller components
have smaller parasitic resistances, capacitances, and inductances.

• Speed. Signals can be switched between logic 0 and logic 1 much
quicker within a chip than they can between chips. Communication
within a chip can occur hundreds of times faster than communication
between chips on a printed circuit board. The high speed of circuits
on-chip is due to their small size—smaller components and wires
have smaller parasitic capacitances to slow down the signal.

• Power consumption. Logic operations within a chip also take much
less power. Once again, lower power consumption is largely due to
the small size of circuits on the chip—smaller parasitic capacitances
and resistances require less power to drive them.

VLSI and systems These advantages of integrated circuits translate into advantages at the
system level:

• Smaller physical size. Smallness is often an advantage in
itself—consider portable televisions or handheld cellular telephones.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 16 Return to Table of Contents

1.2 Integrated Circuit Manufacturing 5

• Lower power consumption. Replacing a handful of standard parts
with a single chip reduces total power consumption. Reducing power
consumption has a ripple effect on the rest of the system: a smaller,
cheaper power supply can be used; since less power consumption
means less heat, a fan may no longer be necessary; a simpler cabinet
with less shielding for electromagnetic shielding may be feasible,
too.

• Reduced cost. Reducing the number of components, the power sup-
ply requirements, cabinet costs, and so on, will inevitably reduce
system cost. The ripple effect of integration is such that the cost of a
system built from custom ICs can be less, even though the individual
ICs cost more than the standard parts they replace.

Understanding why integrated circuit technology has such profound
influence on the design of digital systems requires understanding both
the technology of IC manufacturing and the economics of ICs and digi-
tal systems.

1.2 Integrated Circuit Manufacturing

Integrated circuit technology is based on our ability to manufacture
huge numbers of very small devices—today, more transistors are manu-
factured in California each year than raindrops fall on the state. In this
section, we briefly survey VLSI manufacturing.

1.2.1 Technology
Most manufacturing processes are fairly tightly coupled to the item they
are manufacturing. An assembly line built to produce Buicks, for exam-
ple, would have to undergo moderate reorganization to build
Chevys—tools like sheet metal molds would have to be replaced, and
even some machines would have to be modified. And either assembly
line would be far removed from what is required to produce electric
drills.

mask-driven
manufacturing

Integrated circuit manufacturing technology, on the other hand, is
remarkably versatile. While there are several manufacturing processes
for different circuit types—CMOS, bipolar, etc.—a manufacturing line
can make any circuit of that type simply by changing a few basic tools
called masks. For example, a single CMOS manufacturing plant can

Modern VLSI Design: IP-Based Design, Fourth Edition Page 17 Return to Table of Contents

6 Chapter 1: Digital Systems and VLSI

make both microprocessors and microwave oven controllers by changing
the masks that form the patterns of wires and transistors on the chips.

test
structures

chip

Figure 1-1 A wafer divided into chips.

courtesy IBM

Modern VLSI Design: IP-Based Design, Fourth Edition Page 18 Return to Table of Contents

1.2 Integrated Circuit Manufacturing 7

Silicon wafers are the raw material of IC manufacturing. The fabrication
process forms patterns on the wafer that create wires and transistors. As
shown in Figure 1-1, a series of identical chips are patterned onto the
wafer (with some space reserved for test circuit structures which allow
manufacturing to measure the results of the manufacturing process).
The IC manufacturing process is efficient because we can produce many
identical chips by processing a single wafer. By changing the masks that
determine what patterns are laid down on the chip, we determine the
digital circuit that will be created. The IC fabrication line is a generic
manufacturing line—we can quickly retool the line to make large quan-
tities of a new kind of chip, using the same processing steps used for the
line’s previous product.

circuits and layouts Figure 1-2 shows the schematic for a simple digital circuit. From this
description alone we could build a breadboard circuit out of standard
parts. To build it on an IC fabrication line, we must go one step further
and design the layout, or patterns on the masks. The rectangular shapes
in the layout (shown here as a sketch called a stick diagram) form tran-
sistors and wires which conform to the circuit in the schematic. Creating
layouts is very time-consuming and very important—the size of the lay-
out determines the cost to manufacture the circuit, and the shapes of ele-
ments in the layout determine the speed of the circuit as well. During
manufacturing, a photolithographic (photographic printing) process is
used to transfer the layout patterns from the masks to the wafer. The pat-
terns left by the mask are used to selectively change the wafer: impuri-
ties are added at selected locations in the wafer; insulating and

A A'

p-type
transistor

n-type
transistor

A A'

Figure 1-2 An
inverter circuit
and a sketch for
its layout.

transistor circuit layout sketch

Modern VLSI Design: IP-Based Design, Fourth Edition Page 19 Return to Table of Contents

8 Chapter 1: Digital Systems and VLSI

conducting materials are added on top of the wafer as well. These fabri-
cation steps require high temperatures, small amounts of highly toxic
chemicals, and extremely clean environments. At the end of processing,
the wafer is divided into a number of chips.

manufacturing defects Because no manufacturing process is perfect, some of the chips on the
wafer may not work. Since at least one defect is almost sure to occur on
each wafer, wafers are cut into smaller, working chips; the largest chip
that can be reasonably manufactured today is 1.5 to 2 cm on a side,
while a wafer is in moving from 30 to 45 cm. Each chip is individually
tested; the ones that pass the test are saved after the wafer is diced into
chips. The working chips are placed in the packages familiar to digital
designers. In some packages, tiny wires connect the chip to the pack-
age’s pins while the package body protects the chip from handling and
the elements; in others, solder bumps directly connect the chip to the
package.

Integrated circuit manufacturing is a powerful technology for two rea-
sons: all circuits can be made out of a few types of transistors and wires;
and any combination of wires and transistors can be built on a single
fabrication line just by changing the masks that determine the pattern of
components on the chip. Integrated circuits run very fast because the
circuits are very small. Just as important, we are not stuck building a
few standard chip types—we can build any function we want. The flexi-
bility given by IC manufacturing lets us build faster, more complex dig-
ital systems in ever greater variety.

1.2.2 Economics
Because integrated circuit manufacturing has so much leverage—a great
number of parts can be built with a few standard manufacturing proce-
dures—a great deal of effort has gone into improving IC manufacturing.
However, as chips become more complex, the cost of designing a chip
goes up and becomes a major part of the overall cost of the chip.

Moore’s Law In the 1960s Gordon Moore predicted that the number of transistors that
could be manufactured on a chip would grow exponentially. His predic-
tion, now known as Moore’s Law, was remarkably prescient. Moore’s
ultimate prediction was that transistor count would double every two
years, an estimate that has held up remarkably well. Today, an industry
group maintains the International Technology Roadmap for Semicon-
ductors (ITRS), that maps out strategies to maintain the pace of Moore’s
Law. (The ITRS roadmap can be found at http://www.itrs.net.)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 20 Return to Table of Contents

1.2 Integrated Circuit Manufacturing 9

Figure 1-3 shows advances in manufacturing capability by charting the
introduction dates of key products that pushed the state of the manufac-
turing art. The squares show various logic circuits, primarily central
processing units (CPUs) and digital signal processors (DSPs), while the
black dots show random-access memories, primarily dynamic RAMs or
DRAMs. At any given time, memory chips have more transistors per
unit area than logic chips, but both have obeyed Moore’s Law.

terminology The most basic parameter associated with a manufacturing process is
the minimum channel length of a transistor. (In this book, for example,
we will use as an example a technology that can manufacture 180 nm
transistors.) A manufacturing technology at a particular channel length
is called a technology node. We often refer to a family of technologies
at similar feature sizes: micron, submicron, deep submicron, and now
nanometer technologies. The term nanometer technology is generally
used for technologies below 100 nm.

The next example shows how Moore’s Law has held up in one family of
microprocessors.

year

tr

an
si

st
or

s

100

101

100

102

100

103

104

105

106

107

108

memory
CPU

19701960 1980 1990

integrated
circuit
invented

2000

109

2010

Figure 1-3
Moore’s Law.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 21 Return to Table of Contents

10 Chapter 1: Digital Systems and VLSI

Example 1-1
Moore’s Law
and Intel
microprocessors

The Intel microprocessors are one good example in the growth in com-
plexity of integrated circuits. Here are the sizes of several generations of
the microprocessors descended from the Intel 8086 (data from the Intel
Museum, available at http://www.intel.com/museum).

The photomicrographs of these processors, all courtesy of Intel, vividly
show the increase in design complexity implied by this exponential
growth in transistor count.

microprocessor
date of
introduction # transistors

80286 2/82 134,000
80386 10/85 275,000
80486 4/89 1,200,000
Intel Pentium 3/93 3,100,000
Intel Pentium Pro 11/95 5,500,000
Intel Pentium II 1997 7,500,000
Intel Pentium III 1999 9,500,000
Intel Pentium 4 2000 42,000,000
Intel Itanium 2001 25,000,000
Intel Itanium 2 2003 220,000,000
Intel Itanium 2 (9
MB cache)

2004 592,000,000

Modern VLSI Design: IP-Based Design, Fourth Edition Page 22 Return to Table of Contents

1.2 Integrated Circuit Manufacturing 11

80286

Modern VLSI Design: IP-Based Design, Fourth Edition Page 23 Return to Table of Contents

12 Chapter 1: Digital Systems and VLSI

80386

Modern VLSI Design: IP-Based Design, Fourth Edition Page 24 Return to Table of Contents

1.2 Integrated Circuit Manufacturing 13

80486

Modern VLSI Design: IP-Based Design, Fourth Edition Page 25 Return to Table of Contents

14 Chapter 1: Digital Systems and VLSI

PentiumTM

Modern VLSI Design: IP-Based Design, Fourth Edition Page 26 Return to Table of Contents

1.2 Integrated Circuit Manufacturing 15

cost of manufacturing IC manufacturing plants are extremely expensive. A single plant costs
as much as $4 billion. Given that a new, state-of-the-art manufacturing
process is developed every three years, that is a sizeable investment.
The investment makes sense because a single plant can manufacture so
many chips and can easily be switched to manufacture different types of
chips. In the early years of the integrated circuits business, companies
focused on building large quantities of a few standard parts. These parts
are commodities—one 80 ns, 256Mb dynamic RAM is more or less the
same as any other, regardless of the manufacturer. Companies concen-
trated on commodity parts in part because manufacturing processes

Pentium ProTM

Modern VLSI Design: IP-Based Design, Fourth Edition Page 27 Return to Table of Contents

16 Chapter 1: Digital Systems and VLSI

were less well understood and manufacturing variations are easier to
keep track of when the same part is being fabricated day after day. Stan-
dard parts also made sense because designing integrated circuits was
hard—not only the circuit, but the layout had to be designed, and there
were few computer programs to help automate the design process.

cost of design One of the less fortunate consequences of Moore’s Law is that the time
and money required to design a chip goes up steadily. The cost of
designing a chip comes from several factors:

• Skilled designers are required to specify, architect, and implement
the chip. A design team may range from a half-dozen people for a
very small chip to 500 people for a large, high-performance micro-
processor.

• These designers cannot work without access to a wide range of com-
puter-aided design (CAD) tools. These tools synthesize logic, create
layouts, simulate, and verify designs. CAD tools are generally
licensed and you must pay a yearly fee to maintain the license. A
license for a single copy of one tool, such as logic synthesis, may
cost as much as $50,000 US.

• The CAD tools require a large compute farm on which to run. Dur-
ing the most intensive part of the design process, the design team
will keep dozens of computers running continuously for weeks or
months.

A large ASIC, which contains millions of transistors but is not fabri-
cated on the state-of-the-art process, can easily cost $20 million US and
as much as $100 million. Designing a large microprocessor costs hun-
dreds of millions of dollars.

design costs and IP We can spread these design costs over more chips if we can reuse all or
part of the design in other chips. The high cost of design is the primary
motivation for the rise of IP-based design, which creates modules that
can be reused in many different designs. We will discuss IP-based
design in more detail in Section 1.5.

types of chips The preponderance of standard parts pushed the problems of building
customized systems back to the board-level designers who used the
standard parts. Since a function built from standard parts usually
requires more components than if the function were built with custom-
designed ICs, designers tended to build smaller, simpler systems. The
industrial trend, however, is to make available a wider variety of inte-
grated circuits. The greater diversity of chips includes:

Modern VLSI Design: IP-Based Design, Fourth Edition Page 28 Return to Table of Contents

1.2 Integrated Circuit Manufacturing 17

• More specialized standard parts. In the 1960s, standard parts were
logic gates; in the 1970s they were LSI components. Today, standard
parts include fairly specialized components: communication net-
work interfaces, graphics accelerators, floating point processors. All
these parts are more specialized than microprocessors but are used in
enough volume that designing special-purpose chips is worth the
effort. In fact, putting a complex, high-performance function on a
single chip often makes other applications possible—for example,
single-chip floating point processors make high-speed numeric com-
putation available on even inexpensive personal computers.

• Application-specific integrated circuits (ASICs). Rather than
build a system out of standard parts, designers can now create a sin-
gle chip for their particular application. Because the chip is special-
ized, the functions of several standard parts can often be squeezed
into a single chip, reducing system size, power, heat, and cost.
Application-specific ICs are possible because of computer tools that
help humans design chips much more quickly.

• Systems-on-chips (SoCs). Fabrication technology has advanced to
the point that we can put a complete system on a single chip. For
example, a single-chip computer can include a CPU, bus, I/O
devices, and memory. SoCs allow systems to be made at much
lower cost than the equivalent board-level system. SoCs can also
be higher performance and lower power than board-level equiva-
lents because on-chip connections are more efficient than chip-to-
chip connections.

A wider variety of chips is now available in part because fabrication
methods are better understood and more reliable. More importantly, as
the number of transistors per chip grows, it becomes easier and cheaper
to design special-purpose ICs. When only a few transistors could be put
on a chip, careful design was required to ensure that even modest func-
tions could be put on a single chip. Today’s VLSI manufacturing pro-
cesses, which can put millions of carefully-designed transistors on a
chip, can also be used to put tens of thousands of less-carefully designed
transistors on a chip. Even though the chip could be made smaller or
faster with more design effort, the advantages of having a single-chip
implementation of a function that can be quickly designed often out-
weighs the lost potential performance. The problem and the challenge of
the ability to manufacture such large chips is design—the ability to
make effective use of the millions of transistors on a chip to perform a
useful function.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 29 Return to Table of Contents

18 Chapter 1: Digital Systems and VLSI

1.3 CMOS Technology

CMOS is the dominant integrated circuit technology. In this section we
will introduce some basic concepts of CMOS to understand why it is so
widespread and some of the challenges introduced by the inherent char-
acteristics of CMOS.

1.3.1 Power Consumption
power consumption
constraints

The huge chips that can be fabricated today are possible only because of
the relatively tiny consumption of CMOS circuits. Power consumption
is critical at the chip level because much of the power is dissipated as
heat, and chips have limited heat dissipation capacity. Even if the sys-
tem in which a chip is placed can supply large amounts of power, most
chips are packaged to dissipate fewer than 10 to 15 Watts of power
before they suffer permanent damage (though some chips dissipate well
over 50 Watts thanks to special packaging). The power consumption of
a logic circuit can, in the worst case, limit the number transistors we can
effectively put on a single chip.

Limiting the number of transistors per chip changes system design in
several ways. Most obviously, it increases the physical size of a system.
Using high-powered circuits also increases power supply and cooling
requirements. A more subtle effect is caused by the fact that the time
required to transmit a signal between chips is much larger than the time
required to send the same signal between two transistors on the same
chip; as a result, some of the advantage of using a higher-speed circuit
family is lost. Another subtle effect of decreasing the level of integration
is that the electrical design of multi-chip systems is more complex:
microscopic wires on-chip exhibit parasitic resistance and capacitance,
while macroscopic wires between chips have capacitance and induc-
tance, which can cause a number of ringing effects that are much harder
to analyze.

The close relationship between power consumption and heat makes
low-power design techniques important knowledge for every CMOS
designer. Of course, low-energy design is especially important in
battery-operated systems like cellular telephones. Energy, in contrast,
must be saved by avoiding unnecessary work. We will see throughout
the rest of this book that minimizing power and energy consumption
requires careful attention to detail at every level of abstraction, from
system architecture down to layout.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 30 Return to Table of Contents

1.3 CMOS Technology 19

As CMOS features become smaller, additional power consumption
mechanisms come into play. Traditional CMOS consumes power when
signals change but consumes only negligible power when idle. In mod-
ern CMOS, leakage mechanisms start to drain current even when sig-
nals are idle. In the smallest geometry processes, leakage power
consumption can be larger than dynamic power consumption. We must
introduce new design techniques to combat leakage power.

1.3.2 Design and Testability
design verification Our ability to build large chips of unlimited variety introduces the prob-

lem of checking whether those chips have been manufactured correctly.
Designers accept the need to verify or validate their designs to make
sure that the circuits perform the specified function. (Some people use
the terms verification and validation interchangeably; a finer distinction
reserves verification for formal proofs of correctness, leaving validation
to mean any technique which increases confidence in correctness, such
as simulation.) Chip designs are simulated to ensure that the chip’s cir-
cuits compute the proper functions to a sequence of inputs chosen to
exercise the chip.

manufacturing test But each chip that comes off the manufacturing line must also undergo
manufacturing test—the chip must be exercised to demonstrate that no
manufacturing defects rendered the chip useless. Because IC manufac-
turing tends to introduce certain types of defects and because we want to
minimize the time required to test each chip, we can’t just use the input
sequences created for design verification to perform manufacturing test.
Each chip must be designed to be fully and easily testable. Finding out
that a chip is bad only after you have plugged it into a system is annoy-
ing at best and dangerous at worst. Customers are unlikely to keep using
manufacturers who regularly supply bad chips.

Defects introduced during manufacturing range from the cata-
strophic—contamination that destroys every transistor on the wafer—to
the subtle—a single broken wire or a crystalline defect that kills only
one transistor. While some bad chips can be found very easily, each chip
must be thoroughly tested to find even subtle flaws that produce errone-
ous results only occasionally. Tests designed to exercise functionality
and expose design bugs don’t always uncover manufacturing defects.
We use fault models to identify potential manufacturing problems and
determine how they affect the chip’s operation. The most common fault
model is stuck-at-0/1: the defect causes a logic gate’s output to be
always 0 (or 1), independent of the gate’s input values. We can often
determine whether a logic gate’s output is stuck even if we can’t directly

Modern VLSI Design: IP-Based Design, Fourth Edition Page 31 Return to Table of Contents

20 Chapter 1: Digital Systems and VLSI

observe its outputs or control its inputs. We can generate a good set of
manufacturing tests for the chip by assuming each logic gate’s output is
stuck at 0 (then 1) and finding an input to the chip which causes differ-
ent outputs when the fault is present or absent. (Both the stuck-at-0/1
fault model and the assumption that faults occur only one at a time are
simplifications, but they often are good enough to give good rejection of
faulty chips.)

testability as a design
process

Unfortunately, not all chip designs are equally testable. Some faults may
require long input sequences to expose; other faults may not be testable
at all, even though they cause chip malfunctions that aren’t covered by
the fault model. Traditionally, chip designers have ignored testability
problems, leaving them to a separate test engineer who must find a set
of inputs to adequately test the chip. If the test engineer can’t change the
chip design to fix testability problems, his or her job becomes both diffi-
cult and unpleasant. The result is often poorly tested chips whose manu-
facturing problems are found only after the customer has plugged them
into a system. Companies now recognize that the only way to deliver
high-quality chips to customers is to make the chip designer responsible
for testing, just as the designer is responsible for making the chip run at
the required speed. Testability problems can often be fixed easily early
in the design process at relatively little cost in area and performance.
But modern designers must understand testability requirements, analy-
sis techniques which identify hard-to-test sections of the design, and
design techniques which improve testability.

1.3.3 Reliability
reliability is a lifetime
problem

Earlier generations of VLSI technology were robust enough that testing
chips at manufacturing time was sufficient to identify working parts—a
chip either worked or it didn’t. In today’s nanometer-scale technologies,
the problem of determining whether a chip works is more complex. A
number of mechanisms can cause transient failures that cause occa-
sional problems but are not repeatable. Some other failure mechanisms,
like overheating, cause permanent failures but only after the chip has
operated for some time. And more complex manufacturing problems
cause problems that are harder to diagnose and may affect performance
rather than functionality.

design-for-
manufacturability

A number of techniques, referred to as design-for-manufacturabil-
ity or design-for-yield, are in use today to improve the reliability of
chips that come off the manufacturing line.We can make chips more
reliable by designing circuits and architectures that reduce design
stresses and check for problems. For example, heat is one major

Modern VLSI Design: IP-Based Design, Fourth Edition Page 32 Return to Table of Contents

1.4 Integrated Circuit Design Techniques 21

cause of chip failure. Proper power management circuitry can reduce
the chip’s heat dissipation and reduce the damage caused by overheat-
ing. We also need to change the way we design chips. Some of the con-
venient levels of abstraction that served us well in earlier technologies
are no longer entirely appropriate in nanometer technologies. We need
to check more thoroughly and be willing to solve reliability problems by
modifying design decisions made earlier.

1.4 Integrated Circuit Design Techniques

To make use of the flood of transistors given to us by Moore’s Law, we
must design large, complex chips quickly. The obstacle to making large
chips work correctly is complexity—many interesting ideas for chips
have died in the swamp of details that must be made correct before the
chip actually works. Integrated circuit design is hard because designers
must juggle several different problems:

• Multiple levels of abstraction. IC design requires refining an idea
through many levels of detail. Starting from a specification of what
the chip must do, the designer must create an architecture which
performs the required function, expand the architecture into a logic
design, and further expand the logic design into a layout like the
one in Figure 1-2. As you will learn by the end of this book, the
specification-to-layout design process is a lot of work.

• Multiple and conflicting costs. In addition to drawing a design
through many levels of detail, the designer must also take into
account costs—not dollar costs, but criteria by which the quality of
the design is judged. One critical cost is the speed at which the chip
runs. Two architectures that execute the same function (multiplica-
tion, for example) may run at very different speeds. We will see that
chip area is another critical design cost: the cost of manufacturing a
chip is exponentially related to its area, and chips much larger than
1 cm2 cannot be manufactured at all. Furthermore, if multiple cost
criteria—such as area and speed requirements—must be satisfied,
many design decisions will improve one cost metric at the expense
of the other. Design is dominated by the process of balancing con-
flicting constraints.

• Short design time. In an ideal world, a designer would have time to
contemplate the effect of a design decision. We do not, however, live
in an ideal world. Chips which appear too late may make little or no

Modern VLSI Design: IP-Based Design, Fourth Edition Page 33 Return to Table of Contents

22 Chapter 1: Digital Systems and VLSI

money because competitors have snatched market share. Therefore,
designers are under pressure to design chips as quickly as possible.
Design time is especially tight in application-specific IC design,
where only a few weeks may be available to turn a concept into a
working ASIC.

Designers have developed two techniques to eliminate unnecessary
detail: hierarchical design and design abstraction. Designers also
make liberal use of computer-aided design tools to analyze and synthe-
size the design.

1.4.1 Hierarchical Design
divide-and-conquer Hierarchical design is commonly used in programming: a procedure is

written not as a huge list of primitive statements but as calls to simpler
procedures. Each procedure breaks down the task into smaller opera-
tions until each step is refined into a procedure simple enough to be
written directly. This technique is commonly known as divide-and-
conquer—the procedure’s complexity is conquered by recursively
breaking it down into manageable pieces.

components Chip designers divide and conquer by breaking the chip into a hierarchy
of components. As shown in Figure 1-4, a component consists of a body
and a number of pins—this full adder has pins a, b, cin, cout, and
sum. If we consider this full adder the definition of a type, we can make
many instances of this type. Repeating commonly used components is
very useful, for example, in building an n-bit adder from n full adders.
We typically give each component instance a name. Since all compo-
nents of the same type have the same pins, we refer to the pins on a par-
ticular component by giving the component instance name and pin name
together; separating the instance and pin names by a dot is common
practice. If we have two full adders, add1 and add2, we can refer to
add1.sum and add2.sum as distinct terminals (where a terminal is a
component-pin pair).

full
adder

cout

cin

sum

a

b

Figure 1-4 Pins on a
component.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 34 Return to Table of Contents

1.4 Integrated Circuit Design Techniques 23

net lists We can list the electrical connections which make up a circuit in either
of two equivalent ways: a net list or a component list. A net list gives,
for each net, the terminals connected to that net. Here is a net list for the
top component of Figure 1-5:

net1: top.in1 i1.in
net2: i1.out xxx.B
topin1: top.n1 xxx.xin1
topin2: top.n2 xxx.xin2
botin1: top.n3 xxx.xin3
net3: xxx.out i2.in
outnet: i2.out top.out

A component list gives, for each component, the net attached to each
pin. Here is a component list version of the same circuit:

box1 box2 x

z

Figure 1-5 A hierarchical logic design.

top

xxx i2i1

Figure 1-6
A component
hierarchy.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 35 Return to Table of Contents

24 Chapter 1: Digital Systems and VLSI

top: in1=net1 n1=topin1 n2=topin2 n3=topin3 out=outnet
i1: in=net1 out=net2
xxx: xin1=topin1 xin2=topin2 xin3=botin1 B=net2
out=net3
i2: in=net3 out=outnet

Given one form of connectivity description, we can always transform it
into the other form. Which format is used depends on the applica-
tion—some searches are best performed net-by-net and others compo-
nent-by-component. As an abuse of terminology, any file which
describes electrical connectivity is usually called a netlist file, even if it
is in component list format.

As shown in Figure 1-5, a logic design can be recursively broken into
components, each of which is composed of smaller components until
the design is described in terms of logic gates and transistors. In this fig-
ure, we have shown the type and instance as instance(type); there are
two components of type A. Component ownership forms a hierarchy.
The component hierarchy of Figure 1-5 is shown in Figure 1-6. Each
rounded box represents a component; an arrow from one box to another
shows that the component pointed to is an element in the component
which points to it. We may need to refer to several instance names to
differentiate components. In this case, we may refer to either top/i1 or
top/i2, where we trace the component ownership from the most highest-
level component and separate component names by slashes (/). (The
resemblance of this naming scheme to UNIX file names is inten-
tional—many design tools use files and directories to model component
hierarchies.)

components as black boxes Each component is used as a black box—to understand how the system
works, we only have to know each component’s input-output behavior,
not how that behavior is implemented inside the box. To design each
black box, we build it out of smaller, simpler black boxes. The internals
of each type define its behavior in terms of the components used to build
it. If we know the behavior of our primitive components, such as transis-
tors, we can infer the behavior of any hierarchically-described compo-
nent.

People can much more easily understand a 100,000,000-transistor hier-
archical design than the same design expressed directly as ten million
transistors wired together. The hierarchical design helps you organize
your thinking—the hierarchy organizes the function of a large number
of transistors into a particular, easy-to-summarize function. Hierarchical
design also makes it easier to reuse pieces of chips, either by modifying
an old design to perform added functions or by using one component for
a new purpose.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 36 Return to Table of Contents

1.4 Integrated Circuit Design Techniques 25

1.4.2 Design Abstraction
levels of modeling Design abstraction is critical to hardware system design. Hardware

designers use multiple levels of design abstraction to manage the design
process and ensure that they meet major design goals, such as speed and
power consumption. The simplest example of a design abstraction is the
logic gate. A logic gate is a simplification of the nonlinear circuit used
to build the gate: the logic gate accepts binary Boolean values. Some
design tasks, such as accurate delay calculation, are hard or impossible
when cast in terms of logic gates. However, other design tasks, such as
logic optimization, are too cumbersome to be done on the circuit. We
choose the design abstraction that is best suited to the design task.

We may also use higher abstractions to make first-cut decisions that are
later refined using more detailed models: we often, for example, opti-
mize logic using simple delay calculations, then refine the logic design
using detailed circuit information. Design abstraction and hierarchical
design aren’t the same thing. A design hierarchy uses components at the
same level of abstraction—an architecture built from Boolean logic
functions, for example—and each level of the hierarchy adds complex-
ity by adding components. The number of components may not change
as it is recast to a lower level of abstraction—the added complexity
comes from the more sophisticated behavior of those components.

The next example illustrates the large number of abstractions we can
create for a very simple circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 37 Return to Table of Contents

26 Chapter 1: Digital Systems and VLSI

Example 1-2
Layout and its
abstractions

Layout is the lowest level of design abstraction for VLSI. The layout is
sent directly to manufacturing to guide the patterning of the circuits.
The configuration of rectangles in the layout determines the circuit
topology and the characteristics of the components. However, the layout
of even a simple circuit is sufficiently complex that we want to intro-
duce more abstract representations that help us concentrate on certain
key details.

Here is a layout for a simple circuit known as a dynamic latch:

This layout contains rectangles that define the transistors, wires, and
vias which connect the wires. The rectangles are drawn on several dif-
ferent layers corresponding to distinct layers of material or process steps
in the integrated circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 38 Return to Table of Contents

1.4 Integrated Circuit Design Techniques 27

Here is an abstraction for that layout: a stick diagram, which is a sketch
of a layout:

This stick diagram has the same basic structure as the layout, but the
rectangles in the layout are abstracted here as lines. Different line styles
represent different layers of material: metal, diffusion, etc. Transistors
are formed at the intersection a line representing polysilicon with either
a n-type or p-type diffusion line. The heavy dots represent vias, which
connect material on two different layers. This abstraction conveys some
physical information but not as much as the layout—the stick diagram
reflects the relative positions of components, but not their absolute posi-
tions or their sizes.

Going one more step up the abstraction hierarchy, we can draw a tran-
sistor-level schematic:

Q'D

VDD

VSS

φ φ'

D Q'

φ

φ'

+

Modern VLSI Design: IP-Based Design, Fourth Edition Page 39 Return to Table of Contents

28 Chapter 1: Digital Systems and VLSI

This formulation is not intended to describe the physical layout of the
circuit at all—though the placement of transistors may resemble the
organization of the transistors in the layout, that is a matter of conve-
nience. The intent of the schematic is to describe the major electrical
components and their interconnections.

We can go one step higher in the abstraction hierarchy to draw a mixed
schematic:

This is called mixed because it is built from components at different lev-
els of abstraction: not only transistors, but also an inverter, which is in
turn built from transistors. The added abstraction of the inverter helps to
clarify the organization of the circuit.

The next example shows how a slightly more complex hardware design
is built up from circuit to complex logic.

Example 1-3
Digital logic
abstractions

A transistor circuit for an inverter is relatively small. We can determine
its behavior over time, representing input and output values as continu-
ous voltages to accurately determine its delay:

D Q'

φ

φ'

+

t

v

t

v

Modern VLSI Design: IP-Based Design, Fourth Edition Page 40 Return to Table of Contents

1.4 Integrated Circuit Design Techniques 29

We can use transistors to build more complex functions like the full
adder. At this point, we often simplify the circuit behavior to 0 and 1
values which may be delayed in continuous time:

As circuits get bigger, it becomes harder to figure out their continuous
time behavior. However, by making reasonable assumptions, we can
determine approximate delays through circuits like adders. Since we are
interested in the delay through adders, the ability to make simplifying
assumptions and calculate reasonable delay estimates is very important.

When designing large register-transfer systems, such as data paths, we
may abstract one more level to generic adders:

At this point, since we don’t know how the adders are built, we don’t
have any delay information. These components are pure combinational
elements—they produce an output value given an input value. The

full
adder

cout

cin

sum

a

b

full
adder

cout

cin

sum

a

b

t

a

t

b

t

a

t

b

t

sum

t

sum

+

+

0010

0001

0100

0111

Modern VLSI Design: IP-Based Design, Fourth Edition Page 41 Return to Table of Contents

30 Chapter 1: Digital Systems and VLSI

adder abstraction helps us concentrate on the proper function before we
worry about the details of performance.

design abstractions Figure 1-7 shows a typical design abstraction ladder for digital systems:

• Specification. The customer specifies what the chip should do, how
fast it should run, etc. A specification is almost always incom-
plete—it is a set of requirements, not a design.

• Behavior. The behavioral description is much more precise than the
specification. Specifications are usually written in English, while
behavior is generally modeled as some sort of executable program.

• Register-transfer. The system’s time behavior is fully-speci-
fied—we know the allowed input and output values on every clock
cycle—but the logic isn’t specified as gates. The system is specified
as Boolean functions stored in abstract memory elements. Only the
vaguest delay and area estimates can be made from the Boolean
logic functions.

• Logic. The system is designed in terms of Boolean logic gates,
latches, and flip-flops. We know a lot about the structure of the sys-
tem but still cannot make extremely accurate delay calculations.

• Circuit. The system is implemented as transistors.
• Layout. The final design for fabrication. Parasitic resistance and

capacitance can be extracted from the layout to add to the circuit
description for more accurate simulation.

top-down and bottom-up
design

Design always requires working down from the top of the abstraction
hierarchy and up from the least abstract description. Obviously, work
must begin by adding detail to the abstraction—top-down design adds
functional detail. But top-down design decisions are made with limited
information: there may be several alternative designs at each level of
abstraction; we want to choose the candidate which best fits our speed,
area, and power requirements. We often cannot accurately judge those
costs until we have an initial design. Bottom-up analysis and design
percolates cost information back to higher-levels of abstraction; for
instance, we may use more accurate delay information from the circuit
design to redesign the logic. Experience will help you judge costs before
you complete the implementation, but most designs require cycles of
top-down design followed by bottom-up redesign.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 42 Return to Table of Contents

1.4 Integrated Circuit Design Techniques 31

1.4.3 Computer-Aided Design
CAD tools The only realistic way to design chips given performance and design

time constraints is to automate the design process, using computer-
aided design (CAD) tools which automate parts of the design process.
Using computers to automate design, when done correctly, actually
helps us solve all three problems: dealing with multiple levels of
abstraction is easier when you are not absorbed in the details of a partic-
ular design step; computer programs, because they are more methodical,
can do a better job of analyzing cost trade-offs; and, when given a well-
defined task, computers can work much more quickly than humans.

specification

behavior

register-
transfer

logic

circuit

layout

function cost

English

executable
program

sequential
machines

logic gates

transistors

rectangles

system throughput,
design time

function units,
clock cycles

literals,
gate depth,
power

nanoseconds

microns

Figure 1-7 A hierarchy of design abstractions for integrated circuits.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 43 Return to Table of Contents

32 Chapter 1: Digital Systems and VLSI

design entry Computer-aided design tools can be categorized by the design task they
handle. The simplest of CAD tool handles design entry—for example,
an interactive schematic drawing package. Design entry tools capture a
design in machine-readable form for use by other programs, and they
often allow easier modification of a design, but they don’t do any real
design work.

analysis and verification Analysis and verification tools are more powerful. The Spice circuit
simulator, for example, solves the differential equations which govern
how the circuit responds to an input waveform over time. Such a pro-
gram doesn’t tell us how to change the circuit to make it do what we
want, but many analysis tasks are too difficult to perform manually.

synthesis Synthesis tools actually create a design at a lower level of abstraction
from a higher level description. Some layout synthesis programs can
synthesize a layout from a circuit description like that in Figure 1-2.
Using computers for design is not a panacea. Computer programs can-
not now, nor are they ever likely to be able to transform marketing bro-
chures directly into finished IC designs. Designers will always be
necessary to find creative designs and to perform design tasks which are
too subtle to be left to algorithms.

Both hierarchical design and design abstraction are as important to CAD
tools as they are to humans—the most powerful synthesis and analysis
tools operate on a very restricted design model. CAD tools can help us
immensely with pieces of the design task, but algorithms that have the
detailed knowledge required to solve one design problem usually do not
have the broad range of data required to balance broad requirements.

tools as aids CAD tools must be used judiciously by a human designer to be most
effective. Nonetheless, CAD tools are an essential part of the future of
IC design because they are the only way to manage the complexity of
designing large integrated circuits. Manual design of a hundred-million
transistor chip, or even a 100,000 transistor chip, quickly overwhelms
the designer with decisions. Not all decisions are equally impor-
tant—some may have only a minor effect on chip size and speed while
others may profoundly change the chip’s costs. By concentrating on the
wrong decisions, a designer may cause problems that are not easily cor-
rectable later. CAD tools, by automating parts of the design process,
help the designer eliminate mundane decisions quickly and concentrate
on the make-or-break problems posed by the chip.

For example, long wires can introduce excessive delay, increase power
consumption, and create opportunities for crosstalk. Such problems can
be found by a program that analyzes delays through the chip, but when
designing a chip by hand, it may be easy to miss this single connection,

Modern VLSI Design: IP-Based Design, Fourth Edition Page 44 Return to Table of Contents

1.5 IP-Based Design 33

and the error will not be found until the chip comes back from fabrica-
tion. CAD tools are particularly important for evaluating complex situa-
tions in which solving one problem creates other problems—for
example, making one wire shorter makes other wires longer. When two
constraints compete, solutions to problems may not be so easy. Making
one part of the design faster may, for example, make another part of the
design unacceptably large and slow. CAD tools help us solve these
problems with analytical methods to evaluate the cost of decisions and
synthesis methods that let us quickly construct a candidate solution to a
problem. Evaluation of candidate designs is critical to designing sys-
tems to satisfy multiple costs because optimizing a complete system
cannot be done simply by optimizing all the parts individually—making
each part in a chip run as fast as possible in isolation by no means
ensures that the entire chip will run as fast as possible. Using CAD tools
to propose and analyze solutions to problems lets us examine much
larger problems than is possible by hand.

1.5 IP-Based Design

In this section, we will look at how intellectual property (IP) is used in
chip design. All designers will either design IP for others or use IP in
their own designs. IP-based design has different aspects, depending on
the role of the designer and whether IP is being produced or used. We
will start with the motivation for IP-based design, then look at some dif-
ferent types of IP, and then consider the IP-based design process.

1.5.1 Why IP?
Intellectual property is a dominant mode of chip design today simply
because of the scale of chips that we can produce. Even modest chips
contain millions of transistors and we can now design two billion tran-
sistor chips [Fil08]. We passed the point long ago when even a large
team can design an entire chip from scratch.

IP history An early form of IP was the standard cell, which dates back to the
early 1970s. Standard cells are designed to abut together in a fixed-
height row of cells and used by a placement-and-routing program.
Standard cell design was created to automate the design of applica-
tion-specific integrated circuits (ASICs) that were destined for low-
volume manufacturing. In such cases, the cost of design exceeded the

Modern VLSI Design: IP-Based Design, Fourth Edition Page 45 Return to Table of Contents

34 Chapter 1: Digital Systems and VLSI

cost of manufacturing, so a design technique that traded some area for
lower design costs was acceptable. Standard cells are still used even in
large custom designs for subsystems, like control, where human design-
ers have a harder time finding optimizations.

Today, IP components include the entire range of modules, as we will
see in the next section, ranging from standard cells through I/O devices
and CPUs. Chip designers need complex IP components because mod-
ern levels of integration allow chips to be complete systems, not just
components of systems. When designing a system-on-chip, much of the
added value comes from the architect’s ability to identify the right com-
bination of components to put on the chip. Many of those components
are standardized—either they are based on open standards or they are
licensed from IP providers who own a standard (such as an instruction
set). In some cases, the chip designers may not have the ability to design
an equivalent for the IP component themselves without violating patents
or other legal problems. One generation’s chip often becomes the next
technology generation’s IP component as more and more elements are
integrated onto a single chip. IP-based design is crucial even in the
microprocessor world, where a chip consists entirely of one or more
CPUs and cache. Several different versions of a processor family are
needed to fill the product space; designing the processor as reusable IP
makes much more sense than starting from scratch each time. And as
multicore processors come to dominate the microprocessor world, pro-
cessors must be replicated on the die.

1.5.2 Types of IP
intellectual property as
components

A system-on-chip is not useful unless it can be designed in a reasonable
amount of time. If all the subsystems of an SoC had to be designed by
hand, most SoCs would not be ready in time to make use of the manu-
facturing process for which they were designed. SoC design teams often
make use of IP blocks in order to improve their productivity. An IP
block is a pre-designed component that can be used in a larger design.
There are two major types of IP:

• Hard IP comes as a pre-designed layout. Because a full layout is
available, the block’s size, performance, and power consumption can
be accurately measured.

• Soft IP comes as a synthesizable module in a hardware description
language such as Verilog or VHDL. Soft IP can be more easily tar-
geted to new technologies but it is harder to characterize and may
not be as small or as fast as hard IP.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 46 Return to Table of Contents

1.5 IP-Based Design 35

hard IP The simplest and earliest example of a hard IP block is the standard cell,
which is a gate-level IP component. Hard IP components are designed
for a particular manufacturing process and its design rules. If the hard IP
block is to be used in a different process, it must be redesigned.

Hard IP blocks must conform to a variety of standards relating to the
physical and electrical characteristics of the process and of the other
blocks designed in that process. A given process may dictate that certain
types of signals appear on certain layers; an IP library may further dic-
tate that certain types of signals appear at specific positions on the
block. The block must also be defined to an electrical standard—it must
be able to drive a certain load at some specified delay, for example.

Most important hard IP blocks that are sold by vendors are qualified for
a given process. The qualification procedure consists of fabricating the
IP block in the process and then testing the resulting chips. Qualification
assures the customer that the block works functionally, that it meets its
stated performance goals, etc.

soft IP Soft IP is designed to be implemented using logic synthesis and place-
and-route tools. As such, it is more easily targeted to a new manufactur-
ing process, perhaps at some cost in performance, power, and area. A
surprising number of large blocks, including CPUs, are delivered only
as soft IP. The design time savings of soft IP often outweigh the cost and
performance savings, even for such large IP blocks.

Although details of the physical interface to the IP block can be handled
by the design flow, a soft IP block must still be designed to implement
an interface that allows it to be connected to other blocks on the chip. In
some cases, a block’s interface may need to be changed—for example,
if a different type of bus is used to connect the blocks. The logic used to
adapt the interface is often called a wrapper.

Because a soft IP block is delivered in synthesizable form, it is more
easily stolen than a hard IP block. Soft IP vendors may tag their blocks
to more easily trace their source.

1.5.3 IP Across the Design Hierarchy
standard cells The standard cell is one of the earliest examples of IP. A family of stan-

dard cells is designed together both to provide a useful set of logical
functions and to have compatible layouts. The cells can be placed side-
by-side in any order. The signals between the cells are then wired using
computer-aided design tools. Standard cells are still widely used today.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 47 Return to Table of Contents

36 Chapter 1: Digital Systems and VLSI

register-transfer modules Larger modules, like those used in register-transfer logic design, are
also good candidates for encapsulation as IP. Many of these components
are bit-oriented, which means that one bit of the function can be
designed and then be replicated to create an n-bit component. Adders,
ALUs, and even complete datapaths make good IP components.

memories Memory is an important category of IP. Memory circuits are analog
designs that must be carefully crafted. The memory cells themselves are
necessarily delivered as hard IP for all but the simplest of memories.
However, much of the complexity of memory IP comes from their use
in systems. Memories may be needed in many different sizes and aspect
ratios; generators are often used to generate a specific memory configu-
ration. Memories also require a great deal of peripheral circuitry to be
useful in systems. Memory controllers, bus interfaces, and other logic is
also critical to the system interface to the memory core. Some of this
associated logic may be delivered as soft IP.

CPUs One critical type of IP for SoC design is the embedded CPU. An
embedded processor can be programmed to perform certain functions
on the chip, much as an embedded processor is used in a board design.
Embedded CPUs have been used on chips for many years: early embed-
ded processors were mostly 8-bit CPUs used for basic sequencing;
today, powerful 32-bit CPUs can be embedded on a system-on-chip.
The fact that not just the CPU but also its cache, main memory, and I/O
devices can be integrated on the same chip make embedded processors
especially attractive.

Embedded CPUs are increasingly popular on SoCs for several reasons.
First, many sophisticated applications are best implemented in software.
Multimedia applications like MP3 audio and MPEG video are examples
of functions that are difficult to implement without some amount of
embedded software. Second, many complex systems must run embed-
ded software in order to implement their applications. For example, dig-
ital audio systems must run digital rights management software that is
available only in binary form. Many systems-on-chips also use Linux,
Windows CE, or some other OS to provide file management and net-
working. Third, embedded CPUs help decrease design time. Because
the embedded processor is a relatively well-understood component, the
design of the software can be somewhat decoupled from the hardware
design.

Some CPUs are delivered as hard IP. However, the majority of CPUs are
delivered as soft IP. The CPU’s functionality may be fixed. A configu-
rable CPU is one whose features are selected by the designer; a CPU is
then created to match the specs, typically using a generator. A configu-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 48 Return to Table of Contents

1.5 IP-Based Design 37

rable CPU may provide options for custom instructions, registers, bus
interfaces, or almost any aspect of the CPU.

buses Buses (and other forms of system interconnect) are essential for CPU-
oriented designs. The bus connects the processing elements, memories,
and devices. The bus interface is a natural boundary for the interfaces to
be implemented by IP components.

Because the bus connects to a large majority of the IP components on
the SoC, many IP providers must be able to use the bus standard. One
example of an open bus standard is the AMBA protocol (http://
www.amba.com).

I/O devices SoCs include many I/O devices. Because I/O devices are themselves
usually defined by standards, they are natural candidates for embodi-
ment as IP. I/O devices are often delivered as soft IP because they must
be ported to many technologies and because they often don’t require the
fastest implementation.

1.5.4 The IP Life Cycle
IP differs from custom chip design in that it is designed well before it is
used. The life cycle of IP components may stretch over years from the
time the IP modules are first created, through several generations of
technology, to their final retirement.

IP life cycle Figure 1-8 shows the IP life cycle in two stages: IP creation and IP use.
Creation starts with a specification and goes through all the normal
design processes, using hardware description languages and, in the case
of hard IP, layout design tools. However, the IP modules go through
more extensive testing since they will be used many times. IP creation
results in the IP modules themselves, plus documentation and database
descriptions. The database information is used by design tools for lay-
out, performance analysis, etc. All this information feeds into standard
chip design processes.

1.5.5 Creating IP
specifying IP When we create intellectual property, we must first specify the module

we want to design. Specification is a challenge because it must be done
in cooperation with the potential users of the IP. If we do not start with a
specification that is likely to attract enough users, then there is no point
in designing the IP block.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 49 Return to Table of Contents

38 Chapter 1: Digital Systems and VLSI

The specification must cover many aspects of the final design:

• whether the module will be hard or soft IP;
• function;
• performance, not just average case but at various combinations of

process parameters;
• power consumption;
• what types of process features are required to support the module.

design methodologies Once we have decided what to design, we need to follow design meth-
odologies that ensure we will end up with an implementation that meets

IP creation

IP use

specification

HDL design

documentation
design

database
extraction

characterization
and validation

qualification

IP
modules

IP
documentation

chip
design

IP
database

Figure 1-8 The IP life cycle.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 50 Return to Table of Contents

1.5 IP-Based Design 39

our specification. Our design methodology must also support the extra
work that we have to do in order to reuse our IP modules. In general, we
need to test modules more thoroughly at each stage in the design process
and run a rigorous set of tests. The basic form of the tests will be deter-
mined by the ways in which the IP module will be used.

documentation Documentation is important in any design but critical to a design that
will be widely disseminated. The IP block must be documented in suffi-
cient detail that others can use it in a variety of circumstances; that doc-
umentation must go beyond functionality to circuit, etc. The nature of
the documentation required for an IP module may be dictated by the
organization that will distribute the IP.

databases In order to be useful, the module must be entered into databases used by
various tools: place-and-route, timing analysis, etc. A great deal of
information is required to describe the module for all these tools. Spe-
cialized methodologies are generally used to generate the required data-
base descriptions from the module implementations.

characterization An IP module must be shown to provide a given performance and power
level not just in the average case, but in a variety of conditions: varia-
tions in fabrication process parameters, temperature variations, etc. The
process of determining the operational characteristics of a module over
a range of parameters is known as characterization. Characterization
requires extensive simulation at the circuit level and other levels. Each
simulation is at one set of parameters; these parameter sets must be cho-
sen to adequately cover the space of variations that must be verified.

qualification A step beyond characterization is qualification, in which the module is
fabricated and physically tested. This qualification exercise is used to
show that the module works in one process—if you want to use the
module in another process, then you must fabricate it again on the new
process.

1.5.6 Using IP
sources of IP IP blocks come from a variety of sources. A number of vendors sell IP

blocks. Some IP vendors are large companies; in other cases, individu-
als may sell IP. The OpenCores Web site (http://www.opencores.org)
provides a number of IP blocks that are available under open source
licensing.

identifying candidate IP
modules

In order to find IP modules that will be useful in your design, you
should look at all the elements of the specification of the IP blocks.
Functionality is certainly an easy filter to rule out many modules, but

Modern VLSI Design: IP-Based Design, Fourth Edition Page 51 Return to Table of Contents

40 Chapter 1: Digital Systems and VLSI

you also have to check the power/performance trade-offs of the cells,
what processes they are designed for, etc.

acquiring IP IP modules can come from a variety of sources: foundries, independent
IP vendors, or shareware. A foundry often provides basic IP—standard
cells, I/O pads, etc.—that are optimized for their process. Some found-
ries may require payment for their IP, while others may not. (For exam-
ple, a fab line may provide many cells for their process in order to
attract customers.) Independent of whether the modules are paid for, the
vendor may require the user to agree to certain terms of usage, such as
whether they will reveal the design to others. Acquiring IP takes time,
so the IP acquisition process should be factored into the total chip
design time.

1.6 A Look into the Future

Moore’s Law is likely to hold for quite some time to come. In a short
amount of time from this writing, we will be able to design and fabricate
in large quantities circuits with several hundred million transistors. We
are already in the age of deep-submicron VLSI—the typical fabrication
process constructs transistors that are much smaller than one micron in
size. As we move toward even smaller transistors and even more tran-
sistors per chip, several types of challenges must be faced.

interconnect The first challenge is interconnect. In the early days of the VLSI era,
wires were recognized to be important because they occupied valuable
chip area, but properly-designed wiring did not pose a bottleneck to per-
formance. Today, wires cannot be ignored—the delay through a wire
can easily be longer than the delay through the gate driving it. And
because the parasitic components of wires are so significant, crosstalk
between signals on wires can cause major problems as well. Proper
design methodologies and careful analysis are keys to taming the prob-
lems introduced by interconnect.

Another challenge is power consumption. Power consumption is a con-
cern on every large chip because of the large amount of activity gener-
ated by so many transistors. Excessive power consumption can make a
chip so hot that it becomes unreliable. Careful analysis of power con-
sumption at all stages of design is essential for keeping power consump-
tion within acceptable limits.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 52 Return to Table of Contents

1.7 Summary 41

reliability As we move into nanometer-scale VLSI, transistors become less reli-
able. Traditionally, we have relied on manufacturing to deliver enough
perfect components. (There are some exceptions—for example, memo-
ries have used spare cells for quite some time.) However, both perma-
nent and transient failures are becoming frequent enough that we must
design VLSI systems that can tolerate imperfection. We must apply reli-
ability techniques at all levels of abstraction—circuit, logic, and archi-
tecture—if we are to cost-effectively manage the transition to
nanometer-scale technology.

complexity And we must certainly face the challenge of design complexity as we
start to be able to create complete systems-on-silicon. In about ten years,
we will be able to fabricate chips with a billion transistors—a huge
design task at all levels of abstraction, ranging from layout and circuit to
architecture. Over the long run, VLSI designers will have to become
even more skilled at programming as some fraction of the system is
implemented as on-chip software. We will look at systems-on-chips in
more detail in Chapter 8.

1.7 Summary

Integrated circuit manufacturing is a key technology—it makes possible
a host of important, useful new devices. ICs help us make better digital
systems because they are small, stingy with power, and cheap. However,
the temptation to build ever more complex systems by cramming more
functions onto chips leads to an enormous design problem. Integrated
circuits are so complex that the only way to effectively design them is to
use computers to automate parts of the design process, a situation not
unlike that in Isaac Asimov’s robot stories, where positronic brains are
employed to design the next, more advanced generation of robot brains.
But humans are not out of control of the design process—by giving up
control of some details, you can obtain a clearer view of the broad hori-
zon and avoid problems that don’t lie exactly at your feet.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 53 Return to Table of Contents

42 Chapter 1: Digital Systems and VLSI

1.8 References

The data points in the Moore’s Law chart of Figure 1-3were taken from
articles in the IEEE Journal of Solid State Circuits (JSSC) and from a
1967 survey article by Petritz [Pet67]. The October issue of JSSC is
devoted each year to logic and memory—those articles describe state-
of-the-art integrated circuits. Business magazines and newspapers, such
as The Wall Street Journal, Business Week, Fortune, and Forbes pro-
vide thorough coverage of the semiconductor industry. Following busi-
ness developments in the industry provides valuable insight into the
economic forces which shape technical decisions.

1.9 Problems

Q1-1. Name a product in your home that does not include an integrated
circuit.

Q1-2. Use data from the ITRS Web site (http://www.itrs.net) to plot fea-
ture size as a function of time.

Q1-3. Draw a block diagram for a four-bit counter using one-bit coun-
ters. Each one-bit adder is a primitive represented by a box; it has one
input a and one output s.

a) Draw the four-bit counter using four one-bit counters.
b) Draw the four-bit counter by first drawing a two-bit counter built
from one-bit counters, then using the two-bit counter as a compo-
nent in the one-bit counter.

Q1-4. Briefly describe the relationship between these design abstrac-
tions:

a) Circuit waveforms vs. digital signals.
b) Digital signals vs. binary numbers.
c) Logic gates vs. adders.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 54 Return to Table of Contents

2

Fabrication and
Devices

Highlights:

Fabrication methods.

Transistor structures.

Characteristics of transistors and wires.

Design rules.

Layout design.

Reliability.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 55 Return to Table of Contents

44 Chapter 2: Fabrication and Devices

source (n+) drain (n+)channel

substrate (p)

SiO2

L

W
poly

Cross-section of an n-type transistor (Figure 2-5).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 56 Return to Table of Contents

2.1 Introduction 45

2.1 Introduction

We will start our study of VLSI design by learning about transistors and
wires and how they are fabricated. The basic properties of transistors are
clearly important for logic design. Going beyond a minimally-func-
tional logic circuit to a high-performance design requires the consider-
ation of parasitic circuit elements—capacitance and resistance. Those
parasitics are created as necessary by-products of the fabrication process
which creates the wires and transistors, which gives us a very good rea-
son to understand the basics of how integrated circuits are fabricated.
We will also study the rules which must be obeyed when designing the
masks used to fabricate a chip and the basics of layout design.

Our first step is to understand the basic fabrication techniques, which
we will cover in described in Section 2.2. This material will describe
how the basic structures for transistors and wires are made. We will then
study transistors and wires, both as integrated structures and as circuit
elements, in Section 2.3 and Section 2.4, respectively. We will study
design rules for layout in Section 2.5. We will discuss some physical
sources of unreliable components in Section 2.6. Finally, we will intro-
duce some basic concepts and tools for layout design in Section 2.7.

2.2 Fabrication Processes

example process We need to study fabrication processes and the design rules that govern
layout. Examples are always helpful. We will use as our example the
SCMOS rules, which have been defined by MOSIS, the MOS Imple-
mentation Service. (MOSIS is now an independent commercial service.
Other organizations, such as EuroChip/EuroPractice in the European
Community, VDEC in Japan, and CIC in Taiwan, serve educational
VLSI needs in other countries.) SCMOS is unusual in that it is not a sin-
gle fabrication process, but a collection of rules that hold for a family of
processes. Using generic technology rules gives greater flexibility in
choosing a manufacturer for your chips. It also means that the SCMOS
technology is less aggressive than any particular fabrication process
developed for some special purpose—some manufacturers may empha-
size transistor switching speed, for example, while others emphasize the
number of layers available for wiring.

2.2 Fabrication Processes

Modern VLSI Design: IP-Based Design, Fourth Edition Page 57 Return to Table of Contents

46 Chapter 2: Fabrication and Devices

Many important parameters depend on the particular technology. We
will use as our example a 180 nm (0.18 m) technology. We will also
assume a power supply voltage of 1.2 V. This technology is advanced
enough to be used for ASICs but does not introduce some of the compli-
cations of the most advanced processes.

2.2.1 Overview
substrates A cross-section of an integrated circuit is shown in Figure 2-1. Inte-

grated circuits are built on a silicon substrate provided by the wafer.
Figure 2-2 shows a technician holding 300 mm a wafer. Wafer sizes
have steadily increased over the years; larger wafers mean more chips
per wafer and higher productivity.

fabrication techniques Components are formed by a combination of processes:

• doping the substrate with impurities to create areas such as the n+
and p+ regions;

• adding or cutting away insulating glass (silicon dioxide, or SiO2) on
top of the substrate;

• adding wires made of polycrystalline silicon (polysilicon, also
known as poly) or metal, insulated from the substrate by SiO2.

n+

substrate

metal 1

metal 2

poly

vias

oxide

Figure 2-1
Cross-section
of an integrated
circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 58 Return to Table of Contents

2.2 Fabrication Processes 47

types of carriers A pure silicon substrate contains equal numbers of two types of electri-
cal carriers: electrons and holes. While we cannot go into the details of
device physics here, it is important to realize that the interplay between
electrons and holes is what makes transistors work. The goal of doping
is to create two types of regions in the substrate: an n-type region which
contains primarily electrons and a p-type region which is dominated by
holes. (Heavily doped regions are referred to as n+ and p+.) Transistor
action occurs at properly formed boundaries between n-type and p-type
regions.

other materials The n-type and p-type regions can be used to make wires as well as tran-
sistors, but polysilicon (which is also used to form transistor gates) and
metal are the primary materials for wiring together transistors because
of their superior electrical properties. There may be several levels of
metal wiring to ensure that enough wires can be made to create all the

Figure 2-2 A VLSI manufacturing line (courtesy IBM).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 59 Return to Table of Contents

48 Chapter 2: Fabrication and Devices

necessary connections. Several types of metal are used for interconnect.
Aluminum, tungsten, and other metals are used for metal close to the sil-
icon. Copper is a better conductor but it is a poison to semiconductors,
so it is used only in higher layers. Glass insulation lets the wires be fab-
ricated on top of the substrate using processes like those used to form
transistors. The integration of wires with components, which eliminates
the need to mechanically wire together components on the substrate,
was one of the key inventions that made the integrated circuit feasible.

size metrics The key figure of merit for a fabrication process is the size—more spe-
cifically, the channel length—of the smallest transistor it can manufac-
ture. Transistor size helps determine both circuit speed and the amount
of logic that can be put on a single chip. Fabrication technologies are
usually identified by their minimum transistor length, so a process
which can produce a transistor with a 180 nm minimum channel length
is called a 180 nm process. When we discuss design rules, we will recast
the on-chip dimensions to a scalable quantity . Our = 90 nm CMOS
process is also known as a nm CMOS process; if is not referred to
explicitly, the size of the process gives the minimum channel length.

2.2.2 Fabrication Steps
patterning features Features are patterned on the wafer by a photolithographic process; the

wafer is covered with light-sensitive material called photoresist, which
is then exposed to light with the proper pattern. The patterns left by the
photoresist after development can be used to control where SiO2 is
grown or materials are placed on the surface of the wafer.

masks A layout contains summary information about the patterns to be made
on the wafer. Photolithographic processing steps are performed using
masks which are created from the layout information supplied by the
designer. In simple processes there is roughly one mask per layer in a
layout, though in more complex processes some masks may be built
from several layers while one layer in the layout may contribute to sev-
eral masks. Figure 2-3 shows a simple layout and the mask used to form
the polysilicon pattern.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 60 Return to Table of Contents

2.2 Fabrication Processes 49

tubs Transistors are fabricated within regions called tubs or wells: an n-type
transistor is built in a p-tub, and a p-type transistor is built in an n-tub.
The wells prevent undesired conduction from the drain to the substrate.
(Remember that the transistor type refers to the minority carrier which
forms the inversion layer, so an n-type transistor pulls electrons out of a
p-tub.)

layout

poly mask

poly

diffusion
metal 1

metal 1-poly
via

Figure 2-3 The relationship
between layouts and
fabrication masks.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 61 Return to Table of Contents

50 Chapter 2: Fabrication and Devices

There are three ways to form tubs in a substrate:

• start with a p-doped wafer and add n-tubs;
• start with an n-doped wafer and add p-tubs;
• start with an undoped wafer and add both n- and p-tubs.

CMOS processes were originally developed from nMOS processes,
which use p-type wafers into which n-type transistors are added. How-
ever, the twin-tub process, which uses an undoped wafer, has become
the most commonly used process because it produces tubs with better
electrical characteristics. We will therefore use a twin-tub process as an
example.

fabrication steps Figure 2-4 illustrates important steps in a twin-tub process. Details can
vary from process to process, but these steps are representative. The first
step is to put tubs into the wafer at the appropriate places for the n-type
and p-type wafers. Regions on the wafer are selectively doped by
implanting ionized dopant atoms into the material, then heating the
wafer to heal damage caused by ion implantation and further move the
dopants by diffusion. The tub structure means that n-type and p-type
wires cannot directly connect. Since the two diffusion wire types must
exist in different type tubs, there is no way to build a via which can
directly connect them. Connections must be made by a separate wire,
usually metal, which runs over the tubs.

The next steps form an oxide covering of the wafer and the polysilicon
wires. The oxide is formed in two steps: first, a thick field oxide is
grown over the entire wafer. The field oxide is etched away in areas
directly over transistors; a separate step grows a much thinner oxide
which will form the insulator of the transistor gates. After the field and
thin oxides have been grown, the polysilicon wires are formed by
depositing polysilicon crystalline directly on the oxide.

Note that the polysilicon wires have been laid down before the diffusion
wires were made—that order is critical to the success of MOS process-
ing. Diffusion wires are laid down immediately after polysilicon deposi-
tion to create self-aligned transistors—the polysilicon masks the
formation of diffusion wires in the transistor channel. For the transistor
to work properly, there must be no gap between the ends of the source
and drain diffusion regions and the start of the transistor gate. If the dif-
fusion were laid down first with a hole left for the polysilicon to cover, it
would be very difficult to hit the gap with a polysilicon wire unless the
transistor were made very large. Self-aligned processing allows much
smaller transistors to be built.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 62 Return to Table of Contents

2.2 Fabrication Processes 51

After the diffusions are complete, another layer of oxide is deposited to
insulate the polysilicon and metal wires. Aluminum has long been the
dominant interconnect material, but copper has now moved into mass
production. Copper is a much better conductor than aluminum, but even

p-tub n-tub

forming tubs

p-tub n-tub

poly

SiO2

depositing polysilicon

p-tub n-tub

n diff p diff

diffusion

metal 1-n diff via

p-tub n-tub

metal 1-poly via

depositing metal 1

Figure 2-4 Steps in processing a wafer.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 63 Return to Table of Contents

52 Chapter 2: Fabrication and Devices

trace amounts of it will destroy the properties of semiconductors. Chips
with copper interconnect include a special protection layer between the
substrate and the first layer of copper. That layer prevents the copper
from entering the substrate during processing.

Holes are cut in the field oxide where vias to the substrate are desired.
The metal 1 is then deposited where desired. The metal fills the cuts to
make connections between layers. The metal 2 layer requires an addi-
tional oxidation/cut/deposition sequence. After all the important circuit
features have been formed, the chip is covered with a final passivation
layer of SiO2 to protect the chip from chemical contamination.

2.3 Transistors

In this section, we will consider transistors in detail. Based upon the
structure of the transistor, we will develop electrical models for the tran-
sistor. Over the course of this section, we will start with a very simple
model of a transistor and then add detail. We start in Section 2.3.1 with
an introduction to the physical structure of a transistor and then develop
a simple voltage-current model of the transistor in Section 2.3.2. We
discuss transistor parasitics in Section 2.3.3. In Section 2.3.4 we con-
sider latch-up, an important problem in transistor operation.
Section 2.3.5 develops a more sophisticated model of the transistor.
Section 2.3.6 looks at leakage currents, an important source of power
dissipation, and Section 2.3.7 considers the thermal effects of leakage.
Finally, Section 2.3.8 talks about Spice models of transistors used in cir-
cuit simulation.

2.3.1 Structure of the Transistor
transistor cross-section Figure 2-5 shows the cross-section of an n-type MOS transistor. (The

name MOS is an anachronism. The first such transistors, invented by
Kahng and Atalla [Sze81] in 1960, used a metal wire for a gate, making
the transistor a sandwich of metal, silicon dioxide, and the semiconduc-
tor substrate. Even though transistor gates are now made of polysilicon,
the name MOS has stuck.) An n-type transistor is embedded in a p-type
substrate; it is formed by the intersection of an n-type wire and a polysil-
icon wire. The region at the intersection, called the channel, is where
the transistor action takes place. The channel connects to the two n-type
wires which form the source and drain, but is itself doped to be p-type.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 64 Return to Table of Contents

2.3 Transistors 53

The insulating silicon dioxide at the channel (called the gate oxide) is
much thinner than it is away from the channel (called the field oxide);
having a thin oxide at the channel is critical to the successful operation
of the transistor.

Figure 2-6 shows a photomicrograph of an MOS transistor’s cross-sec-
tion. The photograph makes clear just how thin and sensitive the gate
oxide is. The gate of this transistor is made of a sandwich of polysilicon
and silicide. The sandwich’s resistance is much lower than that of
straight polysilicon.

transistor operation The transistor works as a switch because the gate-to-source voltage
modulates the amount of current that can flow between the source and
drain. When the gate voltage (Vgs) is zero, the p-type channel is full of
holes, while the n-type source and drain contain electrons. The p-n junc-
tion at the source terminal forms a diode, while the junction at the drain
forms a second diode that conducts in the opposite direction. As a result,
no current can flow from the source to the drain.

As Vgs rises above zero, the situation starts to change. While the channel
region contains predominantly p-type carriers, it also has some n-type
carriers. The positive voltage on the polysilicon which forms the gate
attracts the electrons. Since they are stopped by the gate oxide, they col-
lect at the top of the channel along the oxide boundary. At a critical volt-
age called the threshold voltage (Vt), enough electrons have collected
at the channel boundary to form an inversion layer—a layer of elec-
trons dense enough to conduct current between the source and the drain.

channel dimensions The size of the channel region is labeled relative to the direction of cur-
rent flow: the channel length (L) is along the direction of current flow
between source and drain, while the width (W) is perpendicular to cur-

source (n+) drain (n+)channel

substrate (p)

SiO2

L

W
poly

Figure 2-5 Cross-section of an n-type transistor.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 65 Return to Table of Contents

54 Chapter 2: Fabrication and Devices

rent flow. The amount of current flow is a function of the W/L ratio, for
the same reasons that bulk resistance changes with the object’s width
and length: widening the channel gives a larger cross-section for con-
duction, while lengthening the channel increases the distance current
must flow through the channel. Since we can choose W and L when we
draw the layout, we can very simply design the transistor current magni-
tude.

gate

poly

silicide

source/
drain

Figure 2-6 Photomicrograph of a submicron MOS transistor (courtesy Agere).

oxide

Modern VLSI Design: IP-Based Design, Fourth Edition Page 66 Return to Table of Contents

2.3 Transistors 55

p-type and n-type A p-type transistor has an identical structure but complementary materi-
als: trade p’s and n’s in Figure 2-5 and you have a picture of a p-type
transistor. The p-type transistor conducts by forming an inversion region
of holes in the n-type channel; therefore, the gate-to-source voltage
must be negative for the transistor to conduct current.

Example 2-1
Layout of n-type
and p-type
transistors

The basic layout of an n-type transistor is simple:

This layout is of a minimum-size transistor. Current flows through the
channel vertically.

poly

n-type diffusion

tub

Modern VLSI Design: IP-Based Design, Fourth Edition Page 67 Return to Table of Contents

56 Chapter 2: Fabrication and Devices

The layout of a p-type transistor is very similar:

In both cases, the tub rectangles are added as required. The details of
which tub must be specified vary from process to process; many design-
ers use simple programs to generate the tubs required around rectangles.

Fabrication engineers may sometimes refer to the drawn length of a
transistor. Photolithography steps may affect the length of the channel.
As a result, the actual channel length may not be the drawn length. The
drawn length is usually the parameter of interest to the digital designer,
since that is the size of rectangle that must be used to get a transistor of
the desired size.

p-type diffusion

poly

tub

Modern VLSI Design: IP-Based Design, Fourth Edition Page 68 Return to Table of Contents

2.3 Transistors 57

We can also draw a wider n-type transistor, which delivers more current:

2.3.2 A Simple Transistor Model
transistor model variables
and constants

The behavior of both n-type and p-type transistors is described by two
equations and two physical constants; the sign of one of the constants
distinguishes the two types of transistors. The variables that describe a
transistor’s behavior, some of which we have already encountered, are:

• Vgs—the gate-to-source voltage;

• Vds—the drain-to-source voltage (remember that Vds = -Vsd);

• Id—the current flowing between the drain and source.

The constants that determine the magnitude of source-to-drain current in
the transistor are:

• Vt—the transistor threshold voltage, which is positive for an n-type
transistor and negative for a p-type transistor;

• k’—the transistor transconductance, which is positive for both types
of transistors;

• W/L—the width-to-length ratio of the transistor.

poly

n-type diffusion

Modern VLSI Design: IP-Based Design, Fourth Edition Page 69 Return to Table of Contents

58 Chapter 2: Fabrication and Devices

Both Vt and k’ are measured, either directly or indirectly, for a fabrication
process. W/L is determined by the layout of the transistor, but since it does
not change during operation, it is a constant of the device equations.

linear and saturated
regions

The equations that govern the transistor’s behavior are traditionally
written to show the drain current as a function of the other parameters.
A reasonably accurate model for the transistor’s behavior, written in
terms of the drain current Id, divides operation into linear and satu-
rated [Yan78]. For an n-type transistor, we have:

• Linear region :

(EQ 2-1)

• Saturated region :

(EQ 2-2)

For a p-type transistor, the drain current is negative and the device is on
when Vgs is below the device’s negative threshold voltage. Figure 2-7
plots these equations over some typical values for an n-type device.

Vds

saturationlinear

Vgs = 0.7V

Vgs = 0.9V

Vgs = 1.2V
I
d

Figure 2-7 The Id curves of
an n-type transistor.

Vds Vgs-Vt

Id k'WL
----- Vgs-Vt Vds-

1
2
---Vds

2=

Vds Vgs-Vt

Id
1
2
---k'WL

----- Vgs-Vt
2=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 70 Return to Table of Contents

2.3 Transistors 59

Each curve shows the transistor current as Vgs is held constant and Vds is
swept from 0 V to a large voltage.

transistor behavior The transistor’s switch action occurs because the density of carriers in
the channel depends strongly on the gate-to-substrate voltage. For

, there are not enough carriers in the inversion layer to con-
duct an appreciable current. (To see how much current is conducted in
the subthreshold region, check Section 2.3.5.) Beyond that point and
until saturation, the number of carriers is directly related to Vgs: the
greater the gate voltage applied, the more carriers are drawn to the
inversion layer and the greater the transistor’s conductivity.

The relationship between W/L and source-drain current is equally sim-
ple. As the channel width increases, more carriers are available to con-
duct current. As channel length increases, however, the drain-to-source
voltage diminishes in effect. Vds is the potential energy available to push
carriers from drain to source; as the distance from drain to source
increases, it takes longer to push carriers across the transistor for a fixed
Vds, reducing current flow.

Table 2-1 shows typical values of k’ and Vt for a 180 nm process. The
next example calculates the current through a transistor.

Example 2-2
Current through
a transistor

A minimum-size transistor in the SCMOS rules is of size L = 2 and W
= 3 . Given this size of transistor and the 180 nm transistor characteris-
tics, the current through a minimum-sized n-type transistor at the
boundary between the linear and saturation regions when the gate is at
the low voltage would be

.

Vgs Vt

n-type

p-type

k' Vt

k'n 170 A V2
= 0.5V

k'p 30– A V2
= 0.5V–

Table 2-1 Typical
transistor parameters for
our 180 nm process.

Vgs 0.7V=

Id
1
2
--- 170 A

V2
------- 3

2
------ 0.7V-0.5V 2 5.1 A= =

Modern VLSI Design: IP-Based Design, Fourth Edition Page 71 Return to Table of Contents

60 Chapter 2: Fabrication and Devices

The saturation current when the transistor’s gate is connected to a 1.2 V
power supply would be

.

2.3.3 Transistor Parasitics
gate capacitance Real devices have parasitic elements that are necessary artifacts of the

device structure. The transistor itself introduces significant gate capaci-
tance, Cg. This capacitance, which comes from the parallel plates
formed by the poly gate and the substrate, forms the majority of the
capacitive load in small logic circuits; for both n-type
and p-type transistors in a typical 180 nm process. The total gate capac-
itance for a transistor is computed by measuring the area of the active
region (or W L) and multiplying the area by the unit capacitance Cg.

source/drain capacitances We may, however, want to worry about the source/drain overlap
capacitances. During fabrication, the dopants in the source/drain
regions diffuse in all directions, including under the gate as shown in
Figure 2-8. The source/drain overlap region tends to be a larger fraction
of the channel area in deep submicron devices. The overlap region is
independent of the transistor length, so it is usually given in units of Far-
ads per unit gate width. Then the total source overlap capacitance for a
transistor would be

. (EQ 2-3)

Id
1
2
--- 170 A

V
-------- 3

2
------ 1.2V-0.5V 2 62 A= =

Cg 8.6fF m2
=

source drain

Cgs Cgd

overlap

Figure 2-8 Parasitic capacitances from the gate to the source/drain overlap regions.

Cgs ColW=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 72 Return to Table of Contents

2.3 Transistors 61

There is also a gate/bulk overlap capacitance due to the overhang of
the gate past the channel and onto the bulk.

The source and drain regions also have a non-trivial capacitance to the
substrate and a very large resistance. Circuit simulation may require the
specification of source/drain capacitances and resistances. However, the
techniques for measuring the source/drain parasitics at the transistor are
the same as those used for measuring the parasitics of long diffusion
wires. Therefore, we will defer the study of how to measure these para-
sitics to Section 2.4.1.

2.3.4 Tub Ties and Latchup

tub ties connect tubs to
power supply

An MOS transistor is actually a four-terminal device, but we have up to
now ignored the electrical connection to the substrate. The substrates
underneath the transistors must be connected to a power supply: the p-
tub (which contains n-type transistors) to VSS and the n-tub to VDD.
These connections are made by special vias called tub ties.

Figure 2-9 shows the cross-section of a tub tie connecting to an n-tub
and Figure 2-10 shows a tub tie next to a via and an n-type transistor.
The tie connects a metal wire connected to the VDD power supply
directly to the substrate. The connection is made through a standard via
cut. The substrate underneath the tub tie is heavily doped with n-type
dopants (denoted as n+) to make a low-resistance connection to the tub.
The SCMOS rules make the conservative suggestion that tub ties be
placed every one to two transistors. Other processes may relax that rule
to allow tub ties every four to five transistors. Why not place one tub tie

n-tub

n+

substrate

metal 1 (VDD)

oxide

Figure 2-9 Cross-section
of an n-tub tie.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 73 Return to Table of Contents

62 Chapter 2: Fabrication and Devices

in each tub—one tub tie for every 50 or 100 transistors? Using many tub
ties in each tub makes a low-resistance connection between the tub and
the power supply. If that connection has higher resistance, parasitic
bipolar transistors can cause the chip to latch-up, inhibiting normal chip
operation.

Figure 2-11 shows a chip cross-section which might be found in an
inverter or other logic gate. The MOS transistor and tub structures form
parasitic bipolar transistors: npn transistors are formed in the p-tub and
pnp transistors in the n-tub. Since the tub regions are not physically iso-
lated, current can flow between these parasitic transistors along the
paths shown as wires. Since the tubs are not perfect conductors, some of
these paths include parasitic resistors; the key resistances are those
between the power supply terminals and the bases of the two bipolar
transistors.

parasitic elements and
latch-up

The parasitic bipolar transistors and resistors create a parasitic silicon-
controlled rectifier, or SCR. The schematic for the SCR and its behav-
ior are shown in Figure 2-12. The SCR has two modes of operation.
When both bipolar transistors are off, the SCR conducts essentially no
current between its two terminals. As the voltage across the SCR is
raised, it may eventually turn on and conducts a great deal of current

Figure 2-10 A layout
section featuring a tub tie.

tub tie

via transistor

Modern VLSI Design: IP-Based Design, Fourth Edition Page 74 Return to Table of Contents

2.3 Transistors 63

p-tub n-tub

VDDVSS

Rw

Rs

n+ p+

Figure 2-11 Parasitics that cause latch-up.

RW

RS

I

I

equivalent circuit

I

V

off

on

terminal behavior

Figure 2-12 Characteristics of a silicon-controlled rectifier.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 75 Return to Table of Contents

64 Chapter 2: Fabrication and Devices

with very little voltage drop. The SCR formed by the n- and p-tubs,
when turned on, forms a high-current, low-voltage connection between
VDD and VSS. Its effect is to short together the power supply terminals.
When the SCR is on, the current flowing through it floods the tubs and
prevents the transistors from operating properly. In some cases, the chip
can be restored to normal operation by disconnecting and then recon-
necting the power supply; in other cases the high currents cause perma-
nent damage to the chip.

The switching point of the SCR is controlled by the values of the two
power supply resistances Rs and Rw. Each bipolar transistor in the SCR
turns on when its base-to-emitter voltage reaches 0.7 V; that voltage is
controlled by the voltage across the two resistors. The higher the resis-
tance, the less stray current through the tub is required to cause a voltage
drop across the parasitic resistance that can turn on the associated tran-
sistor. Adding more tub ties reduces the values of Rs and Rw. The maxi-
mum distance between tub ties is chosen to ensure that the chip will not
latch-up during normal operation.

2.3.5 Advanced Transistor Characteristics
In order to better understand the transistor, we will derive the basic
device characteristics that were stated in Section 2.3.2. Along the way
we will be able to identify some second-order effects that can become
significant when we try to optimize a circuit design.

gate capacitance The parallel plate capacitance of the gate determines the characteristics
of the channel. We know from basic physics that the parallel-plate oxide
capacitance per unit area (in units of Farads per cm2) is

, (EQ 2-4)

where is the permittivity of silicon dioxide (about 3.9 0, where 0,
the permittivity of free space, is) and xox is the oxide
thickness in centimeters.

The intrinsic carrier concentration of silicon is denoted as . N-type
doping concentrations are written as (donor) while p-type doping
concentrations are written as (acceptor). Table 2-2 gives the values
of some important physical constants.

threshold voltage Applying a voltage of the proper polarity between the gate and substrate
pulls minority carriers to the lower plate of the capacitor, namely the
channel region near the gate oxide. The threshold voltage is defined as

Cox ox xox=

ox
8.854 10-14F cm

ni
Nd

Na

Modern VLSI Design: IP-Based Design, Fourth Edition Page 76 Return to Table of Contents

2.3 Transistors 65

the voltage at which the number of minority carriers (electrons in an n-
type transistor) in the channel region equals the number of majority car-
riers in the substrate. (This actually defines the strong threshold condi-
tion.) So the threshold voltage may be computed from the component
voltages which determine the number of carriers in the channel. The
threshold voltage (assuming that the source/substrate voltage is zero)
has four major components:

. (EQ 2-5)

Let us consider each of these terms.

• The first component, , is the flatband voltage, which in modern
processes has two main components:

(EQ 2-6)

 is the difference in work functions between the gate and sub-
strate material, while Qf is the fixed surface charge. (Trapped charge
used to be a significant problem in MOS processing which increased
the flatband voltage and therefore the threshold voltage. However,
modern processing techniques control the amount of trapped
charge.)

Table 2-2 Values of some physical constants.

charge of an electron q

Si intrinsic carrier concentration ni

permittivity of free space

permittivity of Si

thermal voltage (300K) kT/q

1.6 10-19C

1.45 1010C cm3

0 8.854 10-14F cm2

Si 11.9 0

0.026V

Vt0 Vfb s
Qb
Cox
--------- VII+ + +=

Vfb

Vfb gs- Qf Cox=

gs

Modern VLSI Design: IP-Based Design, Fourth Edition Page 77 Return to Table of Contents

66 Chapter 2: Fabrication and Devices

If the gate polysilicon is n-doped at a concentration of Ndp, the for-
mula for the work function difference is

. (EQ 2-7)

If the gate is p-doped at a concentration of Nap, the work function
difference is

. (EQ 2-8)

The second term is the surface potential. At the threshold voltage,
the surface potential is twice the Fermi potential of the substrate:

. (EQ 2-9)

• The third component is the voltage across the parallel plate capaci-
tor. The value of the charge on the capacitor is

. (EQ 2-10)

(We will not derive this value, but the square root comes from the
value for the depth of the depletion region.)

• An additional ion implantation step is also performed to adjust the
threshold voltage—the fixed charge of the ions provides a bias volt-
age on the gate. The voltage adjustment has the value ,
where is the ion implantation concentration; the voltage adjust-
ment may be positive or negative, depending on the type of ion
implanted.

body effect When the source/substrate voltage is not zero, we must add another term
to the threshold voltage. Variation of threshold voltage with source/sub-
strate voltage is called body effect, which can significantly affect the
speed of complex logic gates. The amount by which the threshold volt-
age is increased is

(EQ 2-11)

The term is the body effect factor, which depends on the gate oxide
thickness and the substrate doping:

gs -kT
q

------ln
NaNdp

ni
2

----------------=

gs
kT
q

------ln
Nap
Na
---------=

s 2 F 2kT
q

------ln
Na
ni
------=

Qb

2q siNa s

VII qDI Cox
DI

Vt n s Vsb+ - s=

n

Modern VLSI Design: IP-Based Design, Fourth Edition Page 78 Return to Table of Contents

2.3 Transistors 67

. (EQ 2-12)

(To compute , we substitute the n-tub doping ND for NA.) We will see
how body effect must be taken into account when designing logic gates
in Section 3.3.4.

Example 2-3
Threshold voltage
of a transistor

First, we will calculate the value of the threshold voltage of an n-type
transistor at zero source/substrate bias. First, some reasonable values for
the parameters:

• ;

• ;

• ;

• ;

• ;

• NA = 1015 cm-3;

• Ndp = 1019 cm-3;

• .

Let’s compute each term of :

•

.

•

•

.

n
2q SiNA

Cox
-------------------------=

p

xox 4nm=

ox 3.5 10-13F cm=

s 0.6V=

Qf q 1011 1.6 10-8C cm2
= =

si 1.0 10-12
=

NII 5 1012
=

Vt0

Cox ox xox=

3.45 10-13 4 10 7– 8.6 10-7C cm2
= =

gs -kT
q

------ln
NaNdp

ni
2

----------------=

-0.026 10151019

1.45 1010 2
-----------------------------------ln=

-0.82V=

Vfb gs Qf Cox–=

-0.82- 1.6 10-8 8.6 10-7
=

· 0.83V·–=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 79 Return to Table of Contents

68 Chapter 2: Fabrication and Devices

•

•

•

So,

.

Note that it takes a significant ion implantation to give a threshold volt-
age that is reasonable for digital circuit design.

What is the value of the body effect at a source/substrate voltage of 0.5
V? First, we compute the body effect factor:

.

s 2kT
q

------ln
Na
ni
------=

2 0.026 ln 1015

1.45 1010
---------------------------=

0.58V=

Qb 2q siNa s=

2 1.6 10-19 1.0 10-12 1015 0.58=

1.4 10-8
=

VII qDI Cox=

1.6 10-19 5 1012 8.6 10-7
=

0.93V=

Vt0 Vfb s
Qb
Cox
--------- VII+ + +=

-0.83V 0.58V 1.4 10-8

8.6 10-7
------------------------ 0.93V+ + +=

0.7V=

n
2q SiNA

Cox
-------------------------=

2 1.6 10-19 1.0 10-12 1015

8.6 10-7
---=

0.02=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 80 Return to Table of Contents

2.3 Transistors 69

Then

.

This is a small fraction of the threshold voltage.

The drain current equation of Equation 2-1can be found by integrating
the charge over the channel. The charge at a point y is given simply by
the definition of a parallel plate capacitance:

. (EQ 2-13)

The voltage differential over a differential distance in the channel is

, (EQ 2-14)

where is the (n- or p-) mobility at the surface and W is, of course, the
channel width. Therefore, the total channel current is

. (EQ 2-15)

device transconductance The factor is given the name k’ or process transconductance. We
sometimes call k’W/L the device transconductance . This integral
gives us the linear-region drain current formula of Equation 2-1. At sat-
uration, our first-order model assumes that the drain current becomes
independent of the drain voltage and maintains that value as Vds
increases. As shown in Figure 2-13, the depth of the inversion layer var-
ies with the voltage drop across the length of the channel and, at satura-
tion, its height has been reduced to zero.

But this basic drain current equation ignores the small dependence of
drain current on Vds in saturation. Increasing Vds while in saturation
causes the channel to shorten slightly, which in turn slightly increases
the drain current. This phenomenon can be modeled by multiplying
Equation 2-2 by a factor (1 + Vds). (Unfortunately, the channel length
modulation parameter is given the same symbol as the scaling factor

Vt n s Vsb+ - s=

0.02 0.58V 0.5+ - 0.58V=

0.05V=

Q y Cox Vgs-Vt-V y=

Vd
Id yd
QW

-------------=

Id Cox
W
L
----- Vgs-Vt-V Vd sd

0

V

=

Cox

Modern VLSI Design: IP-Based Design, Fourth Edition Page 81 Return to Table of Contents

70 Chapter 2: Fabrication and Devices

.) The value of is measured empirically, not derived. This gives us
the new drain current equation for the saturation region.

. (EQ 2-16)

Unfortunately, the term causes a slight discontinuity between the drain
current equations in the linear and saturation regions—at the transition
point, the Vds term introduces a small jump in Id. A discontinuity in
drain current is clearly not physically possible, but the discontinuity is
small and usually can be ignored during manual analysis of the transis-
tor’s behavior. Circuit simulation, however, may require using a slightly
different formulation that keeps drain current continuous.

2.3.6 Leakage and Subthreshold Currents
The drain current through the transistor does not drop to zero once the
gate voltage goes below the threshold voltage. A variety of leakage
currents continue to flow through various parts of the transistor, includ-
ing a subthreshold current through the channel. Those currents are

source (n+)

current

drain (n+)

inversion
layer

source (n+)

current

drain (n+)

source (n+)

current

drain (n+)

Vds Vgs-Vt

Vds Vgs-Vt=

Vds Vgs-Vt

Figure 2-13 Shape
of the inversion
layer as a function
of gate voltage.

Id
1
2
---k'WL

----- Vgs-Vt
2 1 Vds+=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 82 Return to Table of Contents

2.3 Transistors 71

small, but they are becoming increasingly important in low-power
applications. Not only do many circuits need to operate under very low
current drains, but subthreshold currents are becoming relatively larger
as transistor sizes shrink.

sources of leakage Leakage currents come from a variety of effects within the transistor
[Roy00]:

• Reverse-biased pn junctions in the transistor, such as the one
between the drain and its well, carry small reverse bias currents.

• The weak inversion current (also known as the subthreshold cur-
rent) is carried through the channel when the gate is below threshold.

• Drain-induced barrier lowering is an interaction between the
drain’s depletion region and the source that causes the source’s
potential barrier to be lowered.

• Gate-induced drain leakage current happens around the high elec-
tric field under the gate/drain overlap.

• Punchthrough currents flow when the source and drain depletion
regions connect within the channel.

• Gate oxide tunneling currents are caused by high electric fields in
the gate.

• Hot carriers can be injected into the channel.

Different mechanisms dominate at different drain voltages, with weak
inversion dominating at low drain voltages.

subthreshold current In nanometer technologies, subthreshold current is the largest source of
leakage current. The subthreshold current can be written as [Roy00]:

. (EQ 2-17)

The subthreshold slope S characterizes the magnitude of the weak
inversion current in the transistor. The subthreshold slope is determined
by a plot of log Id vs. Vgs. An S value of 100 mV/decade indicates a very
leaky transistor, with lower values indicating lower leakage currents.

The subthreshold current is a function of the threshold voltage Vt. The
threshold voltage is primarily determined by the process. However,
since the threshold voltage is measured relative to the substrate, we can
adjust Vt by changing the substrate bias. We will take advantage of this
effect in Section 3.6.

Isub ke
Vgs- Vt
S 10ln

1-e
-qVds kT

=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 83 Return to Table of Contents

72 Chapter 2: Fabrication and Devices

2.3.7 Thermal Effects
Modern VLSI systems generate large quantities of heat—enough that
the chip must be designed with thermal effects in mind. Leakage cur-
rents are a prime cause of heat generation in nanometer devices, so it is
worthwhile to consider the basic causes of heat generation here.

leakage and temperature
dependence

Any current flow through the chip generates heat. In earlier CMOS
technologies, leakage was negligible and power consumption was dom-
inated by dynamic current flows. Today, leakage currents account for a
large fraction of total power dissipation. Most important, some sources
of leakage are temperature-dependent with higher temperatures causing
more leakage current. This positive feedback between temperature and
current is known as thermal runaway and can easily cause a chip to
rapidly burn out.

subthreshold leakage and
temperature

The most important source of temperature-dependent leakage current is
the subthreshold leakage current, which is also the largest source of
leakage current [Ped06]. The substrate current varies with temperature
at the rate of 8x to 12x per , which means that threshold currents
can increase drastically as the chip warms up. Furthermore, subthresh-
old leakage currents increase as we move to smaller technologies; these
current increased by over 10x from 0.25 m to 90 nm.

2.3.8 Spice Models
circuit simulation A circuit simulator, of which Spice [Nag75] is the prototypical example,

provides the most accurate description of system behavior by solving
for voltages and currents over time. The basis for circuit simulation is
Kirchoff’s laws, which describe the relationship between voltages and
currents. Linear elements, like resistors and capacitors, have constant
values in Kirchoff’s laws, so the equations can be solved by standard
linear algebra techniques.

However, transistors are non-linear, greatly complicating the solution of
the circuit equations. The circuit simulator uses a model—an equivalent
circuit whose parameters may vary with the values of other circuits volt-
ages and currents—to represent a transistor. Unlike linear circuits,
which can be solved analytically, numerical solution techniques must be
used to solve non-linear circuits. The solution is generated as a sequence
of points in time. Given the circuit solution at time t, the simulator
chooses a new time t+ and solves for the new voltages and currents.
The difficulty of finding the t+ solution increases when the circuit’s
voltages and currents are changing very rapidly, so the simulator
chooses the time step based on the derivatives of the Is and Vs. The

100 C

Modern VLSI Design: IP-Based Design, Fourth Edition Page 84 Return to Table of Contents

74 Chapter 2: Fabrication and Devices

parameter symbol Spice name
channel drawn length L L
channel width W W
source, drain areas AS, AD
source, drain perimeters PS, PD
source/drain resistances Rs, Rd RS, RD

source/drain sheet resistance RSH
zero-bias bulk junction capacitance Cj0 CJ

bulk junction grading coefficient m MJ
zero-bias sidewall capacitance Cjsw0 CJSW

sidewall grading coefficient msw MJSW

gate-bulk/source/drain overlap capacitances Cgb0/Cgs0/
Cgd0

CGBO, CGSO,
CGDO

bulk junction leakage current Is IS

bulk junction leakage current density Js JS

bulk junction potential 0 PB

zero-bias threshold voltage Vt0 VT0

transconductance k’ KP
body bias factor GAMMA
channel modulation LAMBDA
oxide thickness tox TOX

lateral diffusion xd LD

metallurgical junction depth xj XJ

surface inversion potential PHI

substrate doping NA, ND NSUB

surface state density Qss/q NSS

surface mobility 0 U0

maximum drift velocity vmax VMAX

mobility critical field Ecrit UCRIT

critical field exponent in mobility degradation UEXP

type of gate material TPG

2 F

Table 2-3 Names
of some Spice
parameters.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 85 Return to Table of Contents

2.4 Wires and Vias 73

resulting values can be plotted in a variety of ways using interactive
tools.

Spice models A circuit simulation is only as accurate as the model for the transistor.
Spice supports a number of models of transistors (and other devices)
that vary in their accuracy and computational expense [Gei90]. The
level 1 Spice model is roughly the device equations of Section 2.3. We
used the level 49 model for simulations described in this book. New
models are regularly developed and incorporated into Spice as fabrica-
tion technology advances and device characteristics change. The model
that you use in your simulations will generally be determined by your
fabrication vendor, who will supply you with the model parameters in
Spice format.

Spice parameters Table 2-3 gives the Spice names for some common parameters of Spice
models and their correspondence to names used in the literature. Process
vendors typically supply customers with Spice model parameters
directly. You should use these values rather than try to derive them from
some other parameters.

2.4 Wires and Vias

layout cross section Figure 2-14 illustrates the cross-section of a nest of wires and vias. n-
diffusion and p-diffusion wires are created by doping regions of the sub-
strate. Polysilicon and metal wires are laid over the substrate, with sili-
con dioxide to insulate them from the substrate and each other. Wires
are added in layers to the chip, alternating with SiO2: a layer of wires is

n+

substrate

metal 1

metal 2

poly

vias

oxide

Figure 2-14 A cross-section
of a chip showing wires and
vias.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 86 Return to Table of Contents

2.4 Wires and Vias 75

added on top of the existing silicon dioxide, then the assembly is cov-
ered with an additional layer of SiO2 to insulate the new wires from the
next layer. Vias are simply cuts in the insulating SiO2; the metal flows
through the cut to make the connection on the desired layer below.

copper interconnect As mentioned in Section 2.2, copper interconnect can now be pro-
duced in volume thanks to a special protection layer that keeps the
copper from poisoning the semiconductors in the substrate. The fabri-
cation methods, and therefore the design rules, for copper interconnect
are similar to those used for aluminum wires. However, as we will see
in Chapter 3, the circuit characteristics of copper differ radically from
those of aluminum.

multi-layer interconnect Figure 2-15 shows a photomicrograph of a multi-level interconnect
structure with twelve layers of metal. The bottom layer is tungsten, all
layers above are copper. This photograph shows the huge variations in
the sizes of wires—the levels closest to the transistors are small, while
the wires at higher levels are both wider and taller. These widths are
often referred to in nX terminology, where the bottom level of intercon-

Figure 2-15 Cross-section of twelve levels of metal interconnect (courtesy IBM).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 87 Return to Table of Contents

76 Chapter 2: Fabrication and Devices

nect is 1X and higher layers may be some factor larger. In this case, the
first five copper layers are 1X with a width of 0.12 m, the next three
are 2X scaled, and the next two are 6X scaled. (The top layer is made of
a copper/aluminum alloy and is used for off-chip connections.)

power distribution In addition to carrying signals, metal lines are used to supply power
throughout the chip. On-chip metal wires have limited current-carrying
capacity, as does any other wire. (Poly and diffusion wires also have
current limitations, but since they are not used for power distribution
those limitations do not affect design.) Electrons drifting through the
voltage gradient on a metal line collide with the metal grains which
form the wire. A sufficiently high-energy collision can appreciably
move the metal grain. Under high currents, electron collisions with
metal grains cause the metal to move; this process is called metal
migration (also known as electromigration) [Mur93].

mean time to failure The mean time to failure (MTTF) for metal wires—the time it takes
for 50% of testing sites to fail—is a function of current density:

, (EQ 2-18)

where j is the current density, n is a constant between 1 and 3, and Q is
the diffusion activation energy. This equation is derived from the drift
velocity relationship.

Metal wires can handle 1 mA of current per micron of wire width under
the SCMOS rules. (Width is measured perpendicular to current flow.) A
minimum width metal 1 wire can handle 0.54 mA of current. This is
enough to handle several gates, but in larger designs, however, sizing
power supply lines is critical to ensuring that the chip does not fail once
it is installed in the field.

2.4.1 Wire Parasitics
Wires, vias and transistors all introduce parasitic elements into our cir-
cuits. We will concentrate here on resistance and capacitance analysis. It
is important to understand the structural properties of our components
that introduce parasitic elements, and how to measure parasitic element
values from layouts.

diffusion wire capacitance Diffusion wire capacitance is introduced by the p-n junctions at the
boundaries between the diffusion and underlying tub or substrate. While
these capacitances change with the voltage across the junction, which
varies during circuit operation, we generally assume worst-case values.
An accurate measurement of diffusion wire capacitance requires sepa-

MTF j n– eQ kT

Modern VLSI Design: IP-Based Design, Fourth Edition Page 88 Return to Table of Contents

2.4 Wires and Vias 77

rate calculations for the bottom and sides of the wire—the doping den-
sity, and therefore the junction properties, vary with depth. To measure
total capacitance, we measure the diffusion area, called bottomwall
capacitance, and perimeter, called sidewall capacitance, as shown in
Figure 2-16, and sum the contributions of each.

diffusion capacitance
derivation

The depletion region capacitance value is given by

. (EQ 2-19)

This is the zero-bias depletion capacitance, assuming zero voltage and
an abrupt change in doping density from Na to Nd. The depletion region
width xd0 is shown in Figure 2-16 as the dark region; the depletion
region is split between the n+ and p+ sides of the junction. Its value is
given by

, (EQ 2-20)

where the built-in voltage Vbi is given by

. (EQ 2-21)

The junction capacitance is a function of the voltage across the junction
Vr:

substrate (NA)

sidewall
capacitance

bottomwall
capacitance

n+ (ND)

depletion
region

Figure 2-16 Sidewall and
bottomwall capacitances of a
diffusion region.

Cj0
si

xd
------=

xd0
1

NA
------- 1

ND
-------+

2 siVbi
q

-----------------=

Vbi
kT
q

------ln
NAND

ni
2

---------------=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 89 Return to Table of Contents

78 Chapter 2: Fabrication and Devices

. (EQ 2-22)

So the junction capacitance decreases as the reverse bias voltage
increases.

metal and poly
capacitance

The capacitance mechanism for poly and metal wires is, in contrast, the
parallel plate capacitor from freshman physics. We must also measure
area and perimeter on these layers to estimate capacitance, but for dif-
ferent reasons. The plate capacitance per unit area assumes infinite
parallel plates. We take into account the changes in the electrical fields
at the edges of the plate by adding in a fringe capacitance per unit
perimeter. These two capacitances are illustrated in Figure 2-17. Capac-
itances can form between signal wires. In conservative technologies, the
dominant parasitic capacitance is between the wire and the substrate,
with the silicon dioxide layer forming the insulator between the two par-
allel plates.

wire-to-wire parasitics At the higher levels of interconnect, wire-to-wire parasitics are becom-
ing more important. Both capacitance between two different layers and
between two wires on the same layer are basic parallel plate capaci-
tances. The parasitic capacitance between two wires on different layers,
such as Cm1m2 in Figure 2-18, depends on the area of overlap between
the two wires. In our typical 180 nm process, the plate capacitance
between metal 1 and metal 2 is 14 aF/cm2 and the metal 1-metal3 plate

Cj Vr()
Cj0

1
Vr
Vbi
-------+

---------------------=

metal

plate capacitance

fringe capacitance

Figure 2-17 Plate and
fringe capacitances of a
parallel-plate capacitor.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 90 Return to Table of Contents

2.4 Wires and Vias 79

capacitance is 14 aF/cm2. When two wires run together for a long dis-
tance, with one staying over the other, the layer-to-layer capacitance can
be very large. The capacitance between two wires on the same layer,
Cw1w2 in the figure, is formed by the vertical sides of the metal wires.
Metal wires can be very tall in relation to their width, so the vertical
wall coupling is non-negligible. However, this capacitance depends on
the distance between two wires. The values given in process specifica-
tions are for minimum-separation wires, and the capacitance decreases
by a factor of as distance increases. When two wires on the same
layer run in parallel for a long distance, the coupling capacitance can
become very large.

The following example illustrates how to measure parasitic capacitance
from a layout.

Example 2-4
Parasitic
capacitance
measurement

The n-diffusion wires in our typical 180 nm process have a bottomwall
capacitance of 940 aF/ m2 and a sidewall capacitance of 200 aF/ m.
The p-diffusion wires have bottomwall and sidewall capacitances of
1000 aF/ m2 and 200 aF/ m, respectively. The sidewall capacitance of
a diffusion wire is typically as large or larger as its bottomwall capaci-
tances because the well/substrate doping is highest near the surface.
Typical metal 1 capacitances in a process are 36 aF/ m2 for plate and 54
aF/ m for fringe; typical poly values are 63 aF/ m2 plate and 63 aF/ m
fringe. The fact that diffusion capacitance is an order of magnitude
larger than metal or poly capacitance suggests that we should avoid
using large amounts of diffusion.

metal
2

Cm1m2

Cw1w2

metal
1

metal
1

Figure 2-18 Capacitive
coupling between signals on
the same and different
layers.

1 x

Modern VLSI Design: IP-Based Design, Fourth Edition Page 91 Return to Table of Contents

80 Chapter 2: Fabrication and Devices

Here is our example wire, made of n-diffusion and metal connected by a
via:

To measure wire capacitance of a wire, simply measure the area and
perimeter on each layer, compute the bottomwall and sidewall capaci-
tances, and add them together. The only potential pitfall is that our lay-
out measurements are probably, as in this example, in units, while unit
capacitances are measured in units of m (not nm). The n-diffusion sec-
tion of the wire occupies

of bottomwall capacitance. In this case, we count the n-diffusion which
underlies the via, since it contributes capacitance to the substrate.

The n-diffusion’s perimeter is, moving counterclockwise from the upper
left-hand corner,

 ,

giving a total sidewall capacitance of 0.72 fF. Because the sidewall and
bottomwall capacitances are in parallel, we add them to get the n-diffu-
sion’s contribution of 1.1 fF.

The metal 1 section has a total area of , giv-
ing a plate capacitance of 0.051 fF. The metal’s perimeter is

 for a fringe capacitance of 0.156 fF
and a total metal contribution of 0.16 fF. A slightly more accurate mea-
surement would count the metal area overlying the n-diffusion differ-
ently—strictly speaking, the metal forms a capacitance to the n-
diffusion, not the substrate, since the diffusion is the closer material.
However, since the via area is relatively small, approximating the metal
1-n-diffusion capacitance by a metal 1-substrate capacitance doesn’t
significantly change the result.

n-diff
metal

3

12

6

10
4

12 0.09 m------------------- 3 0.09 m------------------- 4 0.09 m-------------------
2

+ 0.42fF=

0.27 m 1.08 m 0.09 m 0.36 m 0.36 m 1.44 m+ + + + + 3.6 m=

0.54 m 0.9 m 1.44 m=
2

0.9 m 2 0.54 m 2+ 2.9 m=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 92 Return to Table of Contents

2.4 Wires and Vias 81

The total wire capacitance is the sum of the layer capacitances, since the
layer capacitors are connected in parallel. The total wire capacitance is
1.3 fF; the n-diffusion capacitance dominates the wire capacitance, even
though the metal 1 section of the wire is larger.

wire resistance Wire resistance is also computed by measuring the size of the wire in
the layout, but the unit of resistivity is ohms per square (), not
ohms per square micron. The resistance of a square unit of material is
the same for a square of any size; to understand, consider Figure 2-19.
Assume that a unit square of material has a resistance of . Two
squares of material connected in parallel have a total resistance of

. Connecting two such rectangles in series creates a 2 2 square
with a resistance of 1 . We can therefore measure the resistance of a
wire by measuring its aspect ratio.

Figure 2-20 shows two example wires. The upper wire is made of poly-
silicon, which has a resistivity of 8 in our 180 nm process. Cur-
rent flows in the direction shown; wire length is along the direction of
current flow, while wire width is perpendicular to the current. The wire
is composed of 18/3 squares connected in series, giving a total resis-
tance of 48 .

The second wire is more interesting because it is bent. A bend in a
wire offers less resistance because electrons nearer the corner travel a
shorter distance. A simple and common approximation is to count each
square corner rectangle as 1/2 squares of resistance. The wire can be
broken into three pieces: 9/3 = 3 squares, 1/2 squares, and 6/3 = 2
squares. P-diffusion resistivity is approximately 2 , giving a total
resistance of 11 .

=

Figure 2-19 Resistance per unit square is constant.

1

1 2

90

Modern VLSI Design: IP-Based Design, Fourth Edition Page 93 Return to Table of Contents

82 Chapter 2: Fabrication and Devices

typical resistivity values In our typical 180 nm process, an n-diffusion wire has a resistivity of
approximately 7 , with metal 1, metal 2, and metal 3 having resis-
tivities of about 0.08, 0.08, and 0.03 , respectively. Note that p-
diffusion wires in particular have higher resistivity than polysilicon
wires, and that metal wires have low resistivities.

source-drain parasitics The source and drain regions of a transistor have significant capacitance
and resistance. These parasitics are, for example, entered into a Spice
simulation as device characteristics rather than as separate wire models.
However, we measure the parasitics in the same way we would measure
the parasitics on an isolated wire, measuring area and perimeter up to
the gate-source/drain boundary.

via resistance Vias have added resistance because the cut between the layers is smaller
than the wires it connects and because the materials interface introduces
resistance. The resistance of the via is usually determined by the resis-
tance of the materials: a metal 1-metal 2 via has a typical resistance of
about 5 while a metal1-poly contact has a resistance of 10 .. We
rarely worry about the exact via resistance in layout design; instead, we
try to avoid introducing unnecessary vias in current paths for which low
resistance is critical.

2.4.2 Skin Effect in Copper Interconnect
skin effect in copper Low-resistance conductors like copper not only exhibit inductance, they

also display a more complex resistance relationship due to a phenome-
non called skin effect [Ram65]. The skin effect causes a copper conduc-

current
3

current

9

6

3

Figure 2-20 An example of
resistance calculation.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 94 Return to Table of Contents

2.4 Wires and Vias 83

tor’s resistance to increase (and its inductance to decrease) at high
frequencies.

An ideal conductor would conduct currents only on its surface. The cur-
rent at the surface is a boundary effect—any current within the conduc-
tor would set up an electromagnetic force that would induce an
opposing and cancelling current. The copper wiring used on ICs is a
non-ideal conductor; at low frequencies, the electromagnetic force is
low enough and resistance is high enough that current is conducted
throughout the wire’s cross section. However, as the signal’s frequency
increases, the electromagnetic forces increase. As illustrated in Figure
2-21, the current through an isolated conductor migrates toward the
edges as frequency increases; when the conductor is close to a ground,
the current in both move toward each other.

Skin effect causes the conductor’s resistance to increase with frequency.
The skin depth is the depth at which the conductor’s current is
reduced to 1/e = 37% of its surface value [Che00]:

low frequency high frequency

isolated conductor

low frequency high frequency

conductor and ground

Figure 2-21 How current
changes with frequency due
to skin effect.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 95 Return to Table of Contents

84 Chapter 2: Fabrication and Devices

, (EQ 2-23)

where f is the signal frequency, is the magnetic permeability, and is
the wire’s conductivity. The skin depth goes down as the square root of
frequency.

skin effect and resistivity Cheng et al [Che00] provide an estimation of the delay per unit length of
a wire suffering from skin effect. Two values, Rdc and Rhf, estimate the
resistance at low and high frequencies:

, (EQ 2-24)

where w and t are the width and height of the conductor, respectively.
The skin depth ensures that Rhf depends on frequency. The resistance
per unit length can be estimated as

, (EQ 2-25)

where is a weighting factor typically valued at 1.2.

Skin effect typically becomes important at gigahertz frequencies in ICs.
Some microprocessors already run at those frequencies and more chips
will do so in the near future.

2.5 Fabrication Theory and Practice

physical design and
design rules

Layouts are built from three basic component types: transistors, wires,
and vias. We have seen the structures of these components created dur-
ing fabrication. Now we will consider the design of the layouts which
determine the circuit that is fabricated. Design rules govern the layout
of individual components and the interactions—spacings and electrical
connections—between those components. Design rules determine the
low-level properties of chip designs: how small individual logic gates
can be made; how small the wires connecting gates can be made, and
therefore, the parasitic resistance and capacitance which determine
delay.

design rules and yield Design rules are determined by the conflicting demands of component
packing and chip yield. On the one hand, we want to make the compo-
nents as small as possible, to put as many functions as possible on-chip.

1
f

-----------------=

Rdc
1
wt

----------= Rhf
1

2 w t+
---------------------------=

Rac Rdc
2 Rhf

2+=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 96 Return to Table of Contents

2.5 Fabrication Theory and Practice 85

On the other hand, since the individual transistors and wires are about as
small as the smallest feature that our manufacturing process can pro-
duce, errors during fabrication are inevitable: wires may short together
or never connect, transistors may be faulty, etc. One common model for
yield of a single type of structure is a Gamma distribution [Mur93]:

. (EQ 2-26)

The total yield for the process is then the product of all the yield compo-
nents:

. (EQ 2-27)

This formula suggests that low yield for even one of the process steps
can cause serious final yield problems. But being too conservative about
design rules leads to chips that are too large (which itself reduces yield)
and too slow as well. We try to balance chip functionality and manufac-
turing yield by following rules for layout design which tell us what lay-
out constructs are likely to cause the greatest problems during
fabrication.

2.5.1 Fabrication Errors
problems that motivate
design rules

The design rules for a particular process can be confusing unless you
understand the motivation for the rules—the types of errors that are
likely to occur while the chip is being manufactured. The design rules
for a process are formulated to minimize the occurrence of common fab-
rication problems and bring the yield of correct chips to an acceptable
level.

metallization problems The most obvious type of fabrication problem is a wire or other feature
being made too wide or too narrow. This problem can occur for a variety
of reasons: photolithographic errors may leave an erroneous pattern for
later steps; local materials variations may cause different rates of diffu-
sion or deposition; processing steps at a nearby feature may cause harm-
ful interactions. One important problem in fabrication is planarization
[Gha94]—poly and metal wires leave hills in the oxide. The bumps in
the oxide can be smoothed by several different chemical or mechanical
methods; failure to do so causes step coverage problems which may
lead to breaks in subsequent metallization layers. In any case, the result
is a wire that is too narrow or too wide. As shown in Figure 2-22, a wire
that is too narrow may never conduct current, or may burn out after

Yi
1

1 A i+

i
=

Y Yi

i 1=

n

=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 97 Return to Table of Contents

86 Chapter 2: Fabrication and Devices

some use. A too-wide wire may unintentionally short itself to another
wire or, as in the case of a poly wire overlapping a parallel diffusion
wire, cut into another element.

spacing and minimum-
width rules

The simplest remedy for these problems is the introduction of spacing
and minimum-width rules, which take a variety of forms in our design
rules. Minimum-width rules give a minimum size for a layout element;
they help ensure that even with minor variations in the position of the
lines that form the element, the element will be of an acceptable size.
Spacing rules give a minimum distance between the edges of layout ele-
ments, so that minor processing variations will not cause the element to
overlap nearby layout elements.

composition rules We also have a number of composition rules to ensure that components
are well-formed. Consider the transistor layout in Figure 2-23—the
transistor action itself takes place in the channel, at the intersection of
the polysilicon and diffusion regions, but a valid transistor layout
requires extensions of both the poly and diffusion regions beyond the

short

open

Figure 2-22 Problems when
wires are too wide or
narrow.

Figure 2-23 Potential
problems in transistor
fabrication.

diffusion
shorts
channel

Modern VLSI Design: IP-Based Design, Fourth Edition Page 98 Return to Table of Contents

2.5 Fabrication Theory and Practice 87

boundary. The poly extensions ensure that no strand of diffusion shorts
together the source and drain. The diffusion extensions ensure that ade-
quate contact can be made to the source and drain.

Vias have construction rules as well: the material on both layers to be
connected must extend beyond the SiO2 cut itself; and the cut must be
of a fixed size. As shown in Figure 2-24, the overlap requirement simply
ensures that the cut will completely connect the desired layout elements
and not mistakenly connect to the substrate or another wire. The key
problem in via fabrication, however, is making the cuts. A large chip
may contain millions of vias, all of which must be opened properly for
the chip to work. The acid etching process which creates cuts must be
very uniform—cuts may be neither too small and shallow nor too large.
It isn’t hard to mount a bookcase in a wall with an electric drill—it is
easy to accurately size and position each hole required. Now imagine
making those holes by covering the wall with acid at selected points,
then wiping the wall clean after a few minutes, and you should empa-
thize with the problems of manufacturing vias on ICs. The cut must also
be filled with material without breaking as the material flows over the
edge of the cut. The size, shape, and spacing of via cuts are all strictly
regulated by modern fabrication processes to give maximum via yield.

2.5.2 Scaling Theory and Practice
Moore’s Law and design
rules

Manufacturing processes are constantly being improved. The ability to
make ever-smaller devices is the driving force behind Moore’s Law. But
many characteristics of the fabrication process do not change as devices
shrink—layouts do not have to be completely redesigned, simply shrunk
in size. We can take best advantage of process scaling by formulating
our design rules to be explicitly scalable.

We will scale our design rules by expressing them not in absolute physi-
cal distances, but in terms of , the size of the smallest feature in a lay-
out. All features can be measured in integral multiples of . By choosing
a value for we set all the dimensions in a scalable layout.

misaligned bloated

Figure 2-24 Potential
problems in via fabrication.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 99 Return to Table of Contents

88 Chapter 2: Fabrication and Devices

Scaling layouts makes sense because chips actually get faster as layouts
shrink. As a result, we don’t have to redesign our circuits for each new
process to ensure that speed doesn’t go down as packing density goes
up. If circuits became slower with smaller transistors, then circuits and
layouts would have to be redesigned for each process.

scaling theory Digital circuit designs scale because the capacitive loads that must be
driven by logic gates shrink faster than the currents supplied by the tran-
sistors in the circuit [Den74]. To understand why, assume that all the
basic physical parameters of the chip are shrunk by a factor :

• lengths and widths: W W/x, L L/x;
• vertical dimensions such as oxide thicknesses: tox tox/x;

• doping concentrations: Nd Nd/x;

• supply voltages: VDD - VSS (VDD - VSS)/x.

We now want to compute the values of scaled physical parameters,
which we will denote by variables with hat symbols. One result is that
the transistor transconductance scales: since
[Mul77], . (is the carrier mobility and is the dielectric
constant.) The threshold voltage scales with oxide thickness, so

. Now compute the scaling of the saturation drain current
W/L:

(EQ 2-28)

The scaling of the gate capacitance is simple to compute:
, so . The total delay of the logic circuit

depends on the capacitance to be charged, the current available, and the
voltage through which the capacitor must be charged; we will use
as a measure of the speed of a circuit over scaling. The voltage through
which the logic circuit swings is determined by the power supply, so the
voltage scales as . When we plug in all our values,

. (EQ 2-29)

1 x

k' eff ox tox=
k'ˆ k' x= eff ox

V̂t Vt x=

Îd
Id
---- k'ˆ

k'
--- Ŵ L̂

W L
------------ V̂gs-V̂t

2

Vgs-Vt
2

----------------------=

x 1 x
1 x
--------- 1

x

2
=

1
x
---=

Cg oxWL tox= Ĉg Cg 1 x=

CV I

1 x

ĈV̂ Î
CV I
-------------- 1

x
---=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 100 Return to Table of Contents

2.5 Fabrication Theory and Practice 89

So, as the layout is scaled from to , the circuit is actually
speeded up by a factor x.

In practice, few processes are perfectly -scalable. As process designers
learn more, they inevitably improve some step in the process in a way
that does not scale. High-performance designs generally require some
modification when migrated to a smaller process as detailed timing
properties change. However, the scalability of VLSI systems helps con-
tain the required changes.

interconnect scaling Interconnect scales somewhat differently than do transistors because
they present different fabrication problems. Sylvester and Hu presented
several different methodologies for scaling global interconnect [Syl01].
Ideal scaling laws change the vertical and horizontal dimensions
equally. Constant dimension scaling, in contrast, does not change the
basic parameters of wiring. Under ideal scaling, resistance per unit
length grows quickly as wires are scaled, while in constant dimension
scaling, resistance per unit length stays the same. As Figure 2-15 shows,
the higher levels of interconnect do in fact have larger dimensions,
which essentially reflect interconnect that is unscaled from earlier gen-
erations of technology, which provides lower-resistance interconnect for
global wiring.

ˆ x=

Table 2-4 Interconnect scaling methodologies for global wiring [Syl01].

ideal scaling

constant
dimension
scaling

line width and spacing 1

wire thickness 1

interlevel dielectric thickness 1

wire length

resistance per unit length 1

capacitance per unit length 1 1

RC delay

current density

S

S

S

1 S 1 S

1 S2

1 S3 1 S

1 S S

Modern VLSI Design: IP-Based Design, Fourth Edition Page 101 Return to Table of Contents

90 Chapter 2: Fabrication and Devices

ITRS roadmap The International Technology Roadmap for Semiconductors
(ITRS) (http://www.itrs.net) is a plan, written by the semiconductor
industry, for the development of semiconductor manufacturing and
the continuation of Moore’s Law. The Roadmap is rewritten or
updated every year. This document, which describes the practical
side of scaling, gives goals for scaling and the challenges that must
be met to meet those goals.

Table 2-5 shows some values for basic process parameters from the
2005 Roadmap. For each year, the target values for the 1/2 pitch (width
of a wire) of metal 1, gate length for microprocessors, and gate length
for low-power ASICs are given.

2.5.3 SCMOS Design Rules
SCMOS Finally, we reach the SCMOS design rules themselves. The full SCMOS

rules are on the MOSIS Web site (http://www.mosis.com/Technical/
Designrules/scmos/scmos-main.html). In this section, we will only sum-
marize some of the basic rules. The full set of rules is complex and may
change over time. The basic SCMOS rules define two layers of metal;
options allow for up to six layers of metal. Two special set of rules,
SCMOS Sub-micron and SCMOS Deep, have been added for submi-
cron processes. We will start with the basic SCMOS rules and then
move onto these special rules.

We will cast these rules in terms of . For the SCMOS rules, a 180 nm
process the nominal value for is 0.09 m 90 nm. SCMOS layouts
must be designed on a grid.

Table 2-5 Goals from the 2005 ITRS Roadmap [Int05].

year 2005 2006 2007 2008 2009 2010 2011 2012
microprocessor metal 1 1/2
pitch (nm)

90 78 68 59 52 45 40 36

microprocessor physical gate
length (nm)

32 28 25 23 20 18 16 14

ASIC/low power physical gate
length (nm)

45 38 32 28 25 23 20 18

1
2

Modern VLSI Design: IP-Based Design, Fourth Edition Page 102 Return to Table of Contents

2.5 Fabrication Theory and Practice 91

tub tie

2

n diff

4

p tub

n tub

p diff

poly

metal
2

metal
1

2 2

3 3

10

3

3

Figure 2-25 A summary of the SCMOS design rules.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 103 Return to Table of Contents

92 Chapter 2: Fabrication and Devices

design rules as pictures
plus text

Design rules are generally specified as pictures illustrating basic situa-
tions, with notes to explain features not easily described graphically.
While this presentation may be difficult to relate to a real layout, prac-
tice will teach you to identify potential design rule violations in a layout
from the prototype situations in the rules. Many layout editor programs,
such as Magic [Ost84], have built-in design-rule checkers which will
identify design-rule violations on the screen for you. Using such a pro-
gram is a big help in learning the process design rules.

basic spacing and
minimum size rules

Figure 2-25 summarizes the basic spacing and minimum size design
rules. Classifying the situations described in these pictures as separa-
tion, minimum size, or composition will help you distinguish and learn
the rules. Many of these rules hold for any tub structure: n-tub, p-tub, or
twin-tub. The rules regarding tubs and tub ties necessarily depend on the
tub structure, however.

separation and size rules The basic separation and minimum size rules are:

• metal 1 Minimum width is 3 , minimum separation is 3 .
• metal 2 Minimum width is 3 , minimum separation is 4 .
• polysilicon Minimum width is 2 , minimum poly–poly separation

is 2 .
• p-, n-diffusion Minimum width is 3 , minimum separation between

same-type diffusions is 3 , minimum p-diff–n-diff separation is 10
.

• tubs Tubs must be at least 10 wide. The minimum distance from
the tub edge to source/drain active area is 5 .

construction rules The basic construction rules are:

• transistors The smallest transistor is of width 3 and length 2 ;
poly extends 2 beyond the active region and diffusion extends 3 .
The active region must be at least 1 from a poly-metal via, 2
from another transistor, and 3 from a tub tie.

• vias Cuts are 2 2 ; the material on both layers to be connected
extends 1 in all directions from the cut, making the total via size 4

 4 . (MOSIS also suggests another via construction with 1.5 of
material around the cut. This construction is safer but the fractional
design rule may cause problems with some design tools.) Available
via types are:

Modern VLSI Design: IP-Based Design, Fourth Edition Page 104 Return to Table of Contents

2.5 Fabrication Theory and Practice 93

• n/p-diffusion–poly;

• poly–metal 1;

• n/p-diffusion–metal 1;

• metal 1–metal 2;

If several vias are placed in a row, successive cuts must be at least 2
apart. Spacing to a via refers to the complete 4 4 object, while
spacing to a via cut refers to the 2 2 cut.

• tub ties A p-tub tie is made of a 2 2 cut, a 4 4 metal ele-
ment, and a 4 4 p+ diffusion. An n-tub tie is made with an n+

diffusion replacing the p+ diffusion. A tub tie must be at least 2
from a diffusion contact.

It is important to remember that different rules have different dependen-
cies on electrical connectivity. Spacing rules for wires, for example,
depend on whether the wires are on the same electrical node. Two wire
segments on the same electrical node may touch. However, two via cuts
must be at least 2 apart even if they are on the same electrical net.
Similarly, two active regions must always be 2 apart, even if they are
parallel transistors.

higher-level metal rules The rules for metal 3 are:

• Minimum metal 3 width is 6 , minimum separation is 4 .
• Available via from metal 3 is to metal 2. Connections from metal 3

to other layers must be made by first connecting to metal 2.

rules for submicron
processes

As mentioned above, the SCMOS Sub-micron and SCMOS Deep rules
have been developed to support submicron processes. Table 2-6
describes some of the changes introduced by these rule sets; the full set
of changes are on the MOSIS Web site. If you want to design for a par-
ticular process, you will need to determine which set of rules you need
to follow.

other rules There are some other rules that do not fit into the separation/minimum
size/composition categorization.

• A cut to polysilicon must be at least 3 from other polysilicon.
• Polysilicon cuts and diffusion cuts must be at least 2 apart.
• A cut must be at least 2 from a transistor active region.
• A diffusion contact must be at least 4 away from other diffusion.
• A metal 2 via must not be directly over polysilicon.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 105 Return to Table of Contents

94 Chapter 2: Fabrication and Devices

negative features Another rule is to avoid generating small negative features. Consider
the layout of Figure 2-26: the two edges of the notch are 1 apart, but
both sides of the notch are on the same electrical node. The two edges
are not in danger of causing an inadvertent short due to a fabrication
error, but the notch itself can cause processing errors. Some processing
steps are, for convenience, done on the negative of the mask given, as
shown in the figure. The notch in the positive mask forms a 1 wide
protrusion on the negative mask. Such a small feature in the photoresist,
called a negative mask feature, can break off during processing, float
around the chip, and land elsewhere, causing an unwanted piece of
material. We can minimize the chances of stray photoresist causing
problems by requiring all negative features to be at least 2 in size.

Table 2-6 Some differences between SCMOS, SCMOS Sub-micron, and SCMOS Deep rules.

negative feature

Figure 2-26 A negative
mask feature.

SCMOS
SCMOS
Sub-micron SCMOS Deep

poly space 2 3 3

active extension beyond poly 3 3 4

contact space 2 3 4

via width 2 2 3

metal 1 space 2 3 3

metal 2 space 3 3 4

Modern VLSI Design: IP-Based Design, Fourth Edition Page 106 Return to Table of Contents

2.5 Fabrication Theory and Practice 95

antenna rules Antenna rules help protect transistors against damage to their gate
oxides. Polysilicon or metal wires that are connected to transistors may
collect charge; the charge can then flow through the gate oxide using a
mechanism known as Fowler-Nordheim tunneling [Sze81]. If the charge
is large enough, this current will damage the gate oxide. Antenna rules
restrict the ratio of poly or metal wiring to gate area—the wire-to-gate
ratio must be no larger than a given amount.

2.5.4 Typical Process Parameters
Typical values of process parameters for a 180 nm fabrication process
are given in Table 2-7. We use the term typical loosely here; these are
approximate values that do not reflect a particular manufacturing pro-
cess and the actual parameter values can vary widely. You should
always request process parameters from your vendor when designing a
circuit that you intend to fabricate.

2.5.5 Lithography for Nanometer Processes
We have so far treated design rules as a simple but complete abstraction
of the manufacturing process—if we follow the design rules, our chips
will be manufacturable with high yields. However, as we move to very
fine feature sizes in the nanometer range, our simple view of lithogra-
phy must change.

drawn
features

fabricated
features

corrected
masks

Figure 2-27 Notching in nanometer-scale lithography.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 107 Return to Table of Contents

96 Chapter 2: Fabrication and Devices

n-type transconductance k’n

p-type transconductance k’p

n-type threshold voltage Vtn

p-type threshold voltage Vtp

n-diffusion bottomwall capacitance Cndiff,bot

n-diffusion sidewall capacitance Cndiff,side

p-diffusion bottomwall capacitance Cpdiff,bot

p-diffusion sidewall capacitance Cpdiff,side

n-type source/drain resistivity Rndiff

p-type source/drain resistivity Rpdiff

poly-substrate plate capacitance Cpoly,plate

poly-substrate fringe capacitance Cpoly,fringe

poly resistivity Rpoly

metal 1-substrate plate capacitance Cmetal1,plate

metal 1-substrate fringe capacitance Cmetal1,fringe

metal 2-substrate capacitance Cmetal2,plate

metal 2-substrate fringe capacitance Cmetal2,fringe

metal 3-substrate capacitance Cmetal3,plate

metal 3-substrate fringe capacitance Cmetal3,fringe

metal 1 resistivity Rmetal1

metal 2 resistivity Rmetal2

metal 3 resistivity Rmetal3

metal current limit Im,max

170 A V2

-30 A V2

0.5V

-0.5V

940aF m2

200aF m

1000aF m2

200aF m

7

7

63aF m2

63aF m

8

36aF m2

54aF m

36aF m2

51aF m

37aF m2

54aF m

0.08

0.08

0.03

1mA m

Table 2-7 Typical parameters for our 180 nm process.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 108 Return to Table of Contents

2.5 Fabrication Theory and Practice 97

lithographic limitations Lithography was chosen as a basic process for semiconductor manufac-
turing when the size of features was large compared to the wavelength
of light. Today’s features are small compared to the wavelengths of even
invisible radiation. As a result, the features exposed on the chip by the
mask do not exactly match the drawn features of the mask. As illus-
trated in Figure 2-27, the features that are drawn on the mask result in
distorted features on the wafer. This effect is known as optical proxim-
ity. By modifying the masks, we can cause the fabricated features to
appear as we want them, even though those fabricated features will dif-
fer from the shapes on the corrected mask.

correction techniques Optical proximity correction (OPC) analyzes masks, determines
where problems may occur, and modifies the masks to correct for opti-
cal proximity effects. Exact correction requires continuous curves on the
masks, which we cannot fabricate. Some OPC tools allow the user to
select the accuracy of the mask corrections and the allowable tolerance
between the ideal and the actual correction.

2.5.6 3-D Integration
Traditional VLSI technology builds transistors on a single plane but
several technologies have been developed to arrange and interconnect
transistors in three dimensions. 3-D integration has several important
benefits. First, it moves transistors closer together, which translates to
shorter delays so long as the wires that can be built in the third dimen-
sion are of sufficient quality. Second, some 3-D technologies allow dif-
ferent fabrication techniques to be combined so that, for example, a
digital process can be used for some of the transistors while a process
optimized for analog devices can be used for other parts of the system.

approaches to 3-D Several 3-D technologies have been developed that have very different
characteristics [Dav05]. A commonly used technique is to stack chips
and to use traditional wire bonding, such as we will describe in
Section 7.5, to connect the chips. Stacked wire bonding is commonly
used for cell phone systems-on-chips because it improves both physical
size and power consumption. An alternative is through-silicon-via
(TSV) with die stacking, in which inter-die vias are fabricated that go
from one chip to another so that the chips can be stacked vertically. In
this case, the TSV vias must exhibit low resistance and the chips must
be carefully aligned. A third alternative is multilayer buried structures
(MLBS), in which several layers of devices are built upon a single sub-
strate before interconnections are fabricated.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 109 Return to Table of Contents

98 Chapter 2: Fabrication and Devices

die stacking applications One advantage of die stacking is that it requires relatively small changes
to the basic fabrication technology as compared to MLBS approaches.
Dies can be stacked in two different ways: face-to-back or face-to-face.
3-D die stacking is a promising technology for processors [Loh07].

2.6 Reliability

Reliability has always been a concern for integrated circuit designers
due to the small size of the devices and the natural variations that occur
in manufacturing processes. However, nanometer processes introduce
new reliability problems, some of which must be handled at higher lev-
els of abstraction. Modern design-for-manufacturability and design-for-
yield techniques are based on a fundamental understanding of the failure
mechanisms of integrated circuits.

bathtub curves Traditional VLSI manufacturing processes yielded chips that were
remarkably reliable over a long period. Figure 2-28 illustrates the gen-
eral form of failures vs. time for traditional processes. This curve is
known as the bathtub curve because of its shape—many chips failed in
the first few hours of operation, then few failures occurred for years, and
finally chips started to fail at a higher rate as they wore out. Early chip
failures are known as infant mortality; it may be caused by a variety of
fabrication flaws that create marginal structures such as thin wires or
malformed transistors. One commonly-used model for chip reliability is
an exponential probability for failure [Mur93]:

fa

ilu
re

s

time

infant mortality

random failures

wear-out

Figure 2-28 The bathtub
curve for reliability.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 110 Return to Table of Contents

2.6 Reliability 99

. (EQ 2-30)

This model assumes that the failure rate starts high and rapidly
decreases. Manufacturers generally burn in their chips for some period
by running them with power so that marginal chips will fail at the fac-
tory rather than in the hands of the customer.

types of failures The bathtub curve concerns itself with hard failures, meaning perma-
nent functional failures of the chip. Transient failures, which cause
errors on certain outputs, were not a major concern for quite some time
in digital circuits, although they have long been a concern in memories.
Transient failures can come from several causes, including bit flips and
timing errors.

failure rate measures The most common metric for failure rates is mean time to failure
(MTTF). This metric defines the mean time to the next occurrence of a
given failure mechanism. Based on MTTF, we can determine other
interesting metrics, such as lifetime.

reliability and nanometer
processes

As we move to nanometer processes, new sources of reliability become
a concern. Many of these failure mechanisms promote transient failures.
Unfortunately, we can’t easily tell which chips in a fabrication lot will
be more prone to transient failures; even if we could, throwing out all
chips that may produce transient failures would drive yields to unac-
ceptably low levels. The growing prominence of transient failures
causes us to consider reliability throughout the design process.

In this section, we will first look at traditional sources of unreliability,
then move on to the causes of unreliability in nanometer processes.

2.6.1 Traditional Sources of Unreliability
Semiconductor manufacturing processes are complex and build many
different structures. As a result, several different important failure
mechanisms have been identified for traditional VLSI processes
[Ren06]:

• diffusion and junctions Crystal defects, impurity precipitation,
mask misalignment, surface contamination.

• oxides Mobile ions, pinholes, interface states, hot carriers, time-
dependent dielectric breakdown.

• metallization Scratches and voids, mechanical damage, non-ohmic
contacts, step coverage, weak adhesion, improper thickness, corro-
sion, electromigration, stress migration.

R t e 0t–
=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 111 Return to Table of Contents

100 Chapter 2: Fabrication and Devices

• passivation Pinholes and cracks, thickness variations, contamina-
tion, surface inversion.

Several mechanisms stand out: time-dependent dielectric breakdown
(TDDB), hot carriers, negative bias temperature instability (NTBI),
electromigration, stress migration and soft errors. Some of these fail-
ure mechanisms target transistors while others come from interconnect.

TDDB Time-dependent dielectric breakdown occurs because the electric fields
across gate oxides induce stresses that damage the oxide. Small transis-
tors require very thin oxides that are more susceptible to this form of
damage. The traditional model for TDDB failure rates is known as
Black’s equation [Ren06]:

(EQ 2-31)

In this formula, A is a constant, is the activation energy in eV, E is
the electric field intensity in MV/cm, is the electric field intensity
coefficient in cm/MV, k is Boltzmann’s constant, and T is the absolute
temperature.

hot carriers A hot carrier is a carrier that gains enough energy to jump from the sili-
con substrate into the gate oxide. As these hot carriers accumulate, they
create a space charge in the oxide that affects the transistor’s threshold
voltage and other parameters. Several factors, such as power supply
voltage, channel length, and ambient temperature can affect the rate at
which hot carriers are produced.

NTBI Negative bias temperature instability is particular to pMOS devices. It
refers to shifts in due to stress that introduces interface states
and space charge. Interestingly, this degradation can be reversed by
applying a reverse bias to the transistor. As a result, it is not a significant
failure mechanism for p-type transistors whose bias voltages change
from forward to reverse regularly but is very important for DC-biased
transistors.

electromigration Electromigration is a degenerative failure mechanism for wires that we
touched upon before. Aluminum wiring includes grains that carry many
defects; these grain boundaries are the most important source of electro-
migration problems.

stress migration Stress migration is caused by mechanical stress and can occur even
when no current flows through the wire. These stresses are caused by
the different thermal expansion coefficients of the wires and the materi-
als in which they reside. Failures can be caused by long-term exposure

MTTF A E10 e
Ea kT

=

Ea

Vth gm

Modern VLSI Design: IP-Based Design, Fourth Edition Page 112 Return to Table of Contents

2.6 Reliability 101

to moderate temperatures in the range. Failures can also
occur due to short-term stresses at very high temperatures.

soft errors Soft errors cause memory cells to change state. Soft errors can be
caused by alpha particles that generate excess carriers as they travel
through the substrate. The materials used in packages include small
amounts of uranium and thorium, which is still enough to cause notice-
able rates of soft errors.

2.6.2 Reliability in Nanometer Technologies
As we move to technologies beyond 90 nm, variations in many impor-
tant parameters become very large. With so many parameters becoming
more variable, we can no longer treat reliability as a deterministic prob-
lem—throwing out all potentially troublesome chips would drastically
reduce yield, perhaps to zero. At nanometer geometries we must treat
many design problems as probabilistic, not deterministic. Furthermore,
other design parameters, such as power supply voltage and operating
temperature, introduce additional factors that can cause significant num-
bers of transient failures.

PVT challenges Borkar et al. [Bor03] identify variations in process, supply voltage, and
temperature (PVT)—both systematic and random variations—as the
key design challenge in nanometer technologies. Here, we will consider
the nature of these challenges. In later sections, we will look at design
techniques that can be used to mitigate these problems.

process variations Both channel length and threshold voltage vary significantly in nanome-
ter-scale transistors. One result of this is that leakage current can vary by
huge amounts. Figure 2-29 shows variations in leakage current and
maximum operating frequency measured from manufactured chips. The
plot shows that leakage current can vary by 20x. Furthermore, the wid-

150 C 200 C–

0.9

1.0

1.1

1.2

1.3

1.4

0 5 10 15 20

N
o

rm
al

iz
ed

 F
re

qu
en

cy

Normalized Leakage (Isb)

30
%

20X

0.9

1.0

1.1

1.2

1.3

1.4

0 5 10 15 20

N
o

rm
al

iz
ed

 F
re

qu
en

cy

Normalized Leakage (Isb)

30
%

20X

Figure 2-29 Leakage and
frequency variations in
manufactured chips [Bor0]

 2003 ACM.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 113 Return to Table of Contents

102 Chapter 2: Fabrication and Devices

est variations occur in chips that operate at the highest frequencies.
Chips that can operate at higher frequencies command higher premi-
ums, but high-frequency chips with high leakage currents are less valu-
able and, if they leak enough, may be unusable.

supply voltage variations The interconnect used to distribute power across the chip is not an ideal
conductor and introduces its own transient behavior. The activity across
the chip also changes as a function of space and time, causing variations
in the current demanded from the power supply network. As the power
supply voltage delivered at each point on the chip varies, the subthresh-
old leakage of transistors varies. Lower power supply voltages also
result in slower switching speeds of gates. The minimum acceptable
power supply voltage is determined by the required performance while
the maximum acceptable power supply voltage is determined by the
required reliability.

temperature variations As chips operate at higher frequencies, the temperatures of the die
change. Higher operating temperatures degrade the performance of both
transistors and interconnect. Variations in temperature across the chip
can cause communicating subsystems to run at different operating
points, which can cause failures.

thermal bounds Sato et al. [Sat05] define a headroom coefficient for current densities
allowed for worst-case heat consumption:

. (EQ 2-32)

 is the maximum current density defined at the reference
temperature of . is a current limit that gives the
same mean time to failure as that given by Black’s equation of
Section (EQ 2-31). Since the temperatures at some junctions may be
substantially higher than others due to variations in activity and current,
Sato et al. report that may be as low as 30% of .

on-chip temperature
sensors

Since semiconductor devices are temperature-sensitive, we can use
them as sensors to measure on-chip temperature; these measurements
can be used to drive thermal management hardware or software.
Embedded temperature sensors may measure absolute or differential
temperature [Alt06]. An absolute sensor is made from a pn junction that
is found in one of the parasitic bipolar transistors shown in Figure 2-11.
An MOS transistor can also be used as a sensor. Circuits around the sen-
sor device convert the device behavior into a form useful for thermal
management systems. Differential temperature sensors depend on ther-
mocouple effects that relate voltage and temperature differences.

j
Jmax Tjunc
Jmax Tspec
---------------------------=

Jmax Tspec
120 C Jmax Tjunc

Jmax Tjunc Jmax Tspec

Modern VLSI Design: IP-Based Design, Fourth Edition Page 114 Return to Table of Contents

2.7 Layout Design and Tools 103

2.7 Layout Design and Tools

Layouts are very detailed and designing them can be very tedious and
difficult. In this section, we will introduce some abstractions and meth-
odologies to help us design layouts.

2.7.1 Layouts for Circuits
We ultimately want to design layouts for circuits. Layout design
requires not only a knowledge of the components and rules of layout,
but also strategies for designing layouts which fit together with other
circuits and which have good electrical properties.

terminology Since layouts have more physical structure than schematics, we need to
augment our terminology. Chapter 1 introduced the term net to describe
a set of electrical connections; a net corresponds to a variable in the
voltage equations, but since it may connect many pins, it is hard to draw.
A wire is a set of point-to-point connections; as shown in Figure 2-30, a
wire may contain many branches. The straight sections are called wire
segments.

schematic diagrams The starting point for layout is a circuit schematic. The schematic sym-
bols for n- and p-type transistors are shown in Figure 2-31. The sche-
matic shows all electrical connections between transistors (except for
tub ties, which are often omitted to simplify the diagram); it must also
be annotated with the W/L of each transistor. We will discuss the design
of logic circuits from transistors in detail in Chapter 3. At this point, we
will treat the circuit schematic as a specification for which we must

wire
segments

Figure 2-30 Wires and wire
segments.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 115 Return to Table of Contents

104 Chapter 2: Fabrication and Devices

implement the transistors and connections in layout. (Most professional
layout designers, in fact, have no training in electrical engineering and
treat layout design strictly as an artwork design problem.) The next
example walks through the design of an inverter’s layout.

Example 2-5
Design of an
inverter layout

The inverter circuit is simple (+ is VDD and the triangle is VSS):

In thinking about how the layout will look, a few problems become
clear. First, we cannot directly connect the p-type and n-type transistors
with pdiff and ndiff wires. We must use vias to go from ndiff to metal
and then to pdiff. Second, the in signal is naturally in polysilicon, but
the out signal is naturally in metal, since we must use a metal strap to
connect the transistors’ source and drain. Third, we must use metal for
the power and ground connections. We probably want to place several
layouts side-by-side, so we will run the power/ground signals from left
to right across the layout.

n-type p-type

Figure 2-31 Schematic
symbols for transistors.

outin

+

Modern VLSI Design: IP-Based Design, Fourth Edition Page 116 Return to Table of Contents

2.7 Layout Design and Tools 105

Assuming that both transistors are minimum size, here is one layout for
the inverter:

We chose to put a metal-poly via at the inverter’s input so the signal
would be on the same layer at input and output; we might want to con-

metal 1
VDD

VSS

a’a

p-type
transistor

poly

n-type
transistor

tub tie

metal 1

metal 1

metal 1-pdiff via

p-tub

metal 1-poly via

n-tub

tub tie

metal 1-
ndiff via

Modern VLSI Design: IP-Based Design, Fourth Edition Page 117 Return to Table of Contents

106 Chapter 2: Fabrication and Devices

nect the output of one inverter directly to the input of another. We ran
power and ground along the top and bottom of the cell, respectively,
placing the p-type transistor in the top half and the n-type in the bottom
half. Larger layouts with many transistors follow this basic convention:
p-type on the top, n-type on the bottom. The large tub spacing required
between p-type and n-type devices makes it difficult to mix them more
imaginatively. We also included a tub tie for both the n-tub and p-tub.

2.7.2 Stick Diagrams

sticks as abstract layout We must design a complete layout at some point, but designing a com-
plex system directly in terms of rectangles can be overwhelming. We
need an abstraction between the traditional transistor schematic and the
full layout to help us organize the layout design. A stick diagram is a
cartoon of a chip layout. Figure 2-32 shows a stick diagram for an
inverter. The stick diagram represents the rectangles with lines which
represent wires and component symbols. While the stick diagram does
not represent all the details of a layout, it makes some relationships
much clearer and it is simpler to draw.

Layouts are constructed from rectangles, but stick diagrams are built
from cartoon symbols for components and wires. The symbols for wires
used on various layers are shown in Figure 2-33. You probably want to
draw your own stick diagrams in color: red for poly, green for n-diffu-
sion, yellow for p-diffusion, and shades of blue for metal are typical col-
ors. A few simple rules for constructing wires from straight-line
segments ensure that the stick diagram corresponds to a feasible layout.
First, wires cannot be drawn at arbitrary angles—only horizontal and

outin

VDD

VSS

Figure 2-32 A stick diagram
for an inverter.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 118 Return to Table of Contents

2.7 Layout Design and Tools 107

vertical wire segments are allowed. Second, two wire segments on the
same layer which cross are electrically connected. Vias to connect wires
that do not normally interact are drawn as black dots. Figure 2-34 shows
the stick figures for transistors—each type of transistor is represented as
poly and diffusion crossings, much as in the layout.

The complete rules which govern how wires on different layers interact
are shown in Table 2-8; they tell whether two wires on given layers are
allowed to cross and, if so, the electrical properties of the new construct.
This table is derived from the manufacturing design rules.

sticks vs. layout Stick diagrams are not exact models of layouts. Most of the differences
are caused by the use of zero-width lines and zero-area transistors in
stick diagrams. When you draw a layout using a stick diagram as a
guide, you may find it necessary to move transistors and vias and to
reroute wires. Area and aspect ratio are also difficult to estimate from

metal2

metal1

poly

ndiff

pdiff

metal3
Figure 2-33 Stick diagram
symbols for wires.

n-type transistor

p-type transistor

Figure 2-34 Symbols for
components in stick
diagrams.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 119 Return to Table of Contents

108 Chapter 2: Fabrication and Devices

stick diagrams. But a stick diagram can be drawn much faster than a
full-fledged layout and lets you evaluate a candidate design with rela-
tively little effort. Stick diagrams are especially important tools for lay-
outs built from large cells and for testing the connections between
cells—tangled wiring within and between cells quickly becomes appar-
ent when you sketch the stick diagram of a cell.

2.7.3 Hierarchical Stick Diagrams
cell hierarchies Drawing a large chip as a single stick diagram—covering a huge sheet

of butcher paper with arcane symbols—usually leads to a spaghetti lay-
out. We can make use of hierarchy to organize stick diagrams and lay-
outs just as with schematics. Components in a layout or hierarchical
stick diagram are traditionally called cells. In schematics, we either
invent a symbol for a type (e.g., logic gate symbols) or we use a box;
however, the shape of the component symbol has no physical signifi-
cance. Layouts and stick diagrams have physical extent. The simplest
representation for a cell is its bounding box: a rectangle which just
encloses all the elements of the cell. Bounding boxes are easy to gener-
ate; some layout tools require that cells be represented by rectangular
bounding boxes. However, in some cases, we use non-rectangular cell
boundaries to represent cells with very non-rectangular shapes.

Figure 2-35 shows a hierarchical stick diagram built from two copies of
an inverter cell. The top-level cell in the hierarchy, pair1, includes some
wires used to connect the cells together and to make external connec-
tions. Note that pair1’s wiring implies that the inv1 stick diagram has

Table 2-8 Rules for possible interactions between layers.

metal3 metal2 metal1 poly ndiff pdiff

short open open open open open metal3

short open open open open metal2

short open open open metal1

short n-type p-type poly

short illegal ndiff

short pdiff

Modern VLSI Design: IP-Based Design, Fourth Edition Page 120 Return to Table of Contents

2.7 Layout Design and Tools 109

been redesigned so that, unlike the stick diagram of Figure 2-32, its
input and output are both on the polysilicon layer. We sometimes want
to show sticks cells in their entirety, and sometimes as outlines—some
relationships between cells are apparent only when detail within a cell is
suppressed. Hierarchical design is particularly useful in layout and
sticks design because we can reuse sections of layout. Many circuits are
designed by repeating the same elements over and over. Repeating cells
saves work and makes it easier to correct mistakes in the design of cells.

Example 2-6
Sticks design of a
multiplexer

A more interesting example of a stick diagram which takes advantage of
hierarchy is a multiplexer (also known as a mux):

i1(inv) i2(inv)

out

VDD_left

in

VDD_right

pair1(cpair)

Figure 2-35 A
hierarchical stick
diagram.

a0

b0

a1

b1

a2

b2

o0

o1

o2

mux

select

Modern VLSI Design: IP-Based Design, Fourth Edition Page 121 Return to Table of Contents

110 Chapter 2: Fabrication and Devices

A two-input, n-bit multiplexer (in this case, n = 3) has two n-bit data
inputs and a select input, along with an n-bit data output. When select =
0, the data output’s value is equal to the a data input’s value; if select =
1, the data output’s value is equal to b.

The multiplexer can be designed as a one-bit slice which can be repli-
cated to create an n-bit system. The Boolean logic formula which deter-
mines the output value of one bit is oi = (ai select) + (bi select’); the
value of oi depends only on ai, bi, and select. We can rewrite this for-
mula in terms of two-input NAND gates: oi = NAND(NAND(ai,select),
NAND(bi,select’)). Since we know how to design the stick diagram for a
NAND gate, we can easily design the one-bit multiplexer out of NAND
cells.

Here is the transistor schematic for a two-input NAND gate:

+

ab

out

Modern VLSI Design: IP-Based Design, Fourth Edition Page 122 Return to Table of Contents

2.7 Layout Design and Tools 111

And here is a stick diagram for the two-input NAND:

We can use the NAND cell to build a one-bit multiplexer cell:

In this case we’ve drawn the hierarchical stick diagram using bounding
boxes; to design the complete layout we would have to look into the
cells. The connections designed between NAND cells were designed to
avoid creating unwanted shorts with wires inside the NANDs; to be
completely sure the intercell wires do not create problems, you must
expand the view of the bit slice to include the internals of the NAND
cells. However, making an initial wiring design using the NANDs as
boxes, remembering the details of their internals as you work, makes it
easier to see the relationships between wires that go between the cells.

outin

VDD

VSS

a

b

out

VDD

VSS

a

b

out

VDD

VSS

a

b

out

VDD

VSS

select'

VDD

VSS

ai
bi

oi

n1(NAND) n2(NAND) n3(NAND)

select

Modern VLSI Design: IP-Based Design, Fourth Edition Page 123 Return to Table of Contents

112 Chapter 2: Fabrication and Devices

We can build a three-bit multiplexer from our bit slice by stacking three
instances of the slice cell along with a few wires:

The select signal was designed to run vertically through the cell so ver-
tical connections could easily be made between stacked cells. The mul-
tiplexer inputs arrive at the left edge of the stack, while the
multiplexer’s outputs leave at the right edge.

Constructing this three-bit multiplexer required very little labor—given
a NAND cell, we were able to construct the bit slice with only a few
extra wires; and given the bit slice building the complete multiplexer
was almost trivial. Changing n, the width of the data word, is very sim-
ple. And last but not least, building large stick diagrams out of previ-
ously-designed smaller cells means the complete design is more likely
to be correct: cells we have used before are likely to have been previ-
ously checked, and repeating cells gives us fewer opportunities to make
simple mistakes while copying simple constructs.

m2(one-bit-mux)

select' VDD

VSS

ai
bi

oi

m1(one-bit-mux)

select' VDD

VSS

ai
bi

oi

m0(one-bit-mux)

select' VDD

VSS

ai
bi

oi

a2
b2

o2

select'

a1
b1

a0
b0

o1

o0

VDD

VSS

VDD

VSS

VDD

VSS

select

select

select

select

Modern VLSI Design: IP-Based Design, Fourth Edition Page 124 Return to Table of Contents

2.7 Layout Design and Tools 113

2.7.4 Layout Design and Analysis Tools
varieties of tools A variety of CAD tools help us design and verify layouts. The most

important tools are layout editors, design rule checkers, and circuit
extractors.

layout editors A layout editor is an interactive graphic program that lets you create and
delete layout elements. Most layout editors work on hierarchical lay-
outs, organizing the layout into cells which may include both primitive
layout elements and other cells. Some layout editing programs, such as
Magic, work on symbolic layouts, which include somewhat more detail
than do stick diagrams but are still more abstract than pure layouts. A
via, for example, may be represented as a single rectangle while you edit
the symbolic layout; when a final physical layout is requested, the sym-
bolic via is fleshed out into all the rectangles required for your process.
Symbolic layout has several advantages: the layout is easier to specify
because it is composed of fewer elements; the layout editor ensures that
the layouts for the symbolic elements are properly constructed; and the
same symbolic layout can be used to generate several variations, such as
n-tub, p-tub, and twin-tub versions of a symbolic design.

design rule checking A design rule checker (often called a DRC program), as the name
implies, looks for design rule violations in the layout. It checks for min-
imum spacing and minimum size and ensures that combinations of lay-
ers form legal components. The results of the DRC are usually shown as
highlights. on top of the layout. Some layout editors, including Magic,
provide on-line design rule checking.

circuit extraction Circuit extraction is an extension of design rule checking and uses
similar algorithms. A design rule checker must identify transistors and
vias to ensure proper checks—otherwise, it might highlight a transistor
as a poly-diffusion spacing error. A circuit extractor performs a com-
plete job of component and wire extraction. It produces a net list which
lists the transistors in the layout and the electrical nets which connect
their terminals. Vias do not appear in the net list—a via simply merges
two nets into a single larger net. The circuit extractor usually measures
parasitic resistance and capacitance on the wires and annotates the net
list with those parasitic values. The next example describes how we can
extract a circuit from a layout.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 125 Return to Table of Contents

114 Chapter 2: Fabrication and Devices

Example 2-7
Circuit extraction

We will extract the circuit by successively identifying, then deleting
components. After all component types have been extracted, only the
wires will remain.

Identifying components from the layout requires manipulating masks
singly and in combination. Grow and shrink are two important opera-
tions:

The grow operation increases the extent of each polygon in the mask by
a fixed amount in every direction; the shrink operation does the con-
verse. We will also need to form Boolean combinations of masks: the
NOT of a mask covers all the area not covered by the mask itself; the
AND of two masks covers only the area under both masks; and the OR
includes the area covered by either mask. Boolean and grow/shrink
operations generate new masks.

When we extract the circuit, we will assume the layout has no design-
rule errors; we can always DRC the layout before extraction. We can
identify all the transistors in the layout very easily: the n-type transis-
tors’ active areas are exactly the AND of the poly and the n-diff masks,
with analogous definition for the p-type transistors. After identifying the
transistors, we can remove them from the layout of the active-area
mask, which leaves the gate, source, and drain connections hanging. We
will mark and remember the locations of the transistors’ terminals for
the final step of extraction.

Identifying vias requires a little more effort. To identify poly-metal1
vias, we first grow the cut mask by 2 , then we form the AND of the
grown-cut, metal, and poly masks. The result is one 4 -by-4 square for
each poly-metal1 via. After identifying all the vias, we remove them
while marking their place. We can identify tub ties, but we won’t need
them for the later stages of analysis, since they don’t make new electri-
cal connections.

grow

Modern VLSI Design: IP-Based Design, Fourth Edition Page 126 Return to Table of Contents

2.7 Layout Design and Tools 115

At this point, only the wires are left in the layout. A polygon on one
layer forms an electrically connected region. However, we’re not quite
done, because connections may have been made by vias or by wires
through transistors. To take account of all connections, we must first
identify where each wire touches a connection point to a via or transis-
tor. We then form the transitive closure of all the connection points: if
one wire connects points A and B, and another wire connects B and C,
then A, B, and C are all electrically connected.

Once we have traced through all the connections, we have a basic circuit
description. We have not yet taken parasitics into account. To do so, we
must count parasitics for each wire, via, and transistor, then mark each
electrical node appropriately. However, for simple functional analysis,
extracting parasitics may not be necessary. Here is a fragment of an
extracted circuit written in Magic’s ext format:

The exact format of this file isn’t important, but a few details should
help make this information less forbidding. A node record defines an
electrical node in the circuit—explicit declaration of the nodes simpli-
fies the program which reads the file. The record gives total resistance
and capacitance for the node, an x, y position which can be used to iden-
tify the node in the layout, and area and perimeter information for resis-
tance extraction. A cap record gives two nodes and the capacitance
between them. A fet record describes the type of transistor, the corners
of its channel, and the electrical nodes to which the source, drain, and
gate are connected.

The simplest extraction algorithm works on a layout without cells—this
is often called flat circuit extraction because the component hierarchy is
flattened to a single level before extraction. However, a flattened layout
is very large: a layout built of one 100-rectangle cell repeated 100 times

node “6_38_29#” 122 55 19 -14 green 0 0 0 0 54 34 0 0 92 62 0 0 0 0 0 0
node “6_50_15#” 120 10 25 -7 green 0 0 0 0 12 16 0 0 0 0 0 0 0 0 0 0
node “6_50_7#” 521 92 25 -3 green 0 0 60 44 30 22 0 0 80 64 0 0 0 0 0 0
node “6_36_19#” 825 12 18 -9 p 110 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0
node “6_36_11#” 690 9 18 -5 p 92 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0
node “6_40_40#” 559 83 20 20 brown 0 0 80 54 0 0 0 0 68 58 0 0 0 0 0 0
cap “6_36_19#” “6_50_7#” 1
fet nfet 25 -9 26 -8 12 16 “GND!” “6_36_19#” 4 0 “6_38_29#” 6 0 “6_50_15#” 6 0
fet nfet 25 -5 26 -4 12 16 “GND!” “6_36_11#” 4 0 “6_50_15#” 6 0 “6_50_7#” 6 0
fet pfet 39 17 40 18 12 16 “Vdd!” “6_36_19#” 4 0 “6_50_7#” 6 0 “6_40_40#” 6 0
fet pfet 25 17 26 18 12 16 “Vdd!” “6_36_11#” 4 0 “6_50_7#” 6 0 “6_40_40#” 6 0

Modern VLSI Design: IP-Based Design, Fourth Edition Page 127 Return to Table of Contents

116 Chapter 2: Fabrication and Devices

will have 100 rectangles plus 100 (small) cell records; the same layout
flattened to a single cell will have 10,000 rectangles. The largest chips
today need over one billion rectangles to describe their mask sets. That
added size claims penalties in disk storage, main memory, and CPU
time.

hierarchical circuit
extraction

Hierarchical circuit extraction extracts circuits directly on the hierar-
chical layout description. Dealing with cell hierarchies requires more
sophisticated algorithms which are beyond our scope. Hierarchical
extraction may also require design restrictions, such as eliminating
overlaps between cells. However, one problem which must be solved
illustrates the kinds of problems introduced by component hierarchies.

Consider the example of Figure 2-36. Each cell has its own net list. The
net lists of leaf cells make sense on their own, but A’s net list is written
in terms of its components. We often want to generate a flattened net
list—flattening the net list after extraction makes sense because the net
list is much smaller than the layout. To create the flattened net list, we
must make correspondences between nets in the cells and nets in the
top-level component. Once again, we use transitive closure: if net o in
cell B is connected to n2 in A, which in turn is connected to net a in C,
then B.o, A.n2, and C.a are all connected. Flattening algorithms can be
very annoying if they choose the wrong names for combined elements.
In this case, n2, the top-level component’s name for the net, is probably
the name most recognizable to the designer.

i o
a

b
o

n1
n2

i

x

A

B C

B C

Figure 2-36 Tracing nets for
hierarchical circuit extraction.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 128 Return to Table of Contents

2.7 Layout Design and Tools 117

verification from extracted
circuits

A circuit extracted from layout has two important uses. First, the
extracted circuit can be simulated and the results compared to the speci-
fied circuit design. Serious layout errors, such as a missing transistor or
wire, should show up as a difference in the specified and extracted cir-
cuits. Second, extracted parasitics can be used to calculate actual delays.
Circuit performance may have been estimated using standard parasitic
values or parasitics may have been ignored entirely, but long wires can
slow down logic gates. Comparing the actual performance of the
extracted layout to the predicted performance tells you whether the logic
and circuits need to be modified and, if so, where critical delay prob-
lems exist.

2.7.5 Automatic Layout
Hierarchical stick diagrams are a good way to design large custom cells.
But you will probably design large cells from scratch infrequently. You
are much more likely to use layouts generated by one of two automated
methods: cell generators (also known macrocell generators), which
create optimized layouts for specialized functions such as ALUs; or
standard cell placement and routing, which use algorithms to build
layouts from gate-level cells.

cell generators A cell generator is a parameterized layout—it is a program written by a
person to generate the layout for a particular cell or a families of cells.
The generator program is usually written textually, though some graphi-
cal layout editors provide commands to create parameterized layouts. If
the generator creates only one layout, it may as well have been created
with a graphical layout editor. But designers often want to create varia-
tions on a basic cell: changing the sizes of transistors, choosing the
number of busses which run through a cell, perhaps adding simple logic
functions. Specialized functions like ALUs, register files, and RAMs
often require careful layout and circuit design to operate at high speed.
Generator languages let skilled designers create parameterized layouts
for such cells which can be used by chip designers whose expertise is in
system design, not circuit and layout design.

placement and routing Place-and-route programs take a very different approach to layout syn-
thesis: they break the problem into placing components on the plane,
then routing wires to make the necessary connections. Placement and
routing algorithms may not be able to match the quality of hand-
designed layouts for some specialized functions, but they often do better
than people on large random logic blocks because they have greater
patience to search through large, unstructured problems to find good
solutions.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 129 Return to Table of Contents

118 Chapter 2: Fabrication and Devices

The most common placement-and-routing systems use standard cells,
which are logic gates, latches, flip-flops, or occasionally slightly larger
functions like full adders. Figure 2-37 shows the architecture of a stan-
dard cell layout: the component cells, which are of standard height but
of varying width, are arranged in rows; wires are run in routing chan-
nels between the cell rows, along the sides, and occasionally through
feedthroughs (spaces left open for wires in the component cells). The
layout is designed in two stages: components are placed using approxi-
mations to estimate the amount of wire required to make the connec-
tions; then the wires are routed. Figure 2-38 shows a small standard cell
layout generated by the wolfe program [San84, Sec85].

cells

routing area

ro
ut

in
g

ar
ea

Figure 2-37
Architecture of
a standard cell
layout.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 130 Return to Table of Contents

2.8 References 119

2.8 References

Dennard et al. [Den74] first explained why shrinking IC feature sizes
led to higher performance as well as smaller chips. That observation led
to the development of scalable design rules, which were first introduced
by Mead and Conway [Mea80]. The specifications for the MOSIS
SCMOS process were derived from MOSIS data. Complete documenta-
tion on the SCMOS rules is available on the World Wide Web at http://
www.mosis.edu. The MOSIS SCMOS rules do occasionally change, so
it is always best to consult MOSIS for the latest design rules before
starting a design. Cheng et al. [Che00] survey modeling techniques for
interconnect.

Figure 2-38 An
example of standard
cell layout.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 131 Return to Table of Contents

120 Chapter 2: Fabrication and Devices

2.9 Problems

Use process parameters from Table 2-7 as required.

Q2-1. Draw the cross section of:

a) A metal 1-metal 2 via.
b) A poly-n-diffusion via.
c) A p-type transistor.

Q2-2. What W/L is required to make the saturation drain current of a p-
type transistor approximately equal to the saturation drain current of a
minimum-width n-type transistor?

Q2-3. Plot Id vs. Vds through a minimum-size n-type transistor for a
range of Vds from 0V through the power supply voltage of 1.2 V. Plot
for three values of Vgs : 0.6 V, 0.9 V, 1.2 V.

Q2-4. Plot Id vs. Vds through a minimum-size p-type transistor for a
range of Vds from 0V through the power supply voltage of 1.2 V. Plot
for three values of Vgs : 0.6 V, 0.9 V, 1.2 V.

Q2-5. Redraw Figure 2-11 to show how tub ties modify the parasitic cir-
cuit in a way that reduces the occurrence of latch-up.

Q2-6. Replot the drain current curves of Q2-3 to include a channel
length modulation factor = 0.05.

Q2-7. Give the reasoning behind each of these design rules:

a) Overhang of poly at transistor gate.
b) Metal 1 surround of via cut.
c) Tub overhang.
d) Poly-diffusion spacing.
e) Via cut-via cut spacing.

Q2-8. Predict how metal 1 and metal 2 resistance would change for a 90
nm (= 45 nm) process using:

a) Ideal scaling.
b) Constant dimension scaling.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 132 Return to Table of Contents

2.9 Problems 121

Q2-9. Draw layouts for:

a) A metal 1-n-diffusion via.
b) A minimum width, 25 poly wire.
c) A 4/3 n-type transistor.
d) A 6/2 p-type transistor.

Q2-10. Compute the parasitic resistance of:

a) A minimum-width 20 n-diffusion wire.
b) A minimum-width 20 p-diffusion wire.
c) A minimum-width 100 poly wire.
d) A minimum-width 1000 metal 1 wire.

Q2-11. Compute the parasitic capacitance of:

a) A minimum-width 20 n-diffusion wire.
b) A minimum-width 20 p-diffusion wire.
c) A minimum-width 100 poly wire.
d) A minimum-width 1000 metal 1 wire.

Q2-12. For each of these failure mechanisms, identify whether the
mechanism pertains to a transistor or a wire:

a) TDDB.
b) Hot carriers.
c) NTBI.
d) Electromigration.
e) Stress migration.

Q2-13. Draw a stick diagram for:

a) An n-type transistor.
b) A p-type transistor.
c) A metal 1 wire connected to a poly wire.
d) A metal 1 wire connected to an n-diffusion wire.

Q2-14. How should tub ties be treated during circuit extraction?

Q2-15. Write a netlist for the two-input NAND gate of Example 2-6.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 133 Return to Table of Contents

Modern VLSI Design: IP-Based Design, Fourth Edition Page 134 Return to Table of Contents

3

Logic Gates

Highlights:

Combinational logic.

Static logic gates.

Delay and power.

Alternate gate structures: switch, domino, etc.

Wire delay models.

Design-for-yield.

Gates as IP.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 135 Return to Table of Contents

124 Chapter 3: Logic Gates

+

a b

c

out

a

b

c

An AOI-21 gate (Figure 3-7).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 136 Return to Table of Contents

3.1 Introduction 125

3.1 Introduction

This chapter concentrates on the design of combinational logic gates.
The knowledge gained in the last chapter on fabrication is important for
combinational logic design—technology-dependent parameters for min-
imum size, spacing, and parasitic values largely determine how big a
gate circuit must be and how fast it can run.

We will start by reviewing some important facts about combinational
logic functions. The first family of logic gate circuits we will consider in
Section 3.3 are static, fully complementary gates, which are the main-
stay of CMOS design. We will analyze the properties of these gates in
detail: speed, power consumption, layout design, testability. Section 3.4
studies switch logic. Section 3.5 considers other circuits that can be
used to build logic gates. Section 3.6 considers power consumption in
gates. We will also study the delays through wires: resistive interconnect
in Section 3.7 and inductive interconnect in Section 3.8. Section 3.9
studies design-for-yield. Section 3.10 looks at IP-based design at the
gate level.

3.2 Combinational Logic Functions

Boolean algebra and
combinational logic

We use Boolean algebra to represent the logical functions of digital cir-
cuits. Boolean algebra represents combinational (not combinatorial)
logic functions. The Boolean functions describe combinations of inputs;
we do not use functions with existential () or universal ()
quantification.

It is important to distinguish between combinational logic expressions
and logic gate networks. A combinational logic expression is a mathe-
matical formula which is to be interpreted using the laws of Boolean
algebra: given the expression a + b, for example, we can compute its
truth value for any given values of a and b; we can also evaluate rela-
tionships such as a + b = c. A logic gate computes a specific Boolean
function, such as (a + b)’.

why we optimize logic The goal of logic design or optimization is to find a network of logic
gates that together compute the combinational logic function we want.
Logic optimization is interesting and difficult for several reasons:

x f x x g(x)

3.2 Combinational Logic Functions

Modern VLSI Design: IP-Based Design, Fourth Edition Page 137 Return to Table of Contents

126 Chapter 3: Logic Gates

• We may not have a logic gate for every possible function, or even for
every function of n inputs. Lookup tables can represent any function
of n inputs, but multiplexer-based logic elements are much more
stylized. It therefore may be a challenge to rewrite our combinational
logic expression so that each term represents a gate.

• Not all gate networks that compute a given function are alike—net-
works may differ greatly in their area and speed. For example, we
may want to take advantage of the specialized adder circuitry in a
logic element. We want to find a network that satisfies our area and
speed requirements, which may require drastic restructuring of our
original logic expression.

logic and gates Figure 3-1 illustrates the relationship between logic expressions and
gate networks. The two expressions are logically equivalent: (a + b)’c =
a’b’c. We have shown a logic gate network for each expression which
directly implements each function—each term in the expression
becomes a gate in the network. The two logic networks have very differ-
ent structures. Which is best depends on the requirements—the relative
importance of area and delay—and the characteristics of the technology.
But we must work with both logic expressions and gate networks to find
the best implementation of a function, keeping in mind:

• combinational logic expressions are the specification;
• logic gate networks are the implementation;
• area, delay, and power are the costs.

a

b

c

a’b’c

a

b

c

(a+b)’c

Figure 3-1 Two logic
gate implementations
of a Boolean function.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 138 Return to Table of Contents

3.2 Combinational Logic Functions 127

notation We will use fairly standard notation for logic expressions: if a and b are
variables, then a’ (or) is the complement of a, (or ab) is the
AND of the variables, and a + b is the OR of the variables. In addition,
for the NAND function (ab)’ we will use the | symbol1, for the NOR
function (a + b)’ we will use a NOR b, and for exclusive-or
() we will use the symbol. (Students of alge-
bra know that XOR and AND form a ring.) We use the term literal for
either the true form (a) or complemented form (a’) of a variable. Under-
standing the relationship between logical expressions and gates lets us
study problems in the model that is simplest for that problem, then
transfer the results. Two problems that are of importance to logic design
but easiest to understand in terms of logical expressions are complete-
ness and irredundancy.

completeness A set of logical functions is complete if we can generate every possible
Boolean expression using that set of functions—that is, if for every pos-
sible function built from arbitrary combinations of +, , and ’, an equiva-
lent formula exists written in terms of the functions we are trying to test.
We generally test whether a set of functions is complete by inductively
testing whether those functions can be used to generate all logic formu-
las. It is easy to show that the NAND function is complete, starting with
the most basic formulas:

• 1: a|(a|a) = a|a’= 1.
• 0: {a|(a|a)}|{a|(a|a)} = 1|1 = 0.
• a’: a|a = a’.
• ab: (a|b)|(a|b) = ab.
• a + b:(a|a)|(b|b) = a’|b’ = a + b.

From these basic formulas we can generate all the formulas. So the set
of functions {|} can be used to generate any logic function. Similarly,
any formula can be written solely in terms of NORs.

The combination of AND and OR functions, however, is not complete.
That is fairly easy to show: there is no way to generate either 1 or 0
directly from any combination of AND and OR. If NOT is added to the
set, then we can once again generate all the formulas: a + a’ = 1, etc. In
fact, both {’, } and {’,+} are complete sets.

1. The Scheffer stroke is a dot with a negation line through it. C
programmers should note that this character is used as OR in the
C language.

a a b

a XOR b ab' a'b+=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 139 Return to Table of Contents

128 Chapter 3: Logic Gates

Any circuit technology we choose to implement our logic functions
must be able to implement a complete set of functions. Static, comple-
mentary circuits naturally implement NAND or NOR functions, but
some other circuit families do not implement a complete set of func-
tions. Incomplete logic families place extra burdens on the logic
designer to ensure that the logic function is specified in the correct form.

redundancy
and minimality

A logic expression is irredundant if no literal can be removed from the
expression without changing its truth value; otherwise, the expression is
called redundant. For example, ab + ab’ is redundant, because it can be
reduced to a. An irredundant formula and its associated logic network
have some important properties: the formula is smaller than a logically
equivalent redundant formula; and the logic network is guaranteed to be
testable for certain kinds of manufacturing defects. However, irredun-
dancy is not a panacea. Irredundancy is not the same as minimal-
ity—there are many irredundant forms of an expression, some of which
may be smaller than others, so finding one irredundant expression may
not guarantee you will get the smallest design. Irredundancy often intro-
duces added delay, which may be difficult to remove without making
the logic network redundant. However, simplifying logic expressions
before designing the gate network is important for both area and delay.
Some obvious simplifications can be done by hand; CAD tools can per-
form more difficult simplifications on larger expressions.

3.3 Static Complementary Gates

This section concentrates on one family of logic gate circuits: the static
complementary gate. These gates are static because they do not depend
on stored charge for their operation. They are complementary because
they are built from complementary (dual) networks of p-type and n-type
transistors. The important characteristics of a logic gate circuit are its
layout area, delay, and power consumption. We will concentrate our
analysis on the inverter because it is the simplest gate to analyze and its
analysis extends straightforwardly to more complex gates.

3.3.1 Gate Structures
pullups and pulldowns A static complementary gate is divided into a pullup network made of

p-type transistors and a pulldown network made of n-type transistors.
The gate’s output can be connected to VDD by the pullup network or

Modern VLSI Design: IP-Based Design, Fourth Edition Page 140 Return to Table of Contents

3.3 Static Complementary Gates 129

VSS by the pulldown network. The two networks are complementary to
ensure that the output is always connected to exactly one of the two
power supply terminals at any time: connecting the output to neither
would cause an indeterminate logic value at the output, while connect-
ing it to both would cause not only an indeterminate output value, but
also a low-resistance path from VDD to VSS.

inverter The structures of an inverter is shown in Figure 3-2. The + stands for
VDD and the triangle stands for VSS. In this case, a single transistor is
sufficient in both the pullup and pulldown networks, since the inverter
has only one input.

NAND gate Figure 3-3 shows the structure of a two-input NAND gate. The pullup
network is a parallel combination of p-type transistors while the pull-
down network is a series combination of n-type transistors. This ensures
that the output is 0 only when both inputs are 1.

NOR gate Figure 3-4 shows the NOR gate. In this case, the pullup network is a
series connection and the pulldown transistors are in parallel. Inspection
shows that the inverter, NAND gate, and NOR gate all satisfy the com-
plementarity requirement: for any combination of input values, the out-
put value is connected to exactly one of VDD or VSS.

other gate functions Gates can be designed for functions other than NAND and NOR by
designing the proper pullup and pulldown networks. Networks that are
series-parallel combinations of transistors can be designed directly from
the logic expression the gate is to implement. In the pulldown network,
series-connected transistors or subnetworks implement AND functions

a

+

out

Figure 3-2 Transistor
schematic of a static
complementary inverter.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 141 Return to Table of Contents

130 Chapter 3: Logic Gates

in the expression and parallel transistors or subnetworks implement OR
functions. The converse is true in the pullup network because p-type
transistors are off when their gates are high. Consider the design of a
two-input NAND gate as an example. To design the pulldown network,

+

ab

out

Figure 3-3 A static
complementary NAND gate.

+

b

a

out

Figure 3-4 A static
complementary NOR gate.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 142 Return to Table of Contents

3.3 Static Complementary Gates 131

write the gate’s logic expression to have negation at the outermost level:
(ab)’ in the case of the NAND. This expression specifies a series-con-
nected pair of n-type transistors. To design the pullup network, rewrite
the expression to have the inversion pushed down to the innermost lit-
erals: a’ + b’ for the NAND. This expression specifies a parallel pair
of p-type transistors, completing the NAND gate design of Figure 3-3.
Figure 3-5 shows the topology of a gate which computes [a(b+c)]’: the
pulldown network is given by the expression, while the rewritten
expression a’ + (b’c’) determines the pullup network.

duality You can also construct the pullup network of an arbitrary logic gate
from its pulldown network, or vice versa, because they are duals. Fig-
ure 3-6 illustrates the dual construction process using the pulldown
network of Figure 3-5. First, add a dummy component between the
output and the VSS (or VDD) terminals. Assign a node in the dual net-
work for each region, including the area not enclosed by wires, in the
non-dual graph. Finally, for each component in the non-dual network,
draw a dual component THAT is connected to the nodes in the
regions separated by the non-dual component. The dual component of
an n-type transistor is a p-type, and the dual of the dummy is the

+

a

b

c

out

c

a

b

Figure 3-5 A static
complementary gate that
computes [a(b+c)]’.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 143 Return to Table of Contents

132 Chapter 3: Logic Gates

dummy. You can check your work by noting that the dual of the dual
of a network is the original network.

AOI and OAI gates Common forms of complex logic gates are and-or-invert (AOI) and or-
and-invert (OAI) gates, both of which implement sum-of-products/
product-of-sums expressions. The function computed by an AOI gate is
best illustrated by its logic symbol, shown in Figure 3-7: groups of
inputs are ANDed together, then all products are ORed together and
inverted for output. An AOI-21 gate, like that shown in the figure, has
two inputs to its first product and one input (effectively eliminating the
AND gate) to its second product; an AOI-121 gate would have two one-
input products and one two-input product.

It is possible to construct large libraries of complex gates with different
input combinations. An OAI gate computes an expression in product-of-
sums form: it generates sums in the first stage which are then ANDed
together and inverted. An AOI or OAI function can compute a sum-of-
products or product-of-sums expression faster and using less area than
an equivalent network of NAND and NOR gates. Human designers
rarely make extensive use of AOI and OAI gates, however, because peo-
ple have difficulty juggling a large number of gate types in their heads.
Logic optimization programs, however, can make very efficient use of
AOI, OAI, and other complex gates to produce very efficient layouts.

dummy

a

b c

a

b c

Figure 3-6 Constructing the
pullup network from the
pulldown network.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 144 Return to Table of Contents

3.3 Static Complementary Gates 133

3.3.2 Basic Gate Layouts
inverter layout Figure 3-8 shows a layout of an inverter. CMOS technology allows for

relatively few major variations of the basic cell organization: VDD and
VSS lines run in metal along the cell, with n-type transistors along the
VSS rail and p-types along the VDD rail. In this case, the pullup and pull-
down transistors are the same size; we will see that this is not ideal for
optimizing delay.

NAND gate layout Figure 3-9 shows a layout of a static NAND gate. Transistors in a gate
can be densely packed—the NAND gate is not much larger than the
inverter. The input and output signals of the NAND are presented at the
cell’s edge on different layers: the inputs are in poly while the output is
in metal 1. If we want to cascade two cells, with the output of one feed-
ing an input of another, we will have to add a via to switch layers; we
will also have to add the space between the cells required for the via and
make sure that the gaps in the VDD and VSS caused by the gap are
bridged. The p-type transistors in the NAND gate were made wide to

+

a b

c

out

a

b

c

a b c

logic symbol

circuit diagram

Figure 3-7 An and-or-invert-
21 (AOI-21) gate.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 145 Return to Table of Contents

134 Chapter 3: Logic Gates

compensate for their lower current capability. The n-type transistors
were also made wider because they are connected in series. We routed
both input wires of the NAND to the transistor gates entirely in poly.

metal 1

VDD

VSS

a’a

p-type
transistor

poly

n-type
transistor

tub tie

metal 1

metal 1

metal 1-pdiff via

p-tub

metal 1-poly via

n-tub

Figure 3-8
A layout of an
inverter.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 146 Return to Table of Contents

3.3 Static Complementary Gates 135

NOR gate layout Figure 3-10 shows a layout of a static NOR gate. We made the pullups
wide because they are connected in series. We used minimum-sized
pulldowns since they are connected in parallel. We used a metal 1
jumper to connect one of the inputs to all of the proper transistors.

Figure 3-9 A layout of a NAND gate.

VDD

VSS

p-type
transistor

metal1-p diff via
metal 1

poly
metal 1

n-type
transistor

tub tie

metal 1
a

b

a NAND b

tub tie

n-tub

p-tub

Modern VLSI Design: IP-Based Design, Fourth Edition Page 147 Return to Table of Contents

136 Chapter 3: Logic Gates

splitting wide transistors If you are truly concerned with cell size, many variations are possible.
Figure 3-11 shows a very wide transistor. A very wide transistor can cre-
ate too much white space in the layout, especially if the nearby transis-

Figure 3-10 A layout of a NOR gate.

p-type
transistor

metal 1

n-type
transistor

poly

a NOR b
a

VDD

VSS

tub tie

metal 1

b

Modern VLSI Design: IP-Based Design, Fourth Edition Page 148 Return to Table of Contents

3.3 Static Complementary Gates 137

tors are smaller. We have split this transistor into two pieces, each half
as wide, and turned one piece 180 degrees, so that the outer two sections
of diffusions are used as drains and the inner sections become sources.

3.3.3 Logic Levels
voltages and logic levels Since we must use voltages to represent logic values, we must define the

relationship between the two. As Figure 3-12 shows, a range of voltages
near VDD corresponds to logic 1 and a band around VSS corresponds to
logic 0. The range in between is X, the unknown value. Although sig-

Figure 3-11 A wide transistor split into two sections.

current current

sourcedrain drain

Modern VLSI Design: IP-Based Design, Fourth Edition Page 149 Return to Table of Contents

138 Chapter 3: Logic Gates

nals must swing through the X region while the chip is operating, no
node should ever achieve X as its final value.

ranges of legal voltages We want to calculate the upper boundary of the logic 0 region and the
lower boundary of the logic 1 region. In fact, the situation is slightly
more complex, as shown in Figure 3-13, because we must consider the
logic levels produced at outputs and required at inputs. Given our logic
gate design and process parameters, we can guarantee that the maxi-
mum voltage produced for a logic 0 will be some value VOL and that the
minimum voltage produced for a logic 1 will be VOH. These same con-
straints place limitations on the input voltages which will be interpreted
as a logic 0 (VIL) and logic 1 (VIH). If the gates are to work together, we
must ensure that VOL < VIL and VOH > VIH.

The output voltages produced by a static, complementary gate are VDD
and VSS, so we know that the output voltages will be acceptable. (That
isn’t true of all gate circuits; the pseudo-nMOS circuit of Section 3.5.1
produces a logic 0 level well above VSS.) We need to compute the val-
ues of VIL and VIH and to do the computation, we need to define those
values. A standard definition is based on the transfer characteristic of
the inverter—its output voltage as a function of its input voltage, assum-

VDD

VSS

VL

logic 1

unknown (X)

logic 0

VH

Figure 3-12 How voltages
correspond to logic levels.

VOH

VOL

VIH

VIL

Figure 3-13 Logic levels on
cascaded gates.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 150 Return to Table of Contents

3.3 Static Complementary Gates 139

ing that the input voltage and all internal voltages and currents are at
equilibrium. Figure 3-14 shows the circuit we will use to measure an
inverter’s transfer characteristic. We the input voltage through its allow-
able range and measure the voltage at the output. Alternatively, we can
solve the circuit’s voltage and current equations to find Vout as a func-
tion of Vin: we equate the drain currents of the two transistors and set
their gate voltages to be complements of each other (since the n-type’s
gate voltage is measured relative to VSS and the p-type’s to VDD).

+

Vin
t

Vout

Vin

t

Vout

Figure 3-14 The
inverter circuit used
to measure transfer
characteristics.

Figure 3-15
Voltage transfer
curve of an inverter.

0 0.2 0.4 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

V
ou

t

tangent slope = -1

VIL VIH

Modern VLSI Design: IP-Based Design, Fourth Edition Page 151 Return to Table of Contents

140 Chapter 3: Logic Gates

transfer curve Figure 3-15 shows a transfer characteristic (simulated using Spice) of an
inverter with minimum-size pulldown and pullup transistors. We define
VIL and VIH as the points at which the curve’s tangent has a slope of -1.
Between these two points, the inverter has high gain—a small change in
the input voltage causes a large change in the output voltage. Outside
that range, the inverter has a gain less than 1, so that even a large change
at the input causes only a small change at the output, attenuating the
noise at the gate’s input.

noise margin The difference between VOL and VIL (or between VOH and VIH) is called
the noise margin—the size of the safety zone that prevents production
of an illegal X output value. Since real circuits function under less-than-
ideal conditions, adequate noise margins are essential for ensuring that
the chip operates reliably. Noise may be introduced by a number of fac-
tors: it may be introduced by off-chip connections; it may be generated
by capacitive coupling to other electrical nodes; or it may come from
variations in the power supply voltage.

3.3.4 Delay and Transition Time
Delay is one of the most important properties of a logic gate—the
majority of chip designs are limited more by speed than by area. An
analysis of logic gate delay not only tells us how to compute the speed
of a gate, it also points to parasitics that must be controlled during lay-
out design to minimize delay. Later, in Section 3.3.7, we will apply what
we have learned from delay analysis to the design of logic gate layouts.

+

in
RL

CL

t

Figure 3-16 The inverter
circuit used for delay
analysis.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 152 Return to Table of Contents

3.3 Static Complementary Gates 141

delay metrics There are two interesting but different measures of combinational logic
effort:

• Delay is generally used to mean the time it takes for a gate’s output
to arrive at 50% of its final value.

• Transition time is generally used to mean the time it takes for a gate
to arrive at 10% (for a logic 0) or 90% (for a logic 1) of its final
value; both fall time tf and rise time tr are transition times.

inverters as delay models We will analyze delay and transition time on the simple inverter circuit
shown in Figure 3-16; our analysis easily extends to more complex
gates as well as more complex loads. We will assume that the inverter’s
input changes voltage instantaneously; since the input signal to a logic
gate is always supplied by another gate, that assumption is optimistic,
but it simplifies analysis without completely misleading us.

load capacitance is
important

It is important to recognize that we are analyzing not just the gate delay
but delay of the combination of the gate and the load it drives. CMOS
gates have low enough gain to be quite sensitive to their load, which
makes it necessary to take the load into account in even the simplest
delay analysis. The load on the inverter is a single resistor-capacitor
(RC) circuit; the resistance and capacitance come from the logic gate
connected to the inverter’s output and the wire connecting the two. We
will see in Section 4.4.1 that other models of the wire’s load are possi-
ble. There are two cases to analyze: the output voltage Vout is pulled
down (due to a logic 1 input to the inverter); and Vout is pulled up. Once
we have analyzed the 1 0 output case, modifying the result for the 0
1 case is easy.

model for inverter delay While the circuit of Figure 3-16 has only a few components, a detailed
analysis of it is difficult due to the complexity of the transistor’s behav-
ior. We need to further simplify the circuit. A detailed circuit analysis
would require us to consider the effects of both pullup and pulldown
transistors. However, our assumption that the inverter’s input changes
instantaneously between the lowest and highest possible values lets us
assume that one of the transistors turns off instantaneously. Thus, when
Vout is pulled low, the p-type transistor is off and out of the circuit; when
Vout is pulled high, the n-type transistor can be ignored.

 model There are several different models that people use to compute delay and
transition time. The first is the model, which was introduced by Mead
and Conway [Mea80] as a simple model for basic analysis of digital cir-
cuits. This model reduces the delay of the gate to an RC time constant
which is given the name . As the sizes of the transistors in the gate are
increased, the delay scales as well.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 153 Return to Table of Contents

142 Chapter 3: Logic Gates

At the heart of the model is the assumption that the pullup or pulldown
transistor can be modeled as a resistor. The transistor does not obey
Ohm’s law as it drives the gate’s output, of course. As Figure 3-17
shows, the pulldown spends the first part of the 1 0 transition in the
saturation region, then moves into the linear region. But the resistive
model will give sufficiently accurate results to both estimate gate delay
and to understand the sources of delay in a logic circuit.

capacitive load We also need to know the capacitive load that the inverter must drive.
Gate-to-substrate capacitance is a large component of load capacitance,
but as we move to smaller geometries, other capacitances have become
important as well. We saw some of these capacitances in Chapter 2:
gate-to-source and gate-to-drain, for example, as well as the capacitance
of the wires connecting the transistors. The most effective way to deter-
mine the load capacitance is to use Spice to sum together all the capaci-
tances that it models. (In our version of Spice, the statement .option
captab post prints the total capacitance on all nodes.)

I
D

t

saturation

linear

Figure 3-17 Current through
the pulldown during a 1 0
transition.

2Cl

Figure 3-18 Test circuit for
measuring load
capacitance.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 154 Return to Table of Contents

3.3 Static Complementary Gates 143

unit load capacitance We define a unit load capacitance Cl as 1/2 of the load capacitance of a
minimum-size inverter driving another minimum-size inverter. As
shown in Figure 3-18, we can give Spice a test circuit that includes two
minimum-size inverters and ask it to compute the capacitance of the
node that connects the output of the first to the input of the second. The
capacitance of that node is equal to 2Cl. This technique captures more
than just the parallel plate gate capacitance—it includes all the capaci-
tances of the load transistors as well as the capacitances of the driving
transistors that affect that node.

Table 3-1 shows the unit load capacitance of an n-type or p-type transis-
tor in our 180 nm process. Note that this value is per transistor, not per
unit area. If we want to estimate the load capacitance CL presented by
another gate with different function and transistor sizes, we scale each
transistor in the gate appropriately based on the transistor sizes:

. (EQ 3-1)

For the most accurate estimate of load capacitance, we should use Spice
to analyze the full circuit.

effective resistance How do we choose a resistor value to represent the transistor over its
entire operating range? In older technologies, we can model the transis-
tor’s effective resistance by taking the average voltage/current at two
points [Hod83]: the inverter’s maximum output voltage, VDS = VDD -
VSS, where the transistor is in the saturation region; and the middle of
the linear region, VDS = (VDD-VSS-Vt)/2.

However, as we move to nanometer technologies, simple models
become less and less accurate. A more accurate approach is to simply fit
the resistance to the delay data obtained from Spice simulation. We must
choose the delay metric to be used: delay or transition time. We then
solve for the resistance that makes the RC model give the same timing
as the Spice simulation’s delay at the required voltage Vf starting
from an initial voltage V0:

capacitance per
transistor

Cl 0.89 fF

Table 3-1 Unit load
capacitance of an n-type
or p-type transistor.

CL
W
L

i
Cl

1 i n

=

ts

Modern VLSI Design: IP-Based Design, Fourth Edition Page 155 Return to Table of Contents

144 Chapter 3: Logic Gates

. (EQ 3-2)

Table 3-2 shows the effective resistance values for transition time delay
for our 180 nm process. The resistance values for minimum-size n-type
and p-type transistors are shown in Table 3-2. The effective resistance of
a transistor is scaled by L/W:

. (EQ 3-3)

The p-type transistor has about 4.5 times the effective resistance of an n-
type transistor for this set of process parameters. If we used the 50%
point delay as our metric, then we would need to fit the curves to differ-
ent points, giving us different values for R.

delay calculation Given these resistance and capacitance values, we can then analyze the
delay and transition time of the gate.

 model calculation We can now develop the model that helps us compute delay and transi-
tion time. Figure 3-19 shows the circuit model we use: Rn is the transis-
tor’s effective resistance while RL and CL are the load. The capacitor has
an initial voltage of VDD. The transistor discharges the load capacitor
from VDD to VSS; the output voltage as a function of time is

type VDD-VSS = 1.2V

Rn 6.47 k

Rp 29.6 k

Table 3-2 Effective
resistance values (transition
time) for minimum-size
transistors in our 180 nm
process.

Reff
ts

C
Vf
V0
-----ln

---------------------=

Rt
W
L
-----Rn p=

RL

CLRn Vout

+

-

Figure 3-19 The circuit
model for the model
delay.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 156 Return to Table of Contents

3.3 Static Complementary Gates 145

. (EQ 3-4)

We typically use RL to represent the resistance of the wire which con-
nects the inverter to the next gate; in this case, we’ll assume that RL = 0,
simplifying the total resistance to R = Rn.

50% point calculation For our example, we will use transition time, since that is the metric we
used to find our R values; a similar analysis will give us delay. To mea-
sure fall time, we must calculate the time required to reach the 10%
point. Then

, (EQ 3-5)

. (EQ 3-6)

The next example illustrates fall time in our manufacturing process.

Example 3-1
Inverter
transition time
using the model

Once the effective resistance of a transistor is known, calculating transi-
tion time is easy. What is a minimum inverter delay and fall time with
our 180 nm process parameters? Assume a minimum-size pulldown, no
wire resistance, and a capacitive load equal to 2Cl. First, the model
parameters:

Then fall time is

.

If the transistors are not minimum size, their effective resistance is
scaled by L/W. To compute the delay through a more complex gate, such
as a NAND or an AOI, compute the effective resistance of the pullup/
pulldown network using the standard Ohm’s law simplifications, then
plug the effective R into the delay formula.

Vout t VDDe
-t Rn RL+ CL=

0.1 e
-td Rn RL+ CL=

td - Rn RL+ CLln 0.1 2.30 Rn RL+ CL= =

Rn 6.47k=

CL 0.89 fF
m2

---------- 2=

1.78fF=

td 2.3 6.47k 1.78 -1510 26.4ps= =

Modern VLSI Design: IP-Based Design, Fourth Edition Page 157 Return to Table of Contents

146 Chapter 3: Logic Gates

observations on transition
time

This simple RC analysis tells us two important facts about transition
time. First, if the pullup and pulldown transistor sizes are equal, the 0
1 transition will be slower than the 1 0 transition, in proportion to

. That observation follows directly from the ratio of the p-type
and n-type effective resistances. Put another way, to make the high-
going and low-going transition times equal, the pullup transistor must
be twice to three times as wide as the pulldown. Second, complex gates
like NANDs and NORs require wider transistors where those transistors
are connected in series. A NAND’s pulldowns are in series, giving an
effective pulldown resistance of 2Rn. To give the same delay as an
inverter, the NAND’s pulldowns must be twice as wide as the inverter’s
pulldown. The NOR gate has two p-type transistors in series for the pul-
lup network. Since a p-type transistor must be two to three times wider
than an n-type transistor to provide equivalent resistance, the pullup net-
work of a NOR can take up quite a bit of area.

current source model A second model for delay is the current source model, which is some-
times used in power/delay studies because of its tractability. If we
assume that the transistor acts as a current source whose is always
at the maximum value, then the delay can be approximated as

. (EQ 3-7)

fitted model A third type of model is the fitted model. This approach measures cir-
cuit characteristics and fits the observed characteristics to the parame-
ters in a delay formula. Fitted models use more sophisticated models
than our simple model. This technique is not well-suited to hand anal-
ysis but it is easily used by programs that analyze large numbers of
gates.

accuracy Figure 3-20 shows the results of Spice simulation of an inverter and the
 RC model. The t model meets the inverter output at the 10% point,

which is to be expected since we fitted the resistance value to achieve
that goal. However, the RC waveform is not close to the inverter
response at other points. You should always remember that the RC delay
model is meant as only a rough approximation.

accuracy vs. utility The fundamental reason for developing an RC model of delay is that we
often can’t afford to use anything more complex. Full circuit simulation
of even a modest-size chip is infeasible: we can’t afford to simulate
even one waveform, and even if we could, we would have to simulate
all possible inputs to be sure we found the worst-case delay. The RC
model lets us identify sections of the circuit which probably limit circuit

Rp Rn

Vgs

tf
CL VDD-VSS

Id

CL VDD-VSS

0.5k' W L VDD-VSS-Vt
2

---= =

Modern VLSI Design: IP-Based Design, Fourth Edition Page 158 Return to Table of Contents

3.3 Static Complementary Gates 147

performance; we can then, if necessary, use more accurate tools to more
closely analyze the delay problems of that section.

body effect Body effect, as we saw in Section 2.3.5, is the modulation of threshold
voltage by a difference between the voltage of the transistor’s source
and the substrate—as the source’s voltage rises, the threshold voltage
also rises. This effect can be modeled by a capacitor from the source to
the substrate’s ground as shown in Figure 3-21. To eliminate body
effect, we want to drive that capacitor to 0 voltage as soon as possible. If
there is one transistor between the gate’s output and the power supply,
body effect is not a problem, but series transistors in a gate pose a chal-
lenge. Not all of the gate's input signals may reach their values at the
same time—some signals may arrive earlier than others. If we connect
early-arriving signals to the transistors nearest the power supply and
late-arriving signals to transistors nearest the gate output, the early-
arriving signals will discharge the body effect capacitance of the signals
closer to the output. This simple optimization can have a significant
effect on gate delay [Hil89].

temperature dependence of
delay

Thermal effects also play a role in delay. Gate delays change at a rate of
4% per in a 130 nm process [Sat05, Ped06].

Figure 3-20 Comparison of inverter transition time to the model.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time (ps)

V

input

inverter response

τ model

40 C

Modern VLSI Design: IP-Based Design, Fourth Edition Page 159 Return to Table of Contents

148 Chapter 3: Logic Gates

3.3.5 Power Consumption
Analyzing the power consumption of an inverter provides an alternate
window into the cost and performance of a logic gate. Circuits can be
made to go faster—up to a point—by causing them to burn more power.
Power consumption always comes at the cost of heat which must be dis-
sipated out of the chip. Static, complementary CMOS gates are remark-
ably efficient in their use of power to perform computation.

static and dynamic power
consumption

Power is consumed by gates in two different ways:

• dynamic power is consumed when gates drive their outputs to new
values;

• static power is consumed even when the gate is quiet and its output
is not changing.

We can summarize this observation in a formula:

. (EQ 3-8)

In earlier CMOS technologies, static power was negligible. However, in
nanometer technologies, static power is very important. In today’s most
advanced technologies, static power consumption exceeds dynamic
power consumption. CMOS gates consume dynamic power because
they are charging and discharging their load capacitances. Static power
is consumed because non-idealities in the transistors cause them to con-
duct current even when off. Static power consumption is best analyzed
using Spice simulation. In this section, we will analyze dynamic power
consumption to better understand its nature.

circuit model for dynamic
power

Once again we will analyze an inverter with a capacitor connected to its
output. However, to analyze power consumption we must consider both
the pullup and pulldown phases of operation. The model circuit is

body effect
capacitance

early-arriving
signal

Figure 3-21 Body effect and
signal ordering.

P PD PS+=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 160 Return to Table of Contents

3.3 Static Complementary Gates 149

shown in Figure 3-22. The first thing to note about the circuit is that it
has almost no steady-state power consumption. After the output capaci-
tance has been fully charged or discharged, only one of the pullup and
pulldown transistors is on. The following analysis ignores the leakage
current; we will look at techniques to combat leakage current in
Section 3.6.

power and transistor size Power is consumed when gates drive their outputs to new values. Sur-
prisingly, the power consumed by the inverter is independent of the
sizes/resistances of its pullup and pulldown transistors—power con-
sumption depends only on the size of the capacitive load at the output
and the rate at which the inverter’s output switches. To understand why,
consider the energy required to drive the inverter’s output high calcu-
lated two ways: by the current through the load capacitor CL and by the
current through the pullup transistor, represented by its effective resis-
tance Rp.

dynamic power
calculation

The current through the capacitor and the voltage across it are:

, (EQ 3-9)

. (EQ 3-10)

+

in
RL

CL

t

Figure 3-22 Circuit used for
power consumption analysis.

iCL t()
VDD-VSS

Rp
---------------------e

- t RpCL=

vCL t() VDD-VSS 1-e
- t RpCL=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 161 Return to Table of Contents

150 Chapter 3: Logic Gates

So, the energy required to charge the capacitor is:

(EQ 3-11)

This formula depends on the size of the load capacitance but not the
resistance of the pullup transistor. The current through and voltage
across the pullup are:

, (EQ 3-12)

. (EQ 3-13)

The energy required to charge the capacitor, as computed from the resis-
tor’s point of view, is

(EQ 3-14)

Once again, even though the circuit’s energy consumption is computed
through the pullup, the value of the pullup resistance drops from the
energy formula. (That holds true even if the pullup is a nonlinear resis-
tor.) The two energies have the same value because the currents through
the resistor and capacitor are equal.

energy per cycle The energy consumed in discharging the capacitor can be calculated the
same way. The discharging energy consumption is equal to the charging
power consumption: CL(VDD-VSS)2. A single cycle requires the
capacitor to both charge and discharge, so the total energy consumption
is CL(VDD-VSS)2.

EC iCL
t vCL

t td

0

CL VDD-VSS
2 e

-t RpCL-1
2
---e

-2 t RPCL

0

1
2
---CL VDD-VSS

2

=

=

=

ip t() iCL t()=

vp t() Ve
- t RpCL=

ER ip t()vp t() td

0

=

CL VDD-VSS
2 e

-2t RpCL

0
=

1
2
---CL VDD-VSS

2=

1 2

Modern VLSI Design: IP-Based Design, Fourth Edition Page 162 Return to Table of Contents

3.3 Static Complementary Gates 151

power as a function of
clock frequency

Power is energy per unit time, so the power consumed by the circuit
depends on how frequently the inverter’s output changes. The worst
case is that the inverter alternately charges and discharges its output
capacitance. This sequence takes two clock cycles. The clock frequency
is f = . The total power consumption is

. (EQ 3-15)

Dynamic power consumption in CMOS circuits depends on the fre-
quency at which they operate, which is very different from nMOS or
bipolar logic circuits. Power consumption depends on clock frequency
because most power is consumed while the outputs are changing; most
other circuit technologies burn most of their power while the circuit is
idle. Dynamic power consumption depends on the sizes of the transis-
tors in the circuit only in that the transistors largely determine CL. The
current through the transistors, which is determined by the transistor W/
Ls, doesn’t determine power consumption, though the available transis-
tor current does determine the maximum speed at which the circuit can
run, which indirectly determines power consumption.

analysis Does it make sense that CMOS dynamic power consumption should be
independent of the effective resistances of the transistors? It does,
when you remember that CMOS circuits consume only dynamic power.
Most power calculations are made on static circuits—the capacitors in
the circuit have been fully charged or discharged, and power consump-
tion is determined by the current flowing through resistive paths
between VDD and VSS in steady state. Dynamic power calculations,
like those for our CMOS circuit, depend on the current flowing through
capacitors; the resistors determine only maximum operating speed, not
power consumption.

power supply voltage Static complementary gates can operate over a wide range of voltages,
allowing us to trade delay for power consumption. To see how perfor-
mance and power consumption are related, let’s consider changing the
power supply voltage from its original value V to a new V’. It follows
directly from Equation 3-15 that the ratio of power consumptions
is proportional to . When we compute the ratio of rise times

 the only factor to change with voltage is the transistor’s equiva-
lent resistance R, so the change in delay depends only on . If we
use the technique of Section 3.3.4 to compute the new effective resis-
tance, we find that . So as we reduce power supply volt-
age, power consumption goes down faster than does delay.

1 t

fCL VDD-VSS
2

P' P
V'2 V2

t'r tr
R' R

t'r tr V V'

Modern VLSI Design: IP-Based Design, Fourth Edition Page 163 Return to Table of Contents

152 Chapter 3: Logic Gates

3.3.6 The Speed-Power Product
power-delay product The speed-power product, also known as the power-delay product, is

an important measure of the quality of a logic circuit family. Since delay
can in general be reduced by increasing power consumption, looking at
either power or delay in isolation gives an incomplete picture.

The speed-power product for ideal static CMOS is easy to calculate. If
we ignore leakage current and consider the speed and power for a single
inverter transition, then we find that the speed-power product SP is

. (EQ 3-16)

The speed-power product for static CMOS is independent of the operat-
ing frequency of the circuit. It is, however, a quadratic function of the
power supply voltage. This result suggests an important method for
power consumption reduction known as voltage scaling: we can often
reduce power consumption by reducing the power supply voltage and
adding parallel logic gates to make up for the lower performance. Since
the power consumption shrinks more quickly than the circuit delay
when the voltage is scaled, voltage scaling is a powerful technique. We
will study techniques for low-power gate design in Section 3.6.

3.3.7 Layout and Parasitics
How do parasitics affect the performance of a single gate? As shown in
the next example, answering this question tells us how to design the lay-
out of a gate to maximize performance and minimize area.

SP 1
f
---P CV2= =

Modern VLSI Design: IP-Based Design, Fourth Edition Page 164 Return to Table of Contents

3.3 Static Complementary Gates 153

Example 3-2
Parasitics and
performance

To answer the question, we will consider the effects of adding resistance
and capacitance to each of the labeled points of this layout:

• a
Adding capacitance to point a (or its conjugate point on the VSS
wire) adds capacitance to the power supply wiring. Capacitance on
this node doesn’t slow down the gate’s output.

a

b c

Modern VLSI Design: IP-Based Design, Fourth Edition Page 165 Return to Table of Contents

154 Chapter 3: Logic Gates

Resistance at a can cause problems. Resistance in the VSS line can
be modeled by this equivalent circuit:

The power supply resistance is in series with the pulldown. That dif-
ferential isn’t a serious problem in static, complementary gates. The
resistance slows down the gate, but since both the transistor gates of
the pullup and pulldown are connected to the same electrical node,
we can be sure that only one of them will be on in steady state. How-
ever, the dynamic logic circuits we will discuss in Section 3.5 may
not work if the series power supply resistance is too high, because
the voltages supplied by the gate with resistance may not properly
turn on succeeding transistor gates.
The layout around point a should be designed to minimize resis-
tance. A small length of diffusion is required to connect the transis-
tors to the power lines, but power lines should be kept in metal as
long as possible. If the diffusion wire is wider than a via (to connect
to a wide transistor), several parallel vias should be used to connect
the metal and diffusion lines.

• b
Capacitance at b adds to the load of the gate driving this node. How-
ever, the transistor capacitances are much larger than the capacitance
added by the short wire feeding the transistor gates. Resistance at b
actually helps isolate the previous gate from the load capacitance, as
we will see when we discuss the model in Section 4.4.1. Gate lay-
outs should avoid making big mistakes by using large sections of
diffusion wire or a single via to connect high-current wires.

+

R1 R2

+

Modern VLSI Design: IP-Based Design, Fourth Edition Page 166 Return to Table of Contents

3.3 Static Complementary Gates 155

• c
Capacitance and resistance at c are companions to parasitics at
b—they form part of the load that this gate must drive, along with
the parasitics of the b zone of the next gate. But if we consider a
more accurate model of the parasitics, we will see that not all posi-
tions for parasitic R and C are equally bad.

Up to now we have modeled the resistance and capacitance of a wire as
one lump. Now let’s consider the inverter’s load as two RC sections:

One RC section is contributed by the wires at point c, near the output;
the RC section comes from the long wire connecting this gate to the next
one. How does the voltage at point x—the input to the next
gate—depend on the relative values of the R’s? The simplified circuit
shows how a large value for Rx, which is supplied by the parasitics at
point c, steals current from RLCL. As Rx grows relative to RL, the volt-
age drop across Rxincreases, increasing the current through Rx while
decreasing the current through RL. As a result, more of the current sup-
plied by the gate will go through Cx; only after it is fully charged will CL
get the full current supplied by the gate. CL is almost certainly signifi-
cantly larger than Cx because it includes both the transistor capacitances
and the long-wire capacitance, it is more important to charge CL to
switch the next gate as quickly as possible. But charging/discharging of
CL has been delayed while Rx diverts current into Cx.

The moral is that resistance close to the gate output is worse than resis-
tance farther away—close-in resistance must charge more capacitors,
slowing down the signal swing at the far end of the wire. Therefore, the
layout around c should be designed to minimize resistance by:

• using as little diffusion as possible—diffusion should be connected
to metal (or perhaps poly) as close to the channel as possible;

• using parallel vias at the diffusion/metal interface to minimize resis-
tance.

Rx

Cx

x RL

CLix iL

Modern VLSI Design: IP-Based Design, Fourth Edition Page 167 Return to Table of Contents

156 Chapter 3: Logic Gates

3.3.8 Driving Large Loads
sources of large loads Logic delay increases as the capacitance attached to the logic’s output

becomes larger. In many cases, one small logic gate is driving an
equally small logic gate, roughly matching drive capability to load.
However, there are several situations in which the capacitive load can be
much larger than that presented by a typical gate:

• driving a signal connected off-chip;
• driving a long signal wire;
• driving a clock wire that goes to many points on the chip.

The obvious answer to driving large capacitive loads is to increase cur-
rent by making wider transistors. However, this solution begs the ques-
tion—those large transistors simply present a large capacitive load to
the gate that drives them, pushing the problem back one level of logic. It
is inevitable that we must eventually use large transistors to drive the
load, but we can minimize delay along the path by using a sequence of
successively larger drivers.

exponentially tapered
driver chains

The driver chain with the smallest delay to drive a given load is expo-
nentially tapered—each stage supplies e times more current than the last
[Jae75]. In the chain of inverters of Figure 3-23, each inverter can pro-
duce times more current than the previous stage (implying that its pul-
lup and pulldown are each times larger). If CL is the load capacitance
of a minimum-size inverter, the number of stages n is related to by the
formula . The time to drive a minimum-size load is
tmin. We want to minimize the total delay through the driver chain:

pullup: Wp/Lp

pulldown: Wn/Ln

Cbig

pullup: aWp/Lp

pulldown: aWn/Ln

pullup: a2Wp/Lp

pulldown: a2Wn/Ln

n stages

Figure 3-23 Cascaded inverters driving a large capacitive load.

Cbig CL
1 n

=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 168 Return to Table of Contents

3.4 Switch Logic 157

. (EQ 3-17)

To find the minimum, we set , which gives

. (EQ 3-18)

When we substitute the optimal number of stages back into the defini-
tion of , we find that the optimum value is at = e. Of course, n must
be an integer, so we will not in practice be able to implement the exact
optimal circuit. However, delay changes slowly with n near the optimal
value, so rounding n to the floor of nopt gives reasonable results.

3.4 Switch Logic

We can use switches to implement Boolean functions. However, there is
more than one way to build a switch from transistors.

transmission gate One way is the transmission gate shown in Figure 3-24, built from par-
allel n-type and p-type transistors. This switch is built from both types
of transistors so that it transmits logic 0 and 1 from drain to source
equally well: when you put a VDD or VSS at the drain, you get VDD or
VSS at the source. But it requires two transistors and their associated
tubs; equally damning, it requires both true and complement forms of
the gate signal.

n-type switch An alternative is the n-type switch—a solitary n-type transistor. It
requires only one transistor and one gate signal, but it is not as forgiving
electrically: it transmits a logic 0 well, but when VDD is applied to the

ttot n
Cbig
CL

1 n

tmin=

nd

dttot 0=

nopt ln
Cbig
CL

----------=

a

a'

Figure 3-24
A complementary
transmission gate.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 169 Return to Table of Contents

158 Chapter 3: Logic Gates

drain, the voltage at the source is VDD - Vin. When switch logic drives
gate logic, n-type switches can cause electrical problems. An n-type
switch driving a complementary gate causes the complementary gate to
run slower when the switch input is 1: since the n-type pulldown current
is weaker when a lower gate voltage is applied, the complementary
gate’s pulldown will not suck current off the output capacitance as fast.
When the n-type switch drives a pseudo-nMOS gate, disaster may
occur. A pseudo-nMOS gate’s ratioed transistors depend on logic 0 and
1 inputs to occur within a prescribed voltage range. If the n-type switch
doesn’t turn on the pseudo-nMOS pulldown strongly enough, the pull-
down may not divert enough current from the pullup to force the output
to a logic 0, even if we wait forever. Ratioed logic driven by n-type
switches must be designed to produce valid outputs for both polarities of
input.

switch logic delay When we calculate the delay through either an n-type or complementary
switch, we need to properly account for the circuit capacitances
[Bak05]. The transistor resistance can be modeled the same way as for
static gates. The gate capacitance of the transistor used as the switch is
divided between the source and drain. This gives a total load capaci-
tance as

. (EQ 3-19)

The delay through the switch is then

, (EQ 3-20)

Rn

CL

Cg

2
Cg

2

Figure 3-25 Circuit model
for switch delay.

Ctot
Cg
2

------ CL+=

td 0.7Rn
Cg
2

------ CL+=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 170 Return to Table of Contents

3.5 Alternative Gate Circuits 159

switch logic and noise Both types of switch logic are sensitive to noise—pulling the source
beyond the power supply (above VDD or below VSS) causes the transis-
tor to start conducting. We will see in Section 4.6 that logic networks
made of switch logic are prone to errors introduced by parasitic capaci-
tance.

3.5 Alternative Gate Circuits

gate design trade-offs The static complementary gate has several advantages: it is reliable,
easy to use in large combinational logic networks, and does not require
any separate precharging steps. It is not, however, the only way to
design a logic gate with p-type and n-type transistors. Other circuit
topologies have been created that are smaller or faster (or both) than
static complementary gates. Still others use less power.

In this section we will review the design of several important alternative
CMOS gate topologies. Each has important uses in chip design. But it is
important to remember that they all have their limitations and caveats.
Specialized logic gate designs often require more attention to the details
of circuit design—while the details of circuit and layout design affect
only the speed at which a static CMOS gate runs, circuit and layout
problems can cause a fancier gate design to fail to function correctly.
Particular care must be taken when mixing logic gates designed with
different circuit topologies to ensure that one’s output meets the require-
ments of the next’s inputs. A good, conservative chip design strategy is
to start out using only static complementary gates, then to use special-
ized gate designs in critical sections of the chip to meet the project’s
speed or area requirements.

3.5.1 Pseudo-nMOS Logic
pseudo-nMOS The simplest non-standard gate topology is pseudo-nMOS, so called

because it mimics the design of an nMOS logic gate. Figure 3-26 shows
a pseudo-nMOS NOR gate. The pulldown network of the gate is the
same as for a fully complementary gate. The pullup network is replaced
by a single p-type transistor whose gate is connected to VSS, leaving the
transistor permanently on. The p-type transistor is used as a resistor:
when the gate’s inputs are ab = 00, both n-type transistors are off and
the p-type transistor pulls the gate’s output up to VDD. When either a or

Modern VLSI Design: IP-Based Design, Fourth Edition Page 171 Return to Table of Contents

160 Chapter 3: Logic Gates

b is 1, both the p-type and n-type transistor are on and both are fighting
to determine the gate’s output voltage.

transistor sizing We need to determine the relationship between the W/L ratios of the pul-
lup and the pulldowns that provide reasonable output voltages for the
gate. For simplicity, assume that only one of the pulldown transistors is
on; then the gate circuit’s output voltage depends on the ratio of the
effective resistances of the pullup and the operating pulldown. The high
output voltage of the gate is VDD, but the output low voltage VOL will
be some voltage above VSS. The chosen VOL must be low enough to
activate the next logic gate in the chain. For pseudo-nMOS gates that
feed static or pseudo-nMOS gates, a value of is a
reasonable value, though others could be chosen. To find the transistor
sizes that give appropriate output voltages, we must consider the simul-
taneous operation of the pullup and pulldown. When the gate’s output
has just switched to a logic 0, the n-type pulldown is in saturation with
Vgs,n = Vin. The p-type pullup is in its linear region: its Vgs,p = VDD -
VSS and its Vds,p = Vout - (VDD - VSS). We need to find Vout in terms of
the W/Ls of the pullup and pulldown. To solve this problem, we set the
currents through the saturated pulldown and the linear pullup to be
equal:

.(EQ 3-21)

+

Vgs,n = 0.25(VDD-VSS)

Id,p

Id,n
CL

IL

Figure 3-26 A pseudo-
nMOS NOR gate.

VOL 0.15 VDD-VSS=

1
2
---k'n

Wn
Ln
------- Vgs n-Vtn

2 1
2
---k'p 2 Vgs p-Vtp Vds p-Vds p

2
=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 172 Return to Table of Contents

3.5 Alternative Gate Circuits 161

The simplest way to solve this equation is to substitute the technology
and circuit values. Using the 0.5 m values and assuming a 3.3V power
supply and a full-swing input , we find that

. (EQ 3-22)

The pulldown network must exhibit this effective resistance in the worst
case combination of inputs. Therefore, if the network contains series
pulldowns, they must be made larger to provide the required effective
resistance.

power consumption The pseudo-nMOS gate consumes static power. When both the pullup
and pulldown are on, the gate forms a conducting path from VDD to
VSS, which must be kept on to maintain the gate’s logic output value.
The choice of VOL determines whether the gate consumes static power
when its output is logic 1. If pseudo-nMOS feeds pseudo-nMOS and
VOL is chosen to be greater than Vt,n, then the pulldown will remain on.
Whether the pulldown is in the linear or saturation region depends on
the exact transistor characteristics, but in either case, its drain current
will be low since Vgs,n is low. As shown in Figure 3-27, so long as the
pulldown drain current is significantly less than the pullup drain current,
there will be enough current to charge the output capacitance and bring
the gate output to the desired level.

The ratio of the pullup and pulldown sizes also ensures that the times for
0 1 and 1 0 transitions are asymmetric. Since the pullup transistor
has about three times the effective resistance of the pulldown, the 0 1
transition occurs much more slowly than the 1 0 transition and domi-

Vgs n VDD-VSS=

Wp Lp
Wn Ln
----------------- 3.9

+

Vgs,n = 0.25(VDD-VSS)

Id,p

Id,n
CL

IL

Figure 3-27 Currents in a
pseudo-nMOS gate during
low-to-high transition.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 173 Return to Table of Contents

162 Chapter 3: Logic Gates

nates the gate’s delay. The long pullup time makes the pseudo-nMOS
gate slower than the static complementary gate.

uses of pseudo-nMOS Why use a pseudo-nMOS gate? The main advantage of the pseudo-
nMOS gate is the small size of the pullup network, both in terms of
number of devices and wiring complexity. The pullup network of a
static complementary gate can be large for a complex function. Further-
more, the input signals do not have to be routed to the pullup, as in a
static complementary gate. The pseudo-nMOS gate is used for circuits
where the size and wiring complexity of the pullup network are major
concerns but speed and power are less important. We will see two exam-
ples of uses of pseudo-nMOS circuits in Chapter 6: busses and PLAs. In
both cases, we are building distributed NOR gates—we use pulldowns
spread over a large physical area to compute the output, and we do not
want to have to run the signals that control the pulldowns around this
large area. Pseudo-nMOS circuits allow us to concentrate the logic
gate’s functionality in the pulldown network.

3.5.2 DCVS Logic
latching structures in gates Differential cascode voltage switch logic (DCVSL) is a static logic

family that, like pseudo-nMOS logic, does not have a complementary
pullup network, but it has a very different structure. It uses a latch struc-
ture for the pullup which both eliminates non-leakage static power con-
sumption and provides true and complement outputs.

+

pulldown
network

complementary
pulldown
network

out out'

inputs complementary
inputs

Figure 3-28
Structure of a
DCVSL gate.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 174 Return to Table of Contents

3.5 Alternative Gate Circuits 163

DCVSL structure The structure of a generic DCVSL gate is shown in Figure 3-28. There
are two pulldown networks which are the duals of each other, one for
each true/complement output. Each pulldown network has a single p-
type pullup, but the pullups are cross-coupled. Exactly one of the pull-
down networks will create a path to ground when the gate’s inputs
change, causing the output nodes to switch to the required values. The
cross-coupling of the pullups helps speed up the transition—if, for
example, the complementary network forms a path to ground, the com-
plementary output goes toward VSS, which turns on the true output’s
pullup, raising the true output, which in turn lowers the gate voltage on
the complementary output’s pullup. This gate consumes no DC power
(except due to leakage current), since neither side of the gate will ever
have both its pullup and pulldown network on at once.

Figure 3-29 shows the circuit for a particular DCVSL gate. This gate
computes a+bc on one output and (a+bc)’ = a’b’+a’c’ on its other
output.

3.5.3 Domino Logic
precharged logic Precharged circuits offer both low area and higher speed than static

complementary gates. Precharged gates introduce functional complexity
because they must be operated in two distinct phases, requiring intro-

+

a'b'+a'c' (a+bc)'

a

b

c

a'

b' c'

Figure 3-29 An example
DCVSL gate circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 175 Return to Table of Contents

164 Chapter 3: Logic Gates

duction of a clock signal. They are also more sensitive to noise; their
clocking signals also consume power and are difficult to turn off to save
power.

domino logic The canonical precharged logic gate circuit is the domino circuit
[Kra82]. A domino gate is shown in Figure 3-30, along with a sketch of
its operation over one cycle. The gate works in two phases, first to pre-

+

f

out

a b

storage node

f f

circuit

time

f

a

b

storage
node

precharge evaluate

operation

Figure 3-30
A domino OR gate
and its operation.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 176 Return to Table of Contents

3.5 Alternative Gate Circuits 165

charge the storage node, then to selectively discharge it. The phases are
controlled by the clock signal :

• Precharge. When goes low, the p-type transistor starts charging
the precharge capacitance. The pulldown transistors controlled by
the clock keep that precharge node from being drained. The length of
the = 0 phase is adjusted to ensure that the storage node is charged
to a solid logic 1.

• Evaluate. When goes high, precharging stops (the p-type pullup
turns off) and the evaluation phase begins (the n-type pulldowns at
the bottom of the circuit turn on). The logic inputs a and b can now
assume their desired value of 0 or 1. The input signals must mono-
tonically rise—if an input goes from 0 to 1 and back to 0, it will
inadvertently discharge the precharge capacitance. If the inputs cre-
ate a conducting path through the pulldown network, the precharge
capacitance is discharged, forcing its value to 0 and the gate’s output
(through the inverter) to 1. If neither a nor b is 1, then the storage
node would be left charged at logic 1 and the gate’s output would be
0.

The gate’s logic value is valid at the end of the evaluation phase, after
enough time has been allowed for the pulldown transistors to fully dis-
charge the storage node. If the gate is to be used to compute another
value, it must go through the precharge-evaluate cycle again.

domino logic networks Figure 3-31 illustrates the phenomenon which gave the domino gate its
name. Since each gate is precharged to a low output level before evalua-
tion, the changes at the primary inputs ripple through the domino net-
work from one end to another. Signals at the far end of the network

in1

in2

in3

in4

t t t t

Figure 3-31
Successive
evaluations in a
domino logic
network.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 177 Return to Table of Contents

166 Chapter 3: Logic Gates

change last, with each change to a gate output causing a change to the
next output. This sequential evaluation resembles a string of falling
dominos.

Why is there an inverter at the output of the domino gate? There are two
reasons: logical operation and circuit behavior. To understand the logi-
cal need for an output inverter, consider the circuit of Figure 3-32, in
which the output of one domino gate is fed into an input of another dom-
ino gate. During the precharge phase, if the inverter were not present,
the intermediate signal would rise to 1, violating the requirement that all
inputs to the second gate be 0 during precharging.

However, the more compelling reason for the output inverter is to
increase the reliability of the gate. Figure 3-33 shows two circuit varia-
tions: one with the output inverter and one without. In both cases, the
storage node is coupled to the output of the following gate by the gate-
to-source/drain capacitances of the transistors in that gate. This coupling
can cause current to flow into the storage node, disturbing its value.
Since the coupling capacitance is across the transistor, the Miller effect
magnifies its value. When the storage node is connected to the output
inverter, the inverter’s output is at least correlated to the voltage on the
storage node and we can design the circuit to withstand the effects of the
coupling capacitance. However, when the storage node is connected to
an arbitrary gate, that gate’s output is not necessarily correlated to the

+

f

x y

+

f

a b

f

Figure 3-32 Why domino gate input values must monotonically increase.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 178 Return to Table of Contents

3.5 Alternative Gate Circuits 167

storage node’s behavior, making it more difficult to ensure that the
storage node is not corrupted. The fact that the wire connecting the
domino gate’s pulldown network to the next gate (and the bulk of
the storage node capacitance) may be long and subject to crosstalk

+

f

Cgsd i

with output inverter

+

f

Cgsd

1 1

i

without output inverter

1 0

0 1

1 0

Figure 3-33 Capacitive
coupling in domino gates.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 179 Return to Table of Contents

168 Chapter 3: Logic Gates

generated by wire-to-wire coupling capacitances only makes this cir-
cuit less attractive.

charge sharing Domino gates are also vulnerable to errors caused by charge sharing.
Charge sharing is a problem in any network of switches, and we will
cover it in more detail in Section 4.6. However, we need to understand
the phenomenon in the relatively simple form in which it occurs in dom-
ino gates. Consider the example of Figure 3-34. Csd, the stray capaci-
tance on the source and drain of the two pulldown transistors, can store
enough charge to cause problems. In the case when the a input is 1 and
the b input is 0, the precharge node should not be discharged. However,
since a is one, the pulldown connected to the storage node is turned on,
draining charge from the storage node into the parasitic capacitance
between the two pulldowns. In a static gate, charge stored in the inter-
mediate pulldown capacitances does not matter because the power sup-
ply drives the output, but in the case of a dynamic gate that charge is lost
to the storage node. If the gate has several pulldown transistors, the
charge loss is that much more severe. The problem can be averted by
precharging the internal pulldown network nodes along with the pre-
charge node itself, although at the cost of area and complexity.

charge leakage Because dynamic gates rely on stored charge, they are vulnerable to
charge leakage through the substrate. The primary threat comes from

+

f

Csd

a = 0 ® 1

b = 0

f

Figure 3-34 Charge
sharing in a domino circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 180 Return to Table of Contents

3.6 Low-Power Gates 169

designs that do not evaluate some dynamic gates on every clock cycle;
in these cases, the designer must verify that the gates are always re-eval-
uated frequently enough to ensure that the charge stored in the gates has
not leaked away in sufficient quantities to destroy the gate’s value.

domino is not complete Domino gates cannot invert, and so this logic family does not form a
complete logic, as defined in Section 3.2. A domino logic network con-
sists only of AND, OR, and complex AND/OR gates. However, any
such function can be rewritten using De Morgan’s laws to push all the
inverters to the forward outputs or backward to the inputs; the bulk of
the function can be implemented in domino gates with the inverters
implemented as standard static gates. However, pushing back the inver-
sions to the primary inputs may greatly increase the number of gates in
the network.

3.6 Low-Power Gates

There are several different strategies for building low-power gates.
Which one is appropriate for a given design depends on the required
performance and power as well as the fabrication technology. In very
deep submicron technologies leakage current has become a major con-
sumer of power.

power supply voltage Of course, the simplest way to reduce the operating voltage of a gate is
to connect it to a lower power supply. We saw the relationship between
power supply voltage and power consumption in Section 3.3.5:

• For large Vt, Equation 3-7 tells us that delay changes linearly with
power supply voltage.

• Equation 3-15 tells us that power consumption varies quadratically
with power supply voltage.

This simple analysis tells us that reducing the power supply saves us
much more in power consumption than it costs us in gate delay. Of
course, the performance penalty incurred by reducing the power supply
voltage must be taken care of somewhere in the system. One possible
solution is architecture-driven voltage scaling, which we will study in
Section 8.6, which replicates logic to make up for slower operating
speeds.

multiple-voltage logic It is also possible to operate different gates in the circuit at different
voltages: gates on the critical delay path can be run at higher voltages

Modern VLSI Design: IP-Based Design, Fourth Edition Page 181 Return to Table of Contents

170 Chapter 3: Logic Gates

while gates that are not delay-critical can be run at lower voltages. How-
ever, such circuits must be designed very carefully since passing logic
values between gates running at different voltages may run into noise
limits. The transistors used to transfer from low to high voltages also
create a source of static power dissipation. In addition, the layout must
include multiple power supply grids to provide the different voltage
domains.

gate circuits After changing power supply voltages, the next step is to use different
logic gate topologies. An example of this strategy is the differential cur-
rent switch logic (DCSL) gate [Roy00] shown in Figure 3-35, which is

+

n-type
tree

Q Q'

clk

done

Figure 3-35 A DCSL gate.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 182 Return to Table of Contents

3.6 Low-Power Gates 171

related to the DCVS gate of Section 3.5.2. Both use nMOS pulldown
networks for both logic 0 and logic 1. However, the DCSL gate discon-
nects the n-type networks to reduce their power consumption. This gate
is precharged with Q and Q’ low. When the clock goes high, one of Q or
Q’ will be pulled low by the n-type evaluation tree and that value will be
latched by the cross-coupled inverters.

leakage and power supply
control

After these techniques have been tried, two techniques can be used:
reducing leakage current and turning off gates when they are not in use.
Leakage current is becoming increasingly important in very deep sub-
micron technologies. We studied leakage currents in Section 2.3.6. One
simple approach to reducing leakage currents in gates is to choose,
whenever possible, don’t-care conditions on the inputs to reduce leak-
age currents. Series chains of transistors pass much lower leakage cur-
rents when both are off than when one is off and the other is on. If don’t-
care conditions can be used to turn off series combinations of transistors
in a gate, the gate’s leakage current can be greatly reduced.

leakage and threshold
voltage

The key to low leakage current is low threshold voltage. Unfortunately,
there is an essential tension between low leakage and high performance.
Remember from Equation 2-17 that leakage current is an exponential
function of Vgs - Vt. As a result, increasing Vt decreases the subthresh-
old current when the transistor is off. However, a high threshold voltage
increases the gate’s delay since the transistor turns on later in the input
signal’s transition. One solution to this dilemma is to use transistors
with different thresholds at different points in the circuit.

turning off gates Turning off gates when they are not used saves even more power, partic-
ularly in technologies that exhibit significant leakage currents. Care
must be used in choosing which gates to turn off, since it often takes 100

s for the power supply to stabilize after it is turned on. We will discuss
the implications of power-down modes in Section 8.6. However, turning
off gates is a very useful technique that becomes increasingly important
in very deep submicron technologies with high leakage currents.

leakage in transistor
chains

The leakage current through a chain of transistors in a pulldown or pul-
lup network is lower than the leakage current through a single transistor
[De01]. It also depends on whether some transistors in the stack are also
on. Consider the pulldown network of a NAND gate shown in Figure 3-
36. If both the a and b inputs are 0, then both transistors are off. Because
a small leakage current flows through transistor Ma, the parasitic capac-
itance between the two transistors is charged, which in turns holds the
voltage at that node above ground. This means that Vgs for is Ma is neg-
ative, thus reducing the total leakage current. The leakage current is
found by simultaneously solving for the currents through the two tran-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 183 Return to Table of Contents

172 Chapter 3: Logic Gates

sistors. The leakage current through the chain can be an order of magni-
tude lower than the leakage current through a single transistor. But the
total leakage current clearly depends on the gate voltages of the transis-
tors in the chain; if some of the gate’s inputs are logic 1, then there may
not be chains of transistors that are turned off and thus have reduced
input voltages. Algorithms can be used to find the lowest-leakage input
values for a set of gates; latches can be used to hold the gates’ inputs at
those values in standby mode to reduce leakage.

out

a

b

Ma

Mb

Vx

Figure 3-36 Leakage
through transistor stacks.

+

sleep

in

virtual VDD

VDD
high threshold

low threshold

Figure 3-37 A multiple-
threshold (MTCMOS)
inverter.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 184 Return to Table of Contents

3.6 Low-Power Gates 173

multi-threshold logic Figure 3-37 shows a multiple-threshold logic (MTCMOS) [Mut98]
gate that can be powered down. This circuit family uses low-leakage
transistors to turn off gates when they are not in use. A sleep transistor
is used to control the gate’s access to the power supply; the gated power
supply is known as a virtual VDD. The gate uses low-threshold transis-
tors to increase the gate’s delay time. However, lowering the threshold
voltage also increases the transistors’ leakage current, which causes us
to introduce the sleep transistor. The sleep transistor has a high thresh-
old to minimize its leakage. The fabrication process must be able to
build transistors with low and high threshold voltages.

The layout of this gate must include both VDD and virtual VDD: virtual
VDD is used to power the gate but VDD connects to the pullup’s sub-
strate. The sleep transistor must be properly sized. If the sleep transistor
is too small, its impedance would cause virtual VDD to bounce. If the
sleep transistor is too large, the sleep transistor would occupy too much
area and it would use more energy when switched.

It is important to remember that some other logic must be used to deter-
mine when a gate is not used and control the gate’s power supply. This
logic must be watch the state of the chip’s inputs and memory elements
to know when logic can safely be turned off. It may also take more than
one cycle to safely turn on a block of logic.

Figure 3-39 shows an MTCMOS flip-flop. The storage path is made of
high Vt transistors and is always on. The signal is propagated from input
to output through low Vt transistors. The sleep control transistors on the

in

+

VBB,p

VBB,n

Figure 3-38 A variable-
threshold CMOS (VTCMOS)
gate.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 185 Return to Table of Contents

174 Chapter 3: Logic Gates

second inverter in the forward path are used to prevent a short-circuit
path between VDD and virtual VDD that could flow through the storage
inverter’s pullup and the forward chain inverter’s pullup.

variable threshold CMOS A more aggressive method is variable threshold CMOS (VTCMOS)
[Kur96], which actually can be implemented in several ways. Rather
than fabricating fixed-threshold voltage transistors, the threshold volt-
ages of the transistors in the gate are controlled by changing the volt-
ages on the substrates. Figure 3-38 shows the structure of a VTCMOS
gate. The substrates for the p- and n-type transistors are each con-
nected to their own threshold supply voltages, VBB,p and VBB,n. VBB is

++

clk

+

clk

clk'

clk'

low Vt

storage path

sleep

sleep' sleep'

sleep'

Figure 3-39 An MTCMOS flip-flop.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 186 Return to Table of Contents

3.7 Delay through Resistive Interconnect 175

raised to put the transistor in standby mode and lowered to put it into
active mode. Rather sophisticated circuitry is used to control the sub-
strate voltages.

VTCMOS logic comes alive faster than it falls asleep. The transition
time to sleep mode depends on how quickly current can be pulled out of
the substrate, which typically ranges from tens to hundreds of microsec-
onds. Returning the gate to active mode requires injecting current back
into the substrate, which can be done 100 to 1000 times faster than pull-
ing that current out of the substrate. In most applications, a short wake-
up time is important—the user generally gives little warning that the
system is needed.

3.7 Delay through Resistive Interconnect

In this section, we analyze the delay through resistive (non-inductive)
interconnect. In many modern chips, the delay through wires is larger
than the delay through gates, so studying the delay through wires is as
important as studying delay through gates. We will build a suite of ana-
lytical models, starting from the relatively straightforward Elmore
model for an RC transmission line through more complex wire shapes.
We will also consider the problem of where to insert buffers along wires
to minimize delay.

3.7.1 Delay through an RC Transmission Line
RC transmission lines An RC transmission line models a wire as infinitesimal RC sections,

each representing a differential resistance and capacitance. Since we are
primarily concerned with RC transmission lines, we can use the trans-
mission line model to compute the delay through very long wires. We
can model the transmission line as having unit resistance r and unit
capacitance c. The standard schematic for the RC transmission line is
shown in Figure 3-40. The transmission line’s voltage response is mod-
eled by a differential equation:

. (EQ 3-23)

This model gives the voltage as a function of both x position along the
wire and of time.

1
r
---d2V

dx2
--------- cdV

dt
-------=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 187 Return to Table of Contents

176 Chapter 3: Logic Gates

Elmore delay The raw differential equation, however, is unwieldy for many circuit
design tasks. Elmore delay [Elm48] is the most widely used metric for
RC wire delay and has been shown to sufficiently accurately model the
results of simulating RC wires on integrated circuits [Boe93]. Elmore
defined the delay through a linear network as the first moment of the
impulse response of the network:

. (EQ 3-24)

Because only the first moment is used as the delay metric, Elmore delay
is not sufficiently accurate for inductive interconnect. However, in over-
damped RC networks, the first moment is sufficiently accurate.

transmission line as RC
sections

Elmore modeled the transmission line as a sequence of n sections of RC,
as shown in Figure 3-41. In the case of a general RC network, the
Elmore delay can be computed by taking the sum of RC products, where
each resistance R is multiplied by the sum of all the downstream capaci-
tors (a special case of the RC tree formulas we will introduce in
Section 3.7.2).

Figure 3-40 Symbol for a
distributed RC transmission
line.

E tVout t td
0

=

+

-

Vin

... +

-

Vout

r1

c1

r2

c2

r3

c3

rn

cn

Figure 3-41 An RC transmission line for Elmore delay calculations.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 188 Return to Table of Contents

3.7 Delay through Resistive Interconnect 177

Since all the transmission line section resistances and capacitances in an
n-section are identical, this reduces to

. (EQ 3-25)

One consequence of this formula is that wire delay grows as the square
of wire length, since n is proportional to wire length. Since the wire’s
delay also depends on its unit resistance and capacitance, it is impera-
tive to use the material with the lowest RC product (which will almost
always be metal) to minimize the constant factor attached to the n2

growth rate.

more complex models Although the Elmore delay formula is widely used, we will need some
results from the analysis of continuous transmission lines for our later
discussion of crosstalk. The normalized voltage step response of the
transmission line can be written as

, (EQ 3-26)

where R and C are the total resistance and capacitance of the line. We
will define as the internal resistance of the driving gate and as the
load capacitance at the opposite end of the transmission line.

Sakurai [Sak93] estimated the required values for the first-order esti-
mate of the step response as:

, (EQ 3-27)

, (EQ 3-28)

where RT and CT are and , respectively.

tapered wires So far, we have assumed that the wire has constant width. In fact,
tapered wires provide lower delay. Consider the first resistance element
in the transmission line—the current required to charge all the capaci-
tance of the wire must flow through this resistance. In contrast, the resis-
tance at the end of the wire handles only the capacitance at the end.
Therefore, if we can decrease the resistance at the head of the wire, we
can decrease the delay through the wire. Unfortunately, increasing the

E r n-i c
i 1=

n
1
2
---rc n n-1= =

V t 1 Kke
- kt RC

k 1=

+= 1 K1e
- 1t RC

+

Rt Ct

K1
-1.01(RT CT 1+ +

RT CT 4+ +
--=

1
1.04

RTCT RT CT 2 2+ + +
--=

Rt R Ct C

Modern VLSI Design: IP-Based Design, Fourth Edition Page 189 Return to Table of Contents

178 Chapter 3: Logic Gates

resistance by widening the wire also increases its capacitance, making
this a non-trivial problem to solve.

Fishburn and Schevon [Fis95] proved that the optimum-shaped wire has
an exponential taper. If the source resistance is R0, the sink capacitance
is C0, and the unit resistance and capacitance are Rs and Cs, the width of
the wire as a function of distance is

, (EQ 3-29)

where W is the function that satisfies the equality .
The advantage of optimal tapering is noticeable. Fishburn and Schevon
calculate that, for one example, the optimally tapered wire has a delay of
3.72 ns while the constant-width wire with minimum delay has a delay
of 4.04 ns. In this example, the optimally tapered wire shrinks from 30.7

m at the source to 7.8 m at the sink.

Of course, exponentially-tapered wires are impossible to fabricate
exactly, but it turns out that we can do nearly as well by dividing the
wire into a few constant width sections. Figure 3-42 shows that a few
segments of wire can be used to approximate the exponential taper rea-
sonably well. This result also suggests that long wires which can be run
on several layers should run on the lowest-resistance layer near the
driver and can move to the higher-resistance layers as they move toward
the signal sink.

thermal effects Temperature affects wire properties: wire resistance increased by 12%
for around the nominal temperature in the same process. This
resulted in a delay change of about 5% per .

w x
2C0
CsL
---------W L

2

RsCs
R0C0
------------- e

2W L
2
--- RsCs

R0C0
------------ x

L

=

W x eW x x=

source sink

Figure 3-42 A step-tapered wire.

40 C
40 C

Modern VLSI Design: IP-Based Design, Fourth Edition Page 190 Return to Table of Contents

3.7 Delay through Resistive Interconnect 179

3.7.2 Delay through RC Trees
RC tree model While analyzing a straight transmission line is straightforward, analyz-

ing more complex networks is harder. We may not always need an exact
answer, either—a good approximation is often enough considering the
other uncertainties in IC design and manufacturing. In the case of RC
trees, as shown in Figure 3-43, we can quickly compute accurate bounds
on the delay through the wire [Rub83]. The wiring can be broken into an
RC tree either by representing each branch by one RC lump or by break-
ing a branch into several lumps.

When analyzing the RC tree, we assume the network has one input,
which provides a voltage step, and several outputs. We can find the tran-
sition time through the wire by analyzing the voltages at the output
nodes and measuring the time between the 10% and 90% points. While
an exact solution for the output voltages for an arbitrary RC network is
complex, we can find accurate upper and lower bounds on the output
voltage, and from those voltage bounds we can compute delay bounds.
We won’t perform a detailed derivation of the bounds formulas, but will
only try to provide an intuitive explanation of their form.

R and C along paths The capacitance at a node k is called Ck. We are primarily concerned
with resistances along paths, notably the resistances along shared paths.
If o is an output node and k is an internal node, the resistance along the
intersection of the paths from the input to o and to k is called Rk0. In

R2

C2

R3

C3

R1

C1

R4

C4

R5

C5

R6

C6

in

o1

o2

Figure 3-43 An RC tree.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 191 Return to Table of Contents

180 Chapter 3: Logic Gates

Figure 3-43, because R1 is the only resistor shared by the
paths to 1 and O1. R00 is the total resistance from input to the output o
and similarly, Rkk is the total resistance from input to the internal node k.
The simplest time constant for the tree is

. (EQ 3-30)

Each term in the summation is the time constant of the simple RC circuit
built from the capacitance at k and all the resistance from the input to k.

Two other time constants relative to the output o are important to the
bounds:

; (EQ 3-31)

. (EQ 3-32)

The terms of TD0 compute the time constant of the capacitance at each
node and the resistance shared by the paths to k and o available to
charge Ck. The terms of TR0 weight the terms of TD0 against the total
resistance along the path to the output, squaring Rk0 to ensure the value
has units of time. Although we won’t prove it here, these inequalities
relate the voltage at each output, v0(t), and the voltage at an interior
node, vk(t), using the path resistances:

Roo[1-vk(t)] Rko[1-vo(t)] (EQ 3-33)

Rko[1-vk(t)] Rkk[1-vo(t)] (EQ 3-34)

Some intermediate steps are required to find the vo(t)’s; we will skip to
the resulting bounds, shown in Table 3-3. The bounds are expressed
both as the voltage at a given time and as the time required for the out-
put to assume a specified voltage; the two formulas are, of course,
equivalent.

accuracy Do these bounds match our intuition about the circuit’s behavior? At
t=0, the upper bound for the output voltage is vo(0) = 1 - TD0. TD0 is
formed by the time constants of RC sections formed by all the resistance
along the path to o that are also connected to the kth capacitor, such as
the highlighted resistors at a in the figure. Some of the current through
those resistors will go to outputs other than o, and so are not available to

R1O1
R1=

TP RkkCk

k

=

TDo RkoCk

k

=

TRo Rko
2 Ck

k

Roo=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 192 Return to Table of Contents

3.7 Delay through Resistive Interconnect 181

charge the capacitors closest to o; the upper bound assumes that all their
current will be used to charge capacitors along the path from input to o.
The lower bound is dominated by TR0, which compares Rk0 to the total

validity bound

lower

upper

t TDo-TRo

TDo-TRo t Tp-TRo

t Tp-TRo

vo t() 0

vo t() 1- TDo t TRo+

vo t() 1-
TDo
Tp

---------e
Tp-TRo TPe

- t Tp

t TDo-TRo

t TDo-TRo

vo t() 1- TDo-t TP

vo t() 1-
TRo
Tp
--------e

TDo-TRo TRoe
- t Tp

voltage

validity bound

lower

upper

vo t() 1- TRo Tp

vo t() 1- TRo Tp

t TDo-Tp 1-vo t()

t TDo-TRo TRo+ ln
TRo

Tp 1-vo t()
---------------------------()

vo t() 1- TDo Tp

vo t() 1- TDo Tp

t TDo 1-vo t() -TRo

t TP-TRo TP+ ln
TDo

Tp 1-vo t()
---------------------------()

time

Table 3-3 Rubinstein-Penfield-Horowitz voltage and time bounds for RC trees.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 193 Return to Table of Contents

182 Chapter 3: Logic Gates

resistance from the input to o; the ratio Rk0/R00 gives a minimum resis-
tance available to charge the capacitor Ck.

3.7.3 Buffer Insertion in RC Transmission Lines
optimum buffer insertion We do not obtain the minimum delay through an RC transmission line

by putting a single large driver at the transmission line’s source. Rather,
we must put a series of buffers equally spaced through the line to restore
the signal. Bakoglu [Bak90] derived the optimal number of repeaters
and repeater size for an RC transmission line. As shown in Figure 3-44,
we want to divide the line into k sections, each of length l. Each buffer
will be of size h.

unit-sized buffers Let’s first consider the case in which h=1 and the line is broken into k
sections. Rint and Cint are the total resistance and capacitance of the
transmission line. R0 is the driver’s equivalent resistance and C0 its
input capacitance. Then the 50% delay formula is

(EQ 3-35)

The various coefficients are due to the distributed nature of the trans-
mission line. We find the minimum delay by setting . This
gives the number of repeaters as

. (EQ 3-36)

h h h

k sections

...
Rint

CL

Cint

Ro Rint

CL

Cint

Ro

Figure 3-44 An RC transmission line with repeaters.

T50% k 0.7R0
Cint

k
-------- C0+

Rint

k
-------- 0.4

Cint

k
-------- 0.7C0++=

dT dk 0=

k
0.4RintCint

0.7R0C0
-------------------------=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 194 Return to Table of Contents

3.7 Delay through Resistive Interconnect 183

arbitrary buffer sizes When we free the size of the repeater to be an arbitrary value h, the
delay equation becomes

. (EQ 3-37)

We solve for minimum delay by setting and . This gives
the optimal values for k and h as

, (EQ 3-38)

. (EQ 3-39)

The total delay at these values is

. (EQ 3-40)

Example 3-3
Buffer insertion
in an RC line

Let’s calculate the buffers required when a minimum-size inverter
drives a metal 1 wire that is . In this case, R0 = 6.47 k
and C0 = 1.78 fF while Rint = 533 and Cint = 17.5 fF + 194 fF = 212
fF. The optimal number of buffers is

.

The optimal buffer size is

.

The 50% delay is

.

T50% k 0.7
R0

h
----- Cint

k
-------- hC0+

Rint

k
-------- 0.4

Cint

k
-------- 0.7hC0++=

kd
dT 0=

hd
dT 0=

k
0.4RintCint

0.7R0C0
-------------------------=

h
R0Cint

RintC0
---------------=

T50% 2.5 R0C0RintCint=

20 000 3

k 0.4 533 212 -1510
0.7 6470 1.78 -1510
--- 2.37= =

h 6470 212 -1510
533 1.78 -1510
-- 38.0= =

T50% 2.5 6470 1.78 -1510 533 212 -1510 90.2 ps= =

Modern VLSI Design: IP-Based Design, Fourth Edition Page 195 Return to Table of Contents

184 Chapter 3: Logic Gates

If we increase the size of the driver by a factor of 4, reducing its resis-
tance by 4X and increasing its capacitance by 4X, what happens? k and
T50% remain unchanged, but the buffer size drops by a factor of 4.

3.7.4 Crosstalk between RC Wires
aggressors and victims Crosstalk is important to analyze because it slows down signals—the

crosstalk noise increases the signal’s settling time. Crosstalk can
become a major component of delay if wiring is not carefully designed.

Figure 3-45 shows the basic situation in which crosstalk occurs. Two
nets are coupled by parasitic capacitance. One net is the aggressor net
that interferes with a victim net through that coupling capacitance. A
transition in the aggressor net is transmitted to the victim net causing the
victim to glitch. The glitch causes the victim net to take longer to settle
to its final value. In static combinational logic, crosstalk increases the
delay across a net; in dynamic logic, crosstalk can cause the state of a
node to flip, causing a permanent error.

crosstalk models In this section we will develop basic analytical models for crosstalk; in
Section 4.4.4 we will learn how to minimize crosstalk through routing
techniques. The simplest case to consider is a set of three wires [Sak93],

aggressor net

victim net

Figure 3-45 Aggressor and victim nets.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 196 Return to Table of Contents

3.7 Delay through Resistive Interconnect 185

as shown in Figure 3-46. The middle wire carries the signal of interest,
while the other two capactively inject crosstalk noise. Each wire is of
height T and width W, giving an aspect ratio of W/T. Each wire is height
H above the substrate and the wires are spaced a distance S apart. We
must consider three capacitances: C20 between the signal wire and the
substrate, and two capacitances of equal value, C21, to the two interfer-
ing wires. We denote the sum of these three capacitances as C3. Sakurai
estimates the RC delay through the signal wire in arbitrary time units as

. (EQ 3-41)

Using this simple model, Figure 3-47 shows Sakurai’s calculation of rel-
ative RC delay in arbitrary units for a 0.5 m technology for the signal
wire. This plot assumes that T/H = 1 and that the aspect ratio varies
from near 0 through 4; the delay is shown for four different spacings
between the wires, as given by the P/H ratio. This plot clearly shows
two important results. First, there is an optimum wire width for any
given wire spacing, as shown by the U shape of each curve. Second, the
optimum width increases as the spacing between wires increases.

multiple transitions That analysis assumes that the signals on the surrounding wires are sta-
ble, which is the best case. In general, we must assume that the sur-
rounding wires are in transition. Consider the model of Figure 3-48, in
which we have two RC transmission lines with a coupling capacitance
Cc between them. A step is applied to each wire at t=0, resulting in
response waveforms at the opposite ends of the transmission lines
[Sak93]. We assume that the unit resistances and capacitances of the two
transmission lines are equal.

W S

T

HC21
C20

C21

Figure 3-46 A
simple
crosstalk
model (after
Sakurai
[Sak93],
1993 IEEE).

tr
C20 4C21+

W H
-------------------------------=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 197 Return to Table of Contents

186 Chapter 3: Logic Gates

Defining differential voltages between the two wires helps simplify the
voltage response equations:

. (EQ 3-42)

The voltage responses of the transmission lines can then be written as

, (EQ 3-43)

. (EQ 3-44)

0

2

4

6

8

10

43210
aspect ratio (W/H)

re
la

tiv
e

RC
 d

el
ay

P/H=1

P/H=2

P/H=3

P/H=4

Figure 3-47 Delay vs. wire
aspect ratio and spacing
(after Sakurai [Sak93]
1993 IEEE).

V+
V1 V2+

2
------------------= V-

V1-V2

2
--------------=

x2

2

d

d V+ rc td

dV+=

x2

2

d

d V- r c 2cc+ td

dV-=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 198 Return to Table of Contents

3.8 Delay through Inductive Interconnect 187

If we let , , and , then the voltage responses V1
and V2 at the ends of the transmission lines can be written as:

, (EQ 3-45)

. (EQ 3-46)

3.8 Delay through Inductive Interconnect

Copper wiring provides much better performance, particularly for long
wires. However, copper wires have significant inductance. Analyzing
inductive wiring is more complicated than is analyzing RC transmission
lines. RLC transmission lines have a more complex response that
requires more subtle interpretation as well as more effort.

3.8.1 RLC Basics
overdamped and under-
damped circuits

First, let’s review the basics of RLC circuits. A single RLC section is
shown in Figure 3-49. The poles of the RLC section are at

(EQ 3-47)

E1 V1

+

-
+

-

E2 V2

+

-
+

-

CC

Figure 3-48 Two coupled
RC transmission lines.

R rl= C cl= Cc ccl=

V1 t E1
K1

2
------ E1 E2+ e

- 1t RC
E1-E2 e

- 1t RC 2RCc+
++

V2 t E2
K1

2
------ E1 E2+ e

- 1t RC
- E1-E2 e

- 1t RC 2RCc+
+

0
2-1

Modern VLSI Design: IP-Based Design, Fourth Edition Page 199 Return to Table of Contents

188 Chapter 3: Logic Gates

where the damping factor is defined as

. (EQ 3-48)

If the damping factor is greater than 1, the circuit is overdamped and
responds to an impulse or step by monotonically approaching the final
voltage. If the damping factor is less than 1, the circuit is underdamped
and oscillates as it converges to the steady-state voltage. Underdamped
circuits create a new challenge for digital circuit analysis because it is
harder to find their rise times. For an underdamped circuit, we simply
have to find the first time the waveform crosses the desired voltage
threshold, knowing that it will always remain above that level. To deter-
mine the rise time of an underdamped circuit, we must find the last time
at which the waveform falls below the threshold.

The simplest form of an RLC transmission line is the lossless LC line
with zero resistance. A signal propagates along an LC transmission line
[Ram65] with velocity

. (EQ 3-49)

Therefore, the propagation delay through an LC transmission line of
length l is . This value is a lower bound on the delay intro-
duced by an RLC transmission line.

3.8.2 RLC Transmission Line Delay
analytical delay model Kahng and Muddu [Kah97] developed an analytical model for inductive

delay that is only somewhat more difficult to calculate than the Elmore
delay for RC delay. Let RS and LS be the source impedance, Rint, Cint,

R
2
--- C

L
----=

Vout

+

-

t

underdamped

overdamped

L

C

R

Figure 3-49 An RLC circuit
and its behavior.

v 1
LC

-----------=

tp l LC=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 200 Return to Table of Contents

3.8 Delay through Inductive Interconnect 189

and Lint be the transmission line unit impedances, and CL be the load
capacitance. They define two coefficients b1 and b2:

 , (EQ 3-50)

. (EQ 3-51)

They approximated the transfer function of the network as

. (EQ 3-52)

For an underdamped transmission line, they estimate delay as

, (EQ 3-53)

where for most technologies.

analytical/numerical
model

Ismail and Friedman used analytical and numerical techniques to model
RLC delay [Ism00]. We will model the driving gate as a resistance Rtr
and the load gate as a capacitance CL. We will use R, L and C for the
unit resistance, inductance, and capacitance and Rt, Lt, and Ct for the
total resistance, inductance, and capacitance of the line. The complete
system is shown in Figure 3-50.

We can simplify our analysis by scaling time using the factor

. (EQ 3-54)

We normalize time by substituting . We also need two addi-
tional values:

, (EQ 3-55)

b1 RSCint RSCL
RintCint

2
------------------ RintCL+ + +=

b2
RSRintCint

2

6

RSRintCint
2

RintCint

2

24

Rint
2 CintCL

6

LSCint LSCL
LintCint

2
------------------ LintCL

+ + +

+ + + +

=

H s 1
1 sb1 s2b2+ +

C KC
2b2

4b2 b1
2–

------------------------=

KC 1.66=

n
1

Ll Cl CL+
---------------------------------=

t t' n=

RT
Rtr

Rt
------=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 201 Return to Table of Contents

190 Chapter 3: Logic Gates

. (EQ 3-56)

where l is once again the length of the transmission line.

The complete derivation of the transmission line’s response is rather
complex, but we are most interested in the propagation delay through
the wire to the load capacitance. Ismail and Friedman showed that prop-
agation delay is primarily a function of , which is defined as

. (EQ 3-57)

They used numerical techniques to approximate the 50% propagation
delay of our RLC transmission line as

. (EQ 3-58)

Figure 3-51 compares the response of RLC and RC wires for different
values of . These plots show that ignoring inductance results in very
poor results for small values of .

RC vs. RLC delay Figure 3-52 compares RC and RLC models for wires driven by inverters
in a 0.25 m technology. This figure shows that ignoring inductance
results in serious errors in estimating delay for a variety of wire and
driver configurations.

Vout

+

-

L

C

R L

C

R

CL

Rtr

...

transmission line

driver load

Figure 3-50 An RLC transmission line with a driver and load.

CT
CL
Ct
------=

Rt
2
----- Ct

Lt
----- Rl Cl RCl2 0.5+ + +

1 Cl+
--=

tpd e-2.9 1.35

1.48+ n=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 202 Return to Table of Contents

3.8 Delay through Inductive Interconnect 191

3.8.3 Buffer Insertion in RLC Transmission Lines
Ismail and Friedman also showed where to place buffers in an RLC
transmission line [Ism00]. The circuit is shown in Figure 3-53. The
transmission line is divided into k sections, each of length l/k. All the
buffers are of the same size and are h times larger than a minimum-size

RLC

RC

z = 0.20

Time (ps)

z = 0.44

Time (ps)

z = 0.94

Time (ps)

z = 1.31

Time (ps)

z = 1.68

Time (ps)

z = 2.62

Time (ps)

Figure 3-51 RC vs. RLC models for interconnect for various values of (from Ismail and Friedman
[Ism00]). © 2000 IEEE.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 203 Return to Table of Contents

192 Chapter 3: Logic Gates

RLC

RC

l = 1 mm
w = 0.9 mm
h = 150
error = 11.4%

(a) Time (ps)

l = 2 mm
w = 3.35 mm
h = 150
error = 9.2%

(b) Time (ps)

l = 2 mm
w = 3.35 mm
h = 150
error = 22.2%

(c) Time (ps)

l = 4 mm
w = 3.35 mm
h = 150
error = 28%

(d) Time (ps)

l = 10 mm
w = 3.35 mm
h = 300
error = 41%

(g) Time (ps)

l = 10 mm
w = 22.5 mm
h = 600
error = 58%

(h) Time (ps)

l = 6 mm
w = 3.35 mm
h = 150
error = 29%

(e) Time (ps)

l = 10 mm
w = 3.35 mm
h = 150
error = 24%

(f) Time (ps)

Figure 3-52 CMOS gate driving a copper wire, using RC and RLC models (from Ismail and
Friedman [Ism00]). © 2000 IEEE.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 204 Return to Table of Contents

3.9 Design-for-Yield 193

buffer; we use R0 and C0 to represent the source resistance and load
capacitance of a minimum-size buffer.

We can define

. (EQ 3-59)

As in the RC case, we are interested in determining the optimum drive
per stage hopt and the optimum length of each stage’s wire kopt. This
optimization problem cannot be solved analytically, but Ismail and
Friedman fitted curves to the functions to provide these formula:

, (EQ 3-60)

. (EQ 3-61)

3.9 Design-for-Yield

Design-for-yield is a relatively new term for a set of design processes
that aim to improve chip yield in advanced processes. Traditionally,
design and manufacturing have been maintained as separate tasks, with
the interface between then described by the design rules. As we move to

h h h

k sections

...
Rint

CL

Cint

Ro Rint

CL

Cint

Ro

Figure 3-53 Repeaters in an RLC transmission line.

TL R
Lt Rt
R0C0
-------------=

hopt
R0Ct
RtC0
----------- 1

1 0.16 TL/R
3+

0.3
---=

kopt
RtCt

2R0C0
---------------- 1

1 0.18 TL/R
3+

0.3
---=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 205 Return to Table of Contents

194 Chapter 3: Logic Gates

nanometer processes, design rules prove to be inadequate to describe all
the procedures that must be followed to obtain a high yield of chips that
work at the design speed. Design-for-yield bridges the design/manufac-
turing boundary to improve yields without imposing extreme burdens
on designers.

causes of variations Variations in chips come from three major sources [Aga07]: systematic
variations, random variations, and environmental variations. The chip
designer does not have direct control over the environment in which the
chip will operate, but the chip must be designed to be able to handle the
expected range of environmental conditions. Random variations in elec-
trical characteristics vary from chip to chip. Systematic variations can
be predicted based on the design and mask information along with infor-
mation about the manufacturing equipment. Systematic variations are
known as either cross-field, which depend on position on the reticle, or
layout-dependent, which is caused by a particular combination of layout
features.

A variety of trends make it harder to manufacture chips at high yields:

• larger variations in process and circuit parameters;
• higher leakage currents;
• patterning problems caused by specific combinations of geometric

features;
• metal width and thickness variations;
• stress in vias.

All these trends mean that manufacturing errors are harder to predict.
Traditionally, we have used worst-case design rules for spacing and
minimum width to abstract the manufacturing process and worst-case
circuit design to handle device and interconnect variations. However,
there are too many possible problems to be described in worst-case rules
without suffering huge losses in yield.

design-for-yield
techniques

The exact design-for-yield techniques to be used depend in part on the
manufacturing process being targeted. However, some examples illus-
trate how we can bridge the manufacturing/design gap [Pet04]:

• Some lithography features depend on the exact configuration of
mask features in ways that are too complex to be captured in design
rules. Modern DRC closure techniques simulate the lithographic
process to determine the on-chip features that will be created from a
set of masks. These features are then checked for correctness. If an

Modern VLSI Design: IP-Based Design, Fourth Edition Page 206 Return to Table of Contents

3.10 Gates as IP 195

error is found, such as an open or a short, the corresponding features
on the mask can be identified and modified to prevent the problem
from occurring on the fab line.

• Interconnect variations, either due to lithography or metal deposi-
tion, may cause a via to be partially uncovered. Adding an extra via
can ensure that the connection is properly made. Some extra vias
may not be acceptable because they require the layout to be come
larger, increasing die size. An alternative is to change the metal con-
figuration to avoid the coverage problem. If the extra via is added, it
must be checked to be sure that it does not cause performance prob-
lems.

• Metal variations cause complex effects in circuit timing: thinner
metal increases resistance but reduces coupling capacitance. Timing
analysis can take advantage of statistical methods to determine
whether metal variations may cause significant problems on a given
circuit.

3.10 Gates as IP

A standard cell library is a set of cells designed to work together in a
standard cell layout. Although some standard cells provide larger func-
tions, such as adders, the logic gate is the principal component of stan-
dard cell libraries. The logical function of a standard cell is easy to
describe. However, the layout of the cell must be carefully designed.
The gate layouts of Section 3.3.2 are designed simply to pack the logical
function into a small space. No concern was given to how the gate
would fit into a larger layout and we did not seriously consider the dif-
ferent load capacitances that the gate might see at its output. If we want
to design a gate layout to be used over and over in a variety of contexts,
such as in the standard cell systems we saw in Section 2.7.5, we need to
be much more careful.

standard cell organization A standard cell layout is standardized in several important respects,
removing some degrees of freedom. The cell is designed to be placed in
a row with other cells; some connections, like VDD and VSS, must
match up from cell to cell. Furthermore, we must design cells to be elec-
trically compatible. The cells in a standard cell library must be compati-
ble at several levels of abstraction:

Modern VLSI Design: IP-Based Design, Fourth Edition Page 207 Return to Table of Contents

196 Chapter 3: Logic Gates

• layout Cell size, pin placement.
• delay Ability to drive a specified load with a given delay.
• power Power consumption as well as circuit topology.

Standard cell layout systems read in the basic library parameters from a
database. This allows different libraries to be designed to different spec-
ifications, such as cell heights. But the cells in each library need to work
together with each other.

standard cell physical
design

The physical design of a standard cell is dictated by the placement and
routing algorithms used. All cells are the same height and are designed
to be abutted horizontally, with the left-hand VDD and VSS wires of one
cell connecting to the right-hand VDD and VSS wires of the adjacent
cell. The signal inputs and outputs are on the top and bottom of the cell.
These pins must be placed on one of the layers used by the place-and-
route system for connections into cells. Cells may be of differing
widths, but the width of the cell has to be a multiple of the grid pitch to
keep the pins on the grid. Many place-and-route systems allow over-the-
cell routing. In this case, the cell designer must keep a certain part of the
cell free of wires on the layer used for over-the-cell wires.

standard cell logical
design

A standard cell library is designed to have a set of logical functions that
cover an adequate range. Libraries generally have enough gates types so
that functions can be implemented in more than one way. The complex-
ity of a cell’s function is determined largely by the size of the cell. Some
typical functions for cells include:

VDD

VSS

out in

outin

ov
er

-t
he

-c
el

l w
iri

ng
 a

re
a

Figure 3-54 Layout
organization of a standard cell.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 208 Return to Table of Contents

3.10 Gates as IP 197

• NAND, NOR, NOT.
• AOInm, OAInm.
• Adders, multiplexers, other register-transfer functions.

standard cell power
options

Standard cell libraries should provide different versions of functions at
different points on the power/delay curve. The simplest way to provide
low-power and high-speed versions of a gate is to change the transistor
sizes. However, the library may also provide more sophisticated ver-
sions of cells, such as sleep transistors. In this case, the tools that gener-
ate the logic given to the standard cell system must ensure that the
circuits of gates along a path are compatible.

cell verification and quali-
fication

Standard cell verification leans heavily on circuit simulation. The logi-
cal function of a gate, or even a 1-bit adder, is not too difficult to verify.
Most of the CPU time in the verification process goes to extracting the
circuit parameters, including parasitics, from the layouts and simulating
the circuit behavior of the cells at many different combination of device
and parasitic parameter values. The library specifications determine the
worst-case delay and power consumption values that are acceptable.
The cells must also be qualified on each fabrication process using a test
chip. The test chip’s logic should be designed to make it easy to deter-
mine the proper functioning of all types of cells. If several different
libraries are allowed to be mixed together, such as low-power and high-
performance libraries, the test chip should include circuits that test the
proper functioning of combinations of these different cell types.

The next example describes some widely used libraries.

Example 3-4
The ARM
ArtisanTM

Physical IP
Libraries

ARM provides the Artisan Physical IP library [ARM08], which in turn
is distributed by MOSIS for use in MOSIS-fabricated projects. This
family of cells includes several different libraries, each optimized for a
different point in the design space:

• Advantage and SAGE-X includes cells up to arithmetic operations
and register file cells. They are optimized for speed and density.

• Advantage-HS and SAGE-HS are designed for high speed.
• Metro cells provide high density and low power.
• The Power Management Kit provides dynamic and leakage power

management function. It provides several options for threshold volt-
age implants, including mixtures of implants in a cell. It also pro-
vides level shifters, retention flip-flops, and other circuits.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 209 Return to Table of Contents

198 Chapter 3: Logic Gates

Cells from different libraries can be mixed-and-matched to provide high
performance for part of the logic and high density for other parts.

3.11 References

Claude Shannon first showed how to model switch networks with Bool-
ean functions for his Master’s thesis which was later published in the
Transactions of the AIEE [Sha38]. Keep in mind, however, that his
paper didn’t say that he was switching digital values and that switch net-
works were commonly used to route analog telephone signals at that
time. Hodges and Jackson [Hod83] give an excellent introduction to
device characteristics and digital circuit design, showing how to analyze
CMOS logic gates as well as design more complex digital circuits.
Books by Rabaey et al. [Rab03] and Uyemura [Uye92] are detailed pre-
sentations of digital logic circuits. Geiger, Allen, and Strader [Gei90]
give a good introduction to circuit simulation as well as a number of
important topics in circuit and logic design. Shoji [Sho88] gives a very
thorough analysis of delay through CMOS gates. Domino logic was
introduced by Krambeck, Lee, and Law [Kra82]. De et al [De01] con-
centrate on leakage currents in CMOS logic. Kursun and Friedman
[Kur06] discuss multi-voltage CMOS logic in detail.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 210 Return to Table of Contents

3.12 Problems 199

3.12 Problems

Use the parameters for the 180 nm process of Table 2-7 whenever pro-
cess parameters are required and the transistor equivalent resistances of
Table 3-2, unless otherwise noted.

Q3-1. Design the static complementary gates for these logic expres-
sions. If the complementary form of the variable is given, assume that it
is available.

a) a’b’.
b) a’ + b’c’.
c) a’b’c’.
d) a’b’ + c’d’.

Q3-2. Design stick diagrams for static complementary gates for each of
these functions:

a) a’b’.
b) a’+b’c’.
c) a’b’c’.
d) a’b’+c’d’.

Q3-3. Write the defining logic equation and draw the transistor topology
for each complex gate below:

a) OAI-21.
b) AOI-21.
c) AOI-221.
d) OAI-222.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 211 Return to Table of Contents

200 Chapter 3: Logic Gates

Q3-4. Design stick diagrams for these complex gates:

a) AOI-12.
b) OAI-12.
c) AOI-212.

Q3-5. Compare transistor sizes in NAND and NOR gates:

a) Size the transistors in a three-input, static complementary NAND
gate so that the gate’s rise and fall times are approximately equal.
b) Size the transistors in a three-input, static complementary NOR
gate so that the gate’s rise and fall times are approximately equal.
c) Find the ratio of total transistor area in the NAND gate vs. the
NOR gate.

Q3-6. Size the transistors in each of these gates so that its pullup and
pulldown times are approximately equal:

a) a’b’.
b) a’ + b’c’.
c) a’b’c’.
d) a’b’ + c’d’.

Q3-7. What are the best-case and worst-case transition time for a two-
input NAND gate with minimum-size transistors assuming a load equal
to one minimum-size inverter?

Q3-8. What are the best-case and worst-case transition time for a two-
input NOR gate with minimum-size transistors assuming a load equal to
one minimum-size inverter?

Q3-9. Compute the capacitive load presented by these gates:

a) Inverter with 3/2 pulldown and 6/2 pullup.
b) 2-input NAND with 6/2 pulldown and 6/2 pullup.
c) 2-input NOR with 6/2 pulldown and 12/2 pullup.

Q3-10. Compute transition times for an inverter with 3/2 pulldown and
6/2 pullup that drives an identically-sized inverter:

a) Rise time.
b) Fall time.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 212 Return to Table of Contents

3.12 Problems 201

Q3-11. An inverter that drives a load equal to 4Cl reaches its 50% output
value at 12 ps. Compute the value of Rn required to model this behavior.

Q3-12. Compute transition time for a two-input NAND gate with 6/2
pulldown and 6/2 pullup that drives an identically-sized NAND gate:

a) Rise time.
b) Fall time.

Q3-13. Compute transition times for a two-input NOR gate with 6/2
pulldown and 6/2 pullup that drives an identically-sized NOR gate:

a) Rise time.
b) Fall time.

Q3-14. Compute transition times for a two-input NOR gate with 6/2
pulldown and 12/2 pullup that drives an identically-sized inverter:

a) Rise time.
b) Fall time.

Q3-15. Compute rise time for an inverter with 3/2 pulldown and 6/2 pul-
lup that drives these wires (assume that the wire impedance is modeled
as a single lump):

a) Poly wire of width 2 , length 1,000 .
b) Metal 1 wire of width 3 , length 1,000 .
c) Metal 1 wire of width 3 , length 10,000 .

Q3-16. Compute fall time for a two-input NAND gate with 6/2 pull-
down and 6/2 pullup that drives these wires (assume that the wire
impedance is modeled as a single lump):

a) Poly wire of width 2 , length 1,000 .
b) Metal 1 wire of width 3 , length 1,000 .
c) Metal 1 wire of width 3 , length 10,000 .

Q3-17. Compute fall time for a two-input NOR gate with 6/2 pulldown
and 12/2 pullup that drives these wires (assume that the wire impedance
is modeled as a single lump):

a) Poly wire of width 2 , length 1,000 .
b) Metal 1 wire of width 3 , length 1,000 .
c) Metal 1 wire of width 3 , length 10,000 .

Modern VLSI Design: IP-Based Design, Fourth Edition Page 213 Return to Table of Contents

202 Chapter 3: Logic Gates

Q3-18. Plot the rise time for a two-input NAND gate with 6/2 pulldown
and 6/2 pullup as its load varies from one minimum-size inverter
through 20 minimum-size inverters.

Q3-19. Plot the fall time for a two-input NAND gate with 6/2 pulldown
and 6/2 pullup as its load varies from one minimum-size inverter
through 20 minimum-size inverters.

Q3-20. Plot the rise time for a two-input NOR gate with 6/2 pulldown
and 12/2 pullup as its load varies from one minimum-size inverters
through 20 minimum-size inverters.

Q3-21. Plot the fall time for a two-input NOR gate with 6/2 pulldown
and 12/2 pullup as its load varies from one minimum-size inverters
through 20 minimum-size inverters.

Q3-22. Draw transistor-level schematics for domino gates that imple-
ment these functions:

a) Three-input OR.
b) Three-input AND.
c) ab + c.
d) ab + cd.

Q3-23. Draw stick diagrams for domino gates that implement these
functions:

a) Three-input OR.
b) Three-input AND.
c) ab+c.
d) ab+cd.

Q3-24. Design a transistor-level schematic for a two-input NOR gate in
MTCMOS logic.

Q3-25. Design a transistor-level schematic for a two-input NAND gate
in MTCMOS logic.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 214 Return to Table of Contents

3.12 Problems 203

Q3-26. Compute the Elmore delay for these wires assuming each wire is
divided into 100 sections:

a) Poly wire of width 2 , length 1,000 .
b) Metal 1 wire of width 3 , length 1,000 .
c) Metal 1 wire of width 3 , length 10,000 .
d) Metal 2 wire of width 3 , length 1,000 .
e) Metal 2 wire of width 3 , length 10,000 .
f) Metal 3 wire of width 3 , length 1,000 .
g) Metal 3 wire of width 3 , length 10,000 .

Q3-27. Plot the Elmore delay for these wires when calculated using 2
sections, 4 sections, and 10 sections:

a) Metal 1 wire of width 3 , length 1,000 .
b) Metal 2 wire of width 3 , length 10,000 .

Q3-28. Compute the optimal number of buffers and buffer sizes for
these RC wires when driven by a minimum-size inverter:

a) Metal 1 wire of width 3 , length 1,000 .
b) Metal 1 wire of width 3 , length 10,000 .
c) Metal 2 wire of width 3 , length 1,000 .
d) Metal 2 wire of width 3 , length 10,000 .
e) Metal 3 wire of width 3 , length 1,000 .
f) Metal 3 wire of width 3 , length 10,000 .

Modern VLSI Design: IP-Based Design, Fourth Edition Page 215 Return to Table of Contents

Modern VLSI Design: IP-Based Design, Fourth Edition Page 216 Return to Table of Contents

4

Combinational Logic
Networks

Highlights:

Layouts for logic networks.

Delay through networks.

Power consumption.

Switch logic networks.

Combinational logic testing.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 217 Return to Table of Contents

206 Chapter 4: Combinational Logic Networks

i1

i2

i3

i4

o1

o2A

B

C

D E

F

G

o3

2 1

1

1

1 1

2

3

3

3

2

2

2

A cutset through a critical timing path (Figure 4-12).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 218 Return to Table of Contents

4.1 Introduction 207

4.1 Introduction

This chapter concentrates on the design of combinational logic func-
tions. Building a single inverter doesn’t justify a multi-billion VLSI fab-
rication line. We want to build complex systems of many combinational
gates. To do so, we will study basic aspects of hierarchical design and
analysis, especially delay and power analysis. The knowledge gained
about fabrication is important for combinational logic design—
technology-dependent parameters for minimum size, spacing, and para-
sitic values largely determine how big a gate circuit must be and how
fast it can run. We will use our knowledge of logic gates, developed in
the last chapter, to analyze the delay and testability properties of combi-
national logic networks, including both the interconnect and the gates.

The next section talks about standard cells, a design technique at the
intersection of logic and layout design. Section 4.3 builds models for
analyzing delay in combinational logic networks. Section 4.4 describes
design techniques for networks of gates. Section 4.5 analyzes the power
consumption of logic networks. Section 4.6 introduces switch logic.
Section 4.7 introduces methods for testing of logic networks.

4.2 Standard Cell-Based Layout

Many layout design methods are common to most subsystems. In this
section we will cover general-purpose layout design methods for use in
the rest of the chapter, largely by amplifying the lessons learned in
Chapter 3.

CMOS layouts are
structured

CMOS layouts are pleasantly tedious, thanks to the segregation of pul-
lups and pulldowns into separate tubs. The tub separation rules force a
small layout into a row of p-type transistors stacked on top of a row of
n-type transistors. On a larger scale, they force the design into rows of
gates, each composed of their own p-type and n-type rows. That style
makes layout design easier because it clearly marks the boundaries of
the design space.

cell layout as placement
and routing

As has been mentioned before, a good way to attack the design of a lay-
out is to divide the problem into placement, which positions compo-
nents, and routing, which runs wires between the components. These
two phases clearly interact: we can’t route the wires until components

4.2 Standard Cell-Based Layout

Modern VLSI Design: IP-Based Design, Fourth Edition Page 219 Return to Table of Contents

208 Chapter 4: Combinational Logic Networks

are placed, but the quality of a placement is judged solely by the quality
of the routing it allows. We separate layout design into these two phases
to make each part more tractable. We generally perform placement
using simple estimates of the quality of the final routing, then route the
wires using that fixed placement; occasionally we modify the placement
and patch up the routing to fix problems that weren’t apparent until all
the wires were routed. The primitives in placement are almost always
logic gates, memory elements, and occasionally larger components like
full adders. Transistors are too small to be useful as placement primi-
tives—the transistors in a logic gate move as a clump since spreading
them out would introduce huge parasitics within the gate. We generally
place logic gates in single-row layouts and either gates or larger regis-
ter-transfer components in multi-row layouts.

4.2.1 Single-Row Layout Design
rows of gates + wiring
channels

We can design a one-row layout as a one-dimensional array of gates
connected by wires. Changing the placement of logic gates (and as a
result changing the wiring between the gates) has both area and delay
effects. By sketching the wiring organization during placement, we can
judge the feasibility of wiring, the size of the layout, and the wiring par-
asitics which will limit performance.

p-type

n-type

short wires

feedthrough

routing channel

VDD

VSS

Figure 4-1 Structure of a
one-row layout.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 220 Return to Table of Contents

4.2 Standard Cell-Based Layout 209

The basic structure of a one-row layout is shown in Figure 4-1. The
transistors are all between the power rails formed by the VDD and VSS
lines. The major routing channel runs below the power rails (there is
another channel above the row, of course, that can also be used by these
transistors). The gate inputs and outputs are near the center of the row,
so vertical wires connect the gates to the routing channel and the outside
world. Sometimes space is left in the transistor area for a feedthrough to
allow a wire to be routed through the middle of the cell. Smaller areas
within the transistor area—above the VSS line, below the VDD line, and
between the n-type and p-type rows—are also available for routing
wires.

intra-row wiring We usually want to avoid routing wires between the p-type and n-type
rows because stretching apart the logic gates adds harmful parasitics, as
discussed in Section 3.3.7. However, useful routing areas can be created
when transistor sizes in the row vary widely, leaving extra room around
the smaller transistors, as shown in Figure 4-2. The intra-row wiring
areas are useful for short wires between logic gates in the same
row—not only is a routing track saved, but the wire has significantly
less capacitance since it need not run down to the routing channel and
back up. Intra-row routing is a method of last resort, but if it becomes

VDD

VSS

intra-row
wiring area

Figure 4-2 Intra-row wiring.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 221 Return to Table of Contents

210 Chapter 4: Combinational Logic Networks

necessary, the best way to take advantage of the available space is to
first design the basic gate layout first, then look for interstitial space
around the small transistors where short wires can be routed, and finally
to route the remaining wires through the channel.

channel structure The wiring channel’s structure is shown in Figure 4-3. A channel has
pins only along its top and bottom walls. The channel is divided into
horizontal tracks, more typically called tracks, and vertical tracks.
The horizontal and vertical tracks form a grid on which wire segments
are placed. The distance between tracks is equal to the minimum spac-
ing between a wire and a via. Using a standard grid greatly simplifies
wiring design with little penalty—human or algorithmic routers need
only place wires in the tracks to ensure there will be no design rule vio-
lations. Wire segments on horizontal and vertical tracks are on separate
layers—some advanced routing programs occasionally violate this rule
to improve the routing, but keeping vertical and horizontal wire seg-
ments separate greatly simplifies wiring design. Segregation ensures
that vertical wires are in danger of shorting horizontal wires only at cor-
ners, where vias connect the horizontal and vertical layers. If we con-
sider each horizontal segment to be terminated at both ends by vias,
with longer connections formed by multiple segments, then the routing
is completely determined by the endpoints of the horizontal segments.

The width of the routing channel is determined by the placement of pins
along its top and bottom edges. The major variable in area devoted to
signal routing is the height of the channel, which is determined by the
density—the maximum number of horizontal tracks occupied on any

height

vertical track

horizontal track

b a b

ba

Figure 4-3 Structure of a routing channel.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 222 Return to Table of Contents

4.2 Standard Cell-Based Layout 211

vertical cut through the channel. Good routing algorithms work hard to
minimize the number of tracks required to route all the signals in a chan-
nel, but they can do no better than the density: if three signals must go
from one side of the channel to the other at a vertical cut, at least three
tracks are required to accommodate those wires.

pin placement Changing the placement of pins can change both the density and the dif-
ficulty of the routing problem. Consider the example of Figure 4-4. The
position of a pin along the top or bottom edge is determined by the posi-
tion of the incoming vertical wire that connects the channel to the appro-
priate logic gate input or output; the transistor rows above and below the
wiring channel can both connect to the channel, though at opposite
edges. In this case, swapping the a and b pins reduces the channel den-
sity from three to two.

density and wirability Density is a measure that can be used to evaluate the wirability of a
channel before we have actually completed the wiring. It is very
important to be able to estimate the results of routing so that we can
provide for adequate space in the design. It is sometimes valuable to
leave extra space in the channel to make it easier to route the wires, as
well as to be able to change the wiring to accommodate logic design
changes. Not all blocks of logic are equally performance-critical, and
it may be worth spending some area to make a logic block easier to
layout and to modify.

The next example walks through the design process for a one-row
layout.

a b c

cb a

a b c

c ba

before after

Figure 4-4
Channel density
changes with pin
placement.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 223 Return to Table of Contents

212 Chapter 4: Combinational Logic Networks

Example 4-1
Layout of a full
adder

A full adder illustrates the techniques used to design single-row layouts.
The full adder computes two functions: si = ai bi ci and ci+1 = ai
bi ai ci. bi ci. We will compute si using two two-input XORs:

 We will use a two-level NAND network to compute ci+1:

(An AOI gate is a better choice for the carry computation, but we have
more cells to use to illustrate placement options by choosing this imple-
mentation.) We have a total of six gates to place and route. In this case,
we won’t use intra-row wiring—all of the wires will go into the wiring
channel below the gates. Our layout job is to place the gates such that
the wiring channel below the row of gates has as few tracks as possible.

We can use a three-step process to generate and evaluate a candidate
layout for the adder:

1. Place the gates in a row by any method.
2. Draw the wires between the gates and the primary inputs and

outputs.
3. Measure the density of the channel.

ai

bi

ci

si

X1

X2

bi

ci

ai

bi

ai

ci

ci+1

N1

N2

N3

N4

Modern VLSI Design: IP-Based Design, Fourth Edition Page 224 Return to Table of Contents

4.2 Standard Cell-Based Layout 213

Once we have evaluated a placement, we can decide how to improve it.
We can generate the first placement by almost any means; after that, we
use the results of the last routing to suggest changes to the placement.

The full adder has four gates to place, two for each function. We will
start by keeping together the gates for each function:

Though the final layout will have its wires in the wiring channel below
the cell, we have drawn the wires over the gates here for clarity—draw-
ing the paths of the wires down to the channel and then back up to the
gate inputs is too confusing. The channel density for this placement is
five.

We can try to reduce the channel density by interchanging gates. Two
opportunities suggest themselves:

• Swap the gates within each function. A simple test shows that this
doesn’t reduce the density.

• Swap the XOR pair with the NAND network. This doesn’t help
either, because we must still drag ai, bi, and ci to the XORs and send
ci+1 to the right edge of the cell.

This placement seems to give the minimum-height routing channel,
which means that the channel’s area will be as small as possible. Gate
placement can affect transistor size in larger layouts—we may be able to
reduce the sizes of the transistors in some critical gates by placing those
gates closer together. But in a layout this small, if we use metal wiring
as much as possible, the sizes of the gate cells are fixed. So minimizing
wiring channel density minimizes total layout area.

Systems with more than six gates provide more opportunities for place-
ment optimization. If we are more concerned about parasitics on some
critical wires (such as the carry), we can choose a placement to make
those wires as short as possible. If those wires are sufficiently critical,

X1 X2 N1 N2

ai

bi

ci

ci+1

si

density = 5

N3 N4

Modern VLSI Design: IP-Based Design, Fourth Edition Page 225 Return to Table of Contents

214 Chapter 4: Combinational Logic Networks

we may even want to increase density beyond the minimum required to
make those critical wires shorter.

routing algorithms We also need to know how to route the wires in the channel. Channel
routing is NP-complete [Szy85], but simple algorithms exist for special
cases, and effective heuristics exist that can solve many problems. Here,
we will identify what makes each problem difficult and identify some
simple algorithms and heuristics that can be applied by hand.

The left-edge algorithm is a simple channel routing algorithm that uses
only one horizontal wire segment per net. The algorithm sweeps the
channel from left to right; imagine holding a ruler vertically over the
channel and stopping at each pin, whether it is on the top or bottom of
the channel. If the pin is the first pin on a net, that net is assigned its lone
horizontal wire segment immediately. The track assignment is
greedy—the bottommost empty track is assigned to the net. When the
last pin on a net is encountered, the net’s track is marked as empty and it
can be reused by another net farther to the right. The vertical wire seg-
ments that connect the pins to the horizontal segment, along with the
necessary vias, can be added separately, after assignment of horizontal
segments is complete. The next example shows how to use this algo-
rithm to route a channel.

Example 4-2
Left-edge channel
routing

This channel has three nets:

track 1

track 2

A BB CB

A B C

track 3

Modern VLSI Design: IP-Based Design, Fourth Edition Page 226 Return to Table of Contents

4.2 Standard Cell-Based Layout 215

The left-most net is A; we route it in the first empty track, which is track
1. We run a wire segment from A’s left-most pin to its right-most:

Moving to the right, the next pin is B. Track 1 is occupied, so we route B
in track 2:

The third and final net is C. At this position, A no longer occupies track
1, so we can reuse it to route C:

Once the horizontal wire segments have all been placed, we can add the
vertical wire segments to connect the tracks to the pins and, of course, the
vias needed to connect the horizontal and vertical segments. Since the
channel needs only two tracks, its height can be reduced appropriately.

track 1

track 2

A BB CB

A B C

track 3

track 1

track 2

A BB CB

A B C

track 3

track 1

track 2

A BB CB

A B C

track 3

Modern VLSI Design: IP-Based Design, Fourth Edition Page 227 Return to Table of Contents

216 Chapter 4: Combinational Logic Networks

vertical constraints and
routability

The left-edge algorithm is exact for the problems we have encountered
so far—it always gives a channel with the smallest possible height. But
it fails in an important class of problems illustrated in Figure 4-5. Both
ends of nets A and B are on the same vertical tracks. As a result, we
can’t route both nets using only one horizontal track each. If only one of
the pins were moved—for instance, the right pin of B—we could route
A in the first track and B in the second track. But pins along the top and
bottom of the track are fixed and can’t be moved by the router—the
router controls only the placement of horizontal segments in tracks. Ver-
tically aligned pins form a vertical constraint on the routing problem:
on the left-hand side of this channel, the placement of A’s pin above B’s
constrains A’s horizontal segment to be above B’s at that point; on the
right-hand side, B’s horizontal segment must be above A’s at that point
in the channel. We obviously can’t satisfy both constraints
simultaneously if we restrict each net to one horizontal segment.

dogleg wires The natural solution is to allow a net to move from track to track as it
travels along the channel [Deu76]. Figure 4-6 shows a dogleg—those
who can see Greek gods in the constellations should also be able to
identify this wire as a dog’s outstretched hind leg. We can use one
single-track net and one dogleg to route the channel of Figure 4-5. Dog-
leg channel routing algorithms are much more sophisticated than the

A B

AB

Figure 4-5 A channel that
cannot be routed by the left-
edge algorithm.

Figure 4-6 A dogleg wire.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 228 Return to Table of Contents

4.2 Standard Cell-Based Layout 217

left-edge algorithm. If you want to route a channel with a few cyclic
constraints by hand, a good strategy is to route the nets that require dog-
legs first, then route the remaining nets using the left-edge algorithm,
avoiding the regions occupied by the previously routed nets.

4.2.2 Standard Cell Layout Design
multi-row layouts Large layouts are composed of several rows. We introduced standard

cell layout in Chapter 2; we are now in a position to investigate standard
cell layout design in more detail. A standard cell layout is composed of
cells taken from a library. Cells include combinational logic gates and
memory elements, and perhaps cells as complex as full adders and mul-
tiplexers. A good standard cell library includes many variations on logic
gates: NANDs, NORs, AOIs, OAIs, etc., all with varying number of
inputs. The more complete the library, the less that is wasted when map-
ping your logic function onto the available components.

Figure 4-7 shows how the layout of a typical standard cell is organized.
All cells in the library must have the same pitch (the distance between
two points, in this case height) because they will be connected by abut-
ment and their VDD and VSS lines must match up. Wires that must be
connected to other cells are pulled to the top and bottom edges of the
cell and placed to match the grid of the routing channel. The wire must
be presented at the cell’s edge on the layer used to make vertical connec-
tions in the channel. Most of the cell’s area cannot be used for wiring,
but some cells can be designed with a feedthrough area. Without
feedthroughs, any wire going from one channel to another would have
to be run to the end of the channel and around the end of the cell row;
feedthroughs provide shortcuts through which delay-critical wires can
be routed.

driving standard cell loads Transistors in standard cells are typically much larger than those in cus-
tom layouts. The designer of a library cell doesn’t know how it will be
used. In the worst case, a cell may have to drive a wire from one corner
of a large chip to the other. To ensure that even worst-case delays are
acceptable, the cells are designed with large transistors. Some libraries
give two varieties of cells: high-power cells can be used to drive long
wires, while low-power cells can be used to drive nodes with lower
capacitive loads. Of course, the final selection cannot be made until
after placement; we usually make an initial selection of low- or high-
power based on the critical path of the gate network, then adjust the
selection after layout. Furthermore, both low-power and high-power

Modern VLSI Design: IP-Based Design, Fourth Edition Page 229 Return to Table of Contents

218 Chapter 4: Combinational Logic Networks

cells must be the same height so that they can be mixed; the smaller
transistor sizes of low-power cells may result in narrower cells.

area and delay The interaction between area and delay in a multi-row layout can be
complex. Generally we are interested in minimizing area while satisfy-
ing a maximum delay through the combinational logic. One good way

VDD

VSS

feedthrough
area

transistors

external
connection

points

Figure 4-7 Configuration of a typical standard cell.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 230 Return to Table of Contents

4.3 Combinational Network Delay 219

to judge the wirability of a placement is to write a program to generate a
rat’s nest plot. (Use a program to generate the plot—it is too tedious to
construct by hand for examples of interesting size.) An example is
shown in Figure 4-8. The plot shows the position of each component,
usually as a point or a small box, and straight lines between components
connected by a wire. The straight line is a grossly simplified cartoon of
the wire’s actual path in the final routing, but for medium-sized layouts
it is sufficient to identify congested areas. If many lines run through a
small section, either the routing channel in that area will be very tall, or
wires will have to be routed around that region, filling up other chan-
nels. Individual wires also point to delay problems—a long line from
one end of the layout to the other indicates a long wire. If that wire is on
the critical delay path, the capacitance of the wire will seriously affect
performance.

4.3 Combinational Network Delay

We know how to analyze the speed of a single logic gate, but that isn’t
sufficient to know the delay through a complex network of logic gates.
The delay through one or two gates may in fact limit a system’s clock
rate—transistors that are too small to drive the gate’s load, particularly
if the gate fans out to a number of other gates, may cause one gate to run

Figure 4-8 A rat’s
nest plot of wires.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 231 Return to Table of Contents

220 Chapter 4: Combinational Logic Networks

much more slowly than all the other gates in the system. However, the
clock rate may be limited by delay on a path through a number of gates.
The delay through a combinational network depends in part on the num-
ber of gates the signal must go through; if some paths are significantly
longer than others, the long paths will determine the maximum clock
rate. The two problems must be solved in different ways: speeding up a
single gate requires modifying the transistor sizes or perhaps the layout
to reduce parasitics; cutting down excessively long paths requires rede-
signing the logic at the gate level. We must consider both to obtain max-
imum system performance.

In this section, we’ll assume that the wires between the gates are ideal.
In the next section we will extend our techniques to take into account
the characteristics of real interconnect.

4.3.1 Fanout
sources of gate delay Let’s first consider the problems that can cause a single gate to run too

slowly. A gate runs slowly when its pullup and pulldown transistors
have W/Ls too small to drive the capacitance attached to the gate’s out-
put. As shown in Figure 4-9, that capacitance may come from the tran-
sistor gates or from the wires to those gates. The gate can be sped up by
increasing the sizes of its transistors or reducing the capacitance
attached to it.

fanout capacitance Logic gates that have large fanout (many gates attached to the output)
are prime candidates for slow operation. Even if all the fanout gates use
minimum-size transistors, presenting the smallest possible load, they
may add up to a large load capacitance. Some of the fanout gates may
use transistors that are larger than they need, in which case those transis-

wire delay

fanout delay

Figure 4-9 Sources of delay
through a single gate.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 232 Return to Table of Contents

4.3 Combinational Network Delay 221

tors can be reduced in size to speed up the previous gate. In many cases
this fortuitous situation does not occur, leaving two possible solutions:

• The transistors of the driving gate can be enlarged, in severe cases
using the buffer chains of Section 3.3.8.

• The logic can be redesigned to reduce the gate’s fanout.

An example of logic redesign is shown in Figure 4-10. The driver gate
now drives two inverters, each of which drives two other gates. Since
inverters were used, the fanout gates must be reversed in sense to absorb
the inversion; alternatively, non-inverting buffers can be used. The
inverters/buffers add delay themselves but cut down the load capaci-
tance on the driver gate. In the case shown in the figure, adding the
inverters probably slowed down the circuit because they added too
much delay; a gate which drives more fanout gates can benefit from buf-
fer insertion.

wire capacitance Excess load capacitance can also come from the wires between the gate
output and its fanout gates. We saw in Section 3.7.3 how to optimally
add buffers in RC transmission lines.

inverting
buffers

Figure 4-10 Fanout reduction
by buffer insertion.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 233 Return to Table of Contents

222 Chapter 4: Combinational Logic Networks

4.3.2 Path Delay
paths and delay In other cases, performance may be limited not by a single gate, but by a

path through a number of gates. To understand how this can happen and
what we can do about it, we need a concise model of the combinational
logic that considers only delays. As shown in Figure 4-11, we can model
the logic network and its delays as a directed graph. Each logic gate and
each primary input or output is assigned its own node in the graph.
When one gate drives another, an edge is added from the driving gate’s
node to the driven gate’s node; the number assigned to the edge is the
delay required for a signal value to propagate from the driver to the
input of the driven gate. (The delay for 0 1 and 1 0 transitions will
in general be different; since the wires in the network may be changing
arbitrarily, we will choose the worst delay to represent the delay along a
path.)

i1
i2

i3

i4

o1

o2

A

B C
D

logic network

graph model

i1
i2

i3

i4

o1

o2

A

B C

D

1

1

1

1

5

5

7

4

Figure 4-11 A
graph model for
delay through
combinational
logic.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 234 Return to Table of Contents

4.3 Combinational Network Delay 223

In building the graph of Figure 4-11, need to know the gate along each
edge in the graph. We use a delay calculator to estimate the delay from
one gate’s input through the gate and its interconnect to the next gate’s
input. The delay calculator may use a variety of models ranging from
simple to complex. We will consider the problem of calculating the
delay between one pair of gates in more detail in Section 4.4.1.

propagating a single event The simplest delay problem to analyze is to change the value at only one
input and determine how long it takes for the effect to be propagated to a
single output. (Of course, there must be a path from the selected input to
the output.) That delay can be found by summing the delays along all
the edges on the path from the input to the output. In Figure 4-11, the
path from i4 to o2 has two edges with a total delay of 5 ns.

We could use a logic simulator that models delays to compute the delays
through various paths in the logic. However, system performance is
determined by the maximum delay through the logic—the longest delay
from any input to any output for any possible set of input values. To
determine the maximum delay by simulation, we would have to simu-
late all 2n possible input values to the combinational logic. It is possible,
however, to find the logic network’s maximum delay without exhaustive
simulation. Timing analysis [McW80,Ost83] builds a graph that mod-
els delays through the network and identifies the longest delay path.
Timing analysis is also known as static timing analysis because it
determines delays statically, independent of the values input to the logic
gates.

critical path The longest delay path is known as the critical path since that path lim-
its system performance. We know that the graph has no cycles, or paths
from a node back to itself—a cycle in the graph would correspond to
feedback in the logic network. As a result, finding the critical path isn’t
too difficult. In Figure 4-11, there are two paths of equal length: i2 B

C D o2 and i3 B C D o2 both have total delays of
17 ns. Any sequential system built from this logic must have a total
delay of 17 ns, plus the setup time of the latches attached to the outputs,
plus the time required for the driving latches to switch the logic’s inputs
(a term which was ignored in labeling the graph’s delays).

The critical path not only tells us the system cycle time, it points out
what part of the combinational logic must be changed to improve sys-
tem performance. Speeding up a gate off the critical path, such as A in
the example, won’t speed up the combinational logic. The only way to
reduce the longest delay is to speed up a gate on the critical path. That
can be done by increasing transistor sizes or reducing wiring capaci-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 235 Return to Table of Contents

224 Chapter 4: Combinational Logic Networks

tance. It can also be done by redesigning the logic along the critical path
to use a faster gate configuration.

cutsets and timing
optimization

Speeding up the system may require modifying several sections of logic
since the critical path can have multiple branches. The circuit in Figure
4-12 has a critical path with a split and a join in it. Speeding up the path
from B to D will not speed up the system—when that branch is removed
from the critical path, the parallel branch remains to maintain its length.
The system can be improved only by speeding up both branches
[Sin88]. A cutset is a set of edges in a graph that, when removed, break
the graph into two unconnected pieces. Any cutset that separates the pri-
mary inputs and primary outputs identifies a set of speedups sufficient
to reduce the critical delay path. The set b-d and c-d is one such cutset;
the single edge d-e is another. We probably want to speed up the circuit
by making as few changes to the network as possible. It may not be pos-
sible, however, to speed up every connection on the critical path. After
selecting a set of optimization locations identified by a cutset, you must
analyze them to be sure they can be sped up, and possibly alter the cut-
set to find better optimization points.

false paths However, not all paths in the timing analysis graph represent changes
propagating through the circuit that limit combinational delay. Because
logic gates compute Boolean functions, some paths through the logic
network are cut short. Consider the example of Figure 4-14—the upper
input of the NAND gate goes low first, followed by the lower input.

i1

i2

i3

i4

o1

o2A

B

C

D E

F

G

o3

2 1

1

1

1 1

2

3

3

3

2

2

2

Figure 4-12
A cutset
through a
critical timing
path.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 236 Return to Table of Contents

4.3 Combinational Network Delay 225

Either input going low causes the NAND’s output to go low, but after
one has changed, the high-to-low transition of the other input doesn’t
affect the gate’s output. If we know that the upper input changes first,

a

b

c

d

fe

deep

a b ca d a c e f

shallow

Figure 4-13
Using Boolean
identities to
reduce delay.

true path

false path

Figure 4-14 Boolean gates
create false delay paths.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 237 Return to Table of Contents

226 Chapter 4: Combinational Logic Networks

we can declare the path through the lower input a false path for the
combination of primary input values which cause these internal transi-
tions. Even if the false path is longer than any true path, it won’t deter-
mine the network’s combinational delay because the transitions along
that path don’t cause the primary outputs to change. Note, however, that
to identify false paths we must throw away our previous, simplifying
assumption that the delay between two gates is equal to the worst of the
rise and fall times.

Redesigning logic to reduce the critical path length requires rewriting
the function to reduce the number of logic levels. Consider the logic of
Figure 4-13. The critical path is clearly from e and f to the primary out-
put. Writing the Boolean expression for this network both illustrates its
depth and suggests a solution. The function is a(b + c(d + ef)); by elimi-
nating parentheses we can reduce the depth of the equivalent logic net-
work. The logic corresponding to ab + acd + acef has only two levels.
Care must be taken, however—flattening logic leads to gates with
higher fanin. Since adding inputs to a gate slows it down (due to the
delay through series transistors), all of the delay gained by flattening
may be eaten up in the gates.

4.3.3 Transistor Sizing
One of the most powerful tools available to the integrated circuit
designer is transistor sizing. By varying the sizes of transistors at strate-
gic points, a circuit can be made to run much faster than when all its
transistors have the same size. Transistor sizing can be chosen arbi-
trarily in full-custom layout, though it will take extra time to construct
the layout. But transistor sizing can also be used to a limited extent in
standard cells if logic gates come in several versions with
variously-sized transistors.

The next example illustrates the effects of transistor sizing on one of the
most important circuits, the adder.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 238 Return to Table of Contents

4.3 Combinational Network Delay 227

Example 4-3
Transistor sizing
in an adder carry
chain

We will concentrate on the carry chain of the adder, since the longest
delay follows that path. We will use a ripple-carry adder made of full
adders (the full adder is described in more detail in Section 6.3). For this
adder, we will use an AOI gate to implement the carry computation
because it is faster and more compact than a NAND-NAND network.
The AOI must compute the function . Here is
the schematic for the AOI gate:

We arranged the order of transistors to put the early-arriving signals, ai
and bi, closer to the power supplies, as was discussed in Section 3.3.4.
We will build a four-bit carry chain using four of these AOI gates, with
the four outputs being c1, c2, c3, and c4.

ci 1+ aibi ai bi+ ci+=

+

ci

ai bi

ai

bi

ci

ai

ai

bi
bi

+

ci+1

Modern VLSI Design: IP-Based Design, Fourth Edition Page 239 Return to Table of Contents

228 Chapter 4: Combinational Logic Networks

The worst case for delay is that the a or b are 1 and the carry-in to the
zero-th stage c0 is 1. We will make the simplifying assumption that ai=1
and bi=0 for all bits, since other combinations only add a small delay
which is independent of the stage. The carry of the ith stage, on the other
hand, must wait for the i-1th stage to complete.

The simplest circuit uses small transistors all of the same size.
Using the 180 nm technology, we have made all n-type transistors
with and all p-type transistors with

. Here are the waveforms for the four carry out-
puts in this case:

You can verify for yourself that uniformly increasing the sizes of all the
transistors in the carry chain does not decrease delay—all the gates have
larger loads to drive, negating the effect of higher drive.

W L 270nm 180nm=
W L 540nm 180nm=

0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

time (ps)

V

c1 c2 c3 c4

Modern VLSI Design: IP-Based Design, Fourth Edition Page 240 Return to Table of Contents

4.3 Combinational Network Delay 229

The worst-case delay scenario for the pulldown network is the same in
every stage: ci is the latest-arriving signal and is rising. We can therefore
widen these highlighted transistors in the AND-OR pulldown network:

These transistors include the pulldown controlled by ci and the ai and bi
transistors on the same path, which also must be widened to ensure that
they do not become a bottleneck. We must also increase the size of the
output inverter.

We will first try making the a, b, and c pulldowns with
, the first-stage inverter pullup with
 and the pulldown with .

+

ci

ai bi

ai

bi

ci

ai

ai

bi
bi

+

ci+1

W L 540nm 180nm=
W L 1620nm 180nm= W L 540nm 180nm=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 241 Return to Table of Contents

230 Chapter 4: Combinational Logic Networks

The inverters in the subsequent stages have pullups and pulldowns of
size . Here is the result:

The adder is now somewhat faster. The slope of c1 is now steeper and
all the c’s are spaced closer together.

We can try increasing the sizes of the transistors in the second and third
stages, also increasing the first-stage transistors somewhat. In this case,
the first-stage a and b pulldowns in the first stage have

, the first stage c pulldown have
, and the first-stage inverter with a
 pullup and pulldown.

The second- and third-stage a, b, and c pulldowns have been increased
in size to . The inverter pullup is

 and pulldown is as in
the last case.

W L 540nm 180nm=

0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

time (ps)

V

c1 c2 c3 c4

W L 270nm 180nm=
W L 1080nm 180nm=
W L 1620nm 180nm= W L 540nm 180nm=

W L 1080nm 180nm=
W L 1080nm 180nm= W L 540nm 180nm=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 242 Return to Table of Contents

4.3 Combinational Network Delay 231

Here are the results:

This is much faster than our previous efforts. The total carry propaga-
tion takes less time and the four carry outputs are about equally spaced.

logical effort The theory of logical effort [Sut99] provides a clear and useful founda-
tion for transistor sizing. Logical effort uses relatively simple models to
analyze the behavior of chains of gates in order to optimally size all the
transistors in the gates. Logical effort works best on tree networks and
less well on circuits with reconvergent fanout, but the theory is both
widely useful and intuitively appealing. Logical effort not only lets us
easily calculate delay, it shows us how to size transistors to optimize
delay along a path.

Logical effort computes d, the delay of a gate, in units of , the delay of
a minimum-size inverter. We start with a model for a single gate. A
gate’s delay consists of two components:

. (EQ 4-1)

The effort delay f is related to the gate’s load, while the parasitic delay
p is fixed by the gate’s structure. We can express the effort delay in
terms of its components:

. (EQ 4-2)

The electrical effort h is determined by the gate’s load while the logical
effort g is determined by the gate’s structure. Electrical effort is given by

0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

time (ps)

V
c1 c2 c3 c4

d f p+=

f gh=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 243 Return to Table of Contents

232 Chapter 4: Combinational Logic Networks

the relationship between the gate’s capacitive load and the capacitance of
its own drivers (which is related to the drivers’ current capability):

. (EQ 4-3)

The logical effort g for several different gates is given in Table 4-1. The
logical effort can be computed by a few simple rules.

We can rewrite Equation 3-1 using our definition of f to give

. (EQ 4-4)

We are now ready to consider the logical effort along a path of logic
gates. The path logical effort of a chain of gates is

. (EQ 4-5)

The electrical effort along a path is the ratio of the last stage’s load to the
first stage’s input capacitance:

. (EQ 4-6)

Branching effort takes fanout into account. We define the branching
effort b at a gate as

. (EQ 4-7)

h
Cout
Cin
----------=

1 input 2 inputs 3 inputs 4 inputs n inputs

inverter 1

NAND 4/3 5/3 6/3 (n+2)/3

NOR 5/3 7/3 9/3 (2n+1)/3

mux 2 2 2 2

XOR 4 12 32

Table 4-1 Logical
effort for several types
of static CMOS gates.

d gh p+=

G gi

i 1=

n

=

H
Cout
Cin
----------=

b
Conpath Coffpath+

Conpath
---=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 244 Return to Table of Contents

4.3 Combinational Network Delay 233

The branching effort along an entire path is

. (EQ 4-8)

The path effort is defined as

. (EQ 4-9)

The path delay is the sum of the delays of the gates along the path:

. (EQ 4-10)

We can use these results to choose the transistor sizes that minimize the
delay along that path. We know from Section 3.3.8 that optimal buffer
chains are exponentially tapered. When recast in the logical effort
framework, this means that each stage exerts the same effort. Therefore,
the optimal stage effort is

. (EQ 4-11)

We can determine the ratios of each of the gates along the path by start-
ing from the last gate and working back to the first gate. Each gate i has
a ratio of

. (EQ 4-12)

The delay along the path is

. (EQ 4-13)

Example 4-4 illustrates the use of logical effort in transistor sizing.

B bi

i 1=

n

=

F GBH=

D di

i 1=

N

gihi

i 1=

N

pi

i 1=

N

+ DF P+= = =

f̂ F1 N=

Cin,i
giCout,i

f̂
----------------=

D̂ NF1 N P+=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 245 Return to Table of Contents

234 Chapter 4: Combinational Logic Networks

Example 4-4
Sizing transistors
with logical effort

Let us apply logical effort to a chain of three two-input NAND gates.
The first NAND gate is driven by a minimum-size inverter and the out-
put of the last NAND gate is connected to an inverter that is 4X the min-
imum size.

The logical effort for the chain of three NAND gates is

.

The branching effort along the path is since there is no fanout.
The electrical effort is the ratio of input to output capacitances, which
was given as 4. Then

.

The optimum effort per stage is

.

Since all the stages have the same type of gate, we can compute the
output-to-input capacitance ratio for the stages as

.

4.3.4 Logic Synthesis
Logic design—turning a logic function into a network of gates—is
tedious and time-consuming. While we may use specialized logic
designs for ALUs, logic optimization or logic synthesis programs are
often used to design random logic. Logic optimization programs have
two goals: area minimization and delay satisfaction. Logic optimizers
typically minimize area subject to meeting the designer’s specified max-
imum delay. These tools can generate multi-level logic using a variety
of methods: simplification, which takes advantage of don’t-cares;
common factor extraction; and structure collapsing, which eliminates
common factors by reducing logic depth.

G 4
3

i 1=

3

=

B 1=

F GBH 4
3

3
1 4 9.5= = =

f̂ 9.53 2.1= =

Cin,i

Cout,i

gi

ĥ
---- 4 3

2.1
---------- 0.6= = =

Modern VLSI Design: IP-Based Design, Fourth Edition Page 246 Return to Table of Contents

4.4 Logic and Interconnect Design 235

Finding good common factors is one of the most important steps in
multi-level logic optimization. There are two particularly useful types of
common factors: a cube is a product of literals; a kernel is a sum-of-
products expression. A factor for a function f must be made of literals
found in f. One way to factorize logic is to generate potential common
factors and test each factor k to see whether it divides f—that is, whether
there is some function g such that . Once we have found a set
of candidate factors for f, we can evaluate how they will affect the net-
work’s costs. A factor that can be used in more than one place (a com-
mon factor) can help save gate area, though at the cost of some
additional wiring area. But factors increase the delay and power con-
sumption of the logic network. The effects of introducing a factor can be
evaluated in several ways with varying levels of accuracy.

The important point to remember at this point is that logic optimization
along with place-and-route algorithms give us an automated path from
Boolean logic equations to a complete layout.

4.4 Logic and Interconnect Design

In this section, we will consider how to design logic networks using
realistic interconnect models. Interconnect comes in all shapes and
sizes. Not only do nets vary in the number of gates they connect, but
they can be laid out in a number of different topologies as well.

wiring trees Figure 4-15 shows the two basic forms of interconnection trees. Think
of the gate inputs and outputs as nodes in a graph and the wires connect-
ing them as edges in the graph. A spanning tree uses wire segments to
directly connect the gate inputs and outputs. A Steiner tree adds nodes
to the graph so that wires can join at a Steiner point rather than meeting
at a gate input or output.

wiring optimizations In order to make the problem tractable, we will generally assume that
the logic structure is fixed. This still leaves us many degrees of freedom:

• we can change the topology of the wires connecting the gates;
• we can change the sizes of the wires;
• we can add buffers;
• we can size transistors.

We would like to solve all these problems simultaneously; in practice
we solve either one at a time or a few in combination. Even this careful

g f k=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 247 Return to Table of Contents

236 Chapter 4: Combinational Logic Networks

approach leaves us with quite a few opportunities for optimizing the
implementation of our combinational network.

4.4.1 Delay Modeling
accurate and fast models We saw in Section 4.3.2 that timing analysis consists of two phases:

using a delay calculator to determine the delay to each gate’s output; and
using a path analyzer to determine the worst-case critical timing path.
The delay calculator’s model should take into account the wiring delay
as well as the driving and driven gates. When analyzing large networks,
we want to use a model that is accurate but that also can be evaluated
quickly. Quick evaluation is important in timing analysis but even more
important when you are optimizing the design of a wiring network. Fast
analysis lets you try more wiring combinations to determine the best
topology.

The Elmore model is well-known because it is computationally tracta-
ble. However, it works only for single RC sections. In some problems,

source

sink 1

sink 2

spanning tree

source

sink 1

sink 2

Steiner point

Steiner tree

Figure 4-15 Varieties of
wiring trees.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 248 Return to Table of Contents

4.4 Logic and Interconnect Design 237

such as when we are designing wiring tree topologies, we can break the
wiring tree into a set of RC sections and use the Elmore model to evalu-
ate each one independently. In other cases, we want to evaluate the
entire wiring tree, which generally requires numerical techniques.

effective capacitance
model

One model often used is the effective capacitance model shown in Fig-
ure 4-16. This model considers the interconnect as a single capacitance.
While this is a simplified model, it allows us to separate the calculation
of gate and interconnect delay. We then model the total delay as the sum
of the gate and interconnect delays. The gate delay is determined using
the total load capacitance and numerically fitting a set of parameters that
characterize the delay. Qian et al. developed methods for determining an
effective capacitance value [Qia94]. Asymptotic waveform evaluation
(AWE) [Pil90] is a well-known numerical technique that can be used to
evaluate the interconnect delay. AWE uses numerical techniques to find
the dominant poles in the response of the network; those poles can be
used to characterize the network’s response.

 model The model, shown in Figure 4-17, is often used to model RC intercon-
nect. The model consists of two capacitors connected by a resistor.
The values of these components are determined numerically by analyz-
ing the characteristics of the RC network. The waveform at the output of
the model (the node at the second capacitor) does not reflect the wire’s
output waveform—this model is intended only to capture the effect of
the wire’s load on the gate. This model is chosen to be simple yet cap-
ture the way that resistance in an RC line shields downstream capaci-

Figure 4-16 The effective
capacitance model.

Figure 4-17 A model for
RC interconnect.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 249 Return to Table of Contents

238 Chapter 4: Combinational Logic Networks

tance. Capacitance near the driver has relatively little resistance
between it and the driver, while wire capacitance farther from the driver
is partially shielded from the driver by the wire’s resistance. The
model divides the wire’s total capacitance into shielded and unshielded
components.

4.4.2 Wire Sizing
We saw in Section 3.7.1 that the delay through an RC line can be
reduced by tapering it. The formulas in that section assumed a single RC
section. Since many wires connect more than two gates, we need meth-
ods to determine how to size wires in more complex wiring trees.

Cong and Leung [Con93] developed CAD algorithms for sizing wires in
wiring trees. In a tree, the sizing problem is to assign wire widths to
each segment in the wire, with each segment having constant width;
since most paths require several turns to reach their destinations, most
trees have ample opportunities for tapering. Their algorithm also puts
wider wires near the source and narrower wires near the sinks to mini-
mize delay, as illustrated in Figure 4-18.

4.4.3 Buffer Insertion
We saw in Section 3.7.3 how to insert buffers in a single RC transmis-
sion line. However, in practice we must be able to handle RC trees. Not
only do the RC trees have more complex topologies, but different sub-
trees may have differing sizes and arrival time requirements.

buffering RC trees van Ginneken [van90] developed an algorithm for placing buffers in RC
trees. The algorithm is given the placement of the sources and sinks and
the routing of the wiring tree. It places buffers within the tree to mini-

source

sink 1

sink 2

Steiner point

Figure 4-18 A tree with
sized segments.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 250 Return to Table of Contents

4.4 Logic and Interconnect Design 239

mize the departure time required at the source that meets the delay
requirements at the sinks:

(EQ 4-14)

where Ti is the arrival time at node i and Di is the required delay
between the source and sink i. This ensures that even the longest delay
in the tree satisfies its arrival time requirement.

This algorithm uses the Elmore model to compute the delay through the
RC network. As shown in Figure 4-19, when we want to compute the
delay from the source to sink i, we apply the R and C values along that
path to the Elmore formula. If we want to compute the delay from some
interior node k to sink i, we can use the same approach, counting only
the resistance and capacitance on the path from k to i.

This formulation allows us to recursively compute the Elmore delay
through the tree starting from the sinks and working back to the source.
Let r and c be the unit resistance and capacitance of the wire and Lk be
the total capacitive load of the subtree rooted at node k. As we walk the
tree, we need to compute the required time Tk of the signal at node k
assuming the tree is driven by a zero-impedance buffer.

Tsource mini Ti-Di()=

source

sink 1

sink i-1

sink i

node k

Figure 4-19
Recursively
computing
delay in the
van Ginneken
algorithm.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 251 Return to Table of Contents

240 Chapter 4: Combinational Logic Networks

When we add a wire of length l at node k, then the new delay at node k
is

, (EQ 4-15)

. (EQ 4-16)

When node k is buffered the required time becomes

, (EQ 4-17)

, (EQ 4-18)

where Dbuf, Rbuf, and Cbuf are the delay, resistance, and capacitance of
the buffer, respectively.

When we join two subtrees m and n at node k, the new values become

, (EQ 4-19)

. (EQ 4-20)

We can then use these formulas to recursively evaluate buffering options
in the tree. The algorithm’s first phase moves bottom-up to calculate all
the buffering options at each node in the tree. The second phase chooses
the best buffering strategy at each node in the tree.

4.4.4 Crosstalk Minimization
Coupling capacitances between wires can introduce crosstalk between
signals. Crosstalk at best increases the delay required for combinational
networks to settle down; at worst, it causes errors in dynamic circuits
and memory elements. We can, however, design logic networks to mini-
mize the crosstalk generated between signals.

circuit techniques We can use basic circuit techniques as a first line of defense against
crosstalk. One way to minimize crosstalk is to introduce a larger capaci-
tance to ground (or to VDD, which is also a stable voltage). Since
ground is at a stable voltage, it will not introduce noise into a signal. The
larger the capacitance to ground relative to the coupling capacitance, the
smaller the effect of the coupling capacitance, since the amount of
charge on each capacitance is proportional to the value of the capaci-
tance. In that case, the ground capacitance is said to swamp out the cou-
pling capacitance. One way to add capacitance to ground is to interleave

Tk' Tk-rlLk-1
2
---rcl2=

Lk' Lk cl+=

Tk' Tk-Dbuf-RbufLk=

Lk' Cbuf=

Tk min Tm Tn()=

Lk Lm Ln+=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 252 Return to Table of Contents

4.4 Logic and Interconnect Design 241

VSS or VDD wires between the signal wires as shown in Figure 4-20.
This method is particularly well-suited to signals that must run together
for long distances. Adding ground wires works best for groups of sig-
nals which travel together for long distances.

If we cannot provide shielding, minimizing coupling capacitance will
help to reduce the effects of crosstalk. A simple example shows how we
can redesign wire routes to reduce crosstalk.

VSS

sig2

sig1

VSS

VSS

Figure 4-20 Interleaved ground signals for crosstalk minimization.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 253 Return to Table of Contents

242 Chapter 4: Combinational Logic Networks

Example 4-5
Crosstalk
minimization

We need to route these signals in a channel:

Let us assume for the moment that we can measure the total crosstalk in
the wiring by examining only the horizontal wires. The vertical wires
can introduce coupling, but they are generally shorter and we can also
arrange to put them on a layer with lower coupling capacitance.

a

a

b b

c

cd

d

Modern VLSI Design: IP-Based Design, Fourth Edition Page 254 Return to Table of Contents

4.4 Logic and Interconnect Design 243

Here is one routing for these wires which minimizes channel height
(assuming one horizontal segment per wire) but which has significant
capacitive coupling:

If we assume that non-adjacent wires have no coupling, then the total
coupling capacitance for this route is:

for a total coupling capacitance of 16 units.

0 5 10

a

a

b b

c

cd

d

a

b

c

d

a-b 5

b-c 6

c-d 5

Modern VLSI Design: IP-Based Design, Fourth Edition Page 255 Return to Table of Contents

244 Chapter 4: Combinational Logic Networks

By rearranging the track assignments, we can significantly reduce the
total coupling without changing the channel height or total wire length:

This routing has less coupling:

for a total coupling capacitance of 12 units.

twizzling One technique for reducing the correlation between two wires is twiz-
zling. As illustrated in Figure 4-21, after running together for a certain
length, wires change tracks so that they are adjacent to different wires.
(The track-switching segments of the wires are shown schematically for
simplicity.) The total coupling capacitance on each wire does not
change. However, that capacitance no longer goes to a single wire, but
to several different wires. If the signals on the twizzled wires are not
correlated, then each wire will on average receive a smaller aggressor
signal.

0 5 10

a

a

b b

c

cd

d

b

a

d

c

a-b 5

a-d 2

c-d 5

Modern VLSI Design: IP-Based Design, Fourth Edition Page 256 Return to Table of Contents

4.4 Logic and Interconnect Design 245

estimating crosstalk delay However, in practice, minimizing crosstalk requires estimating the
delays induced by crosstalk, not just minimizing coupling capacitance.
Routing problems are sufficiently complex that it may not be obvious
how to balance coupling capacitance against other criteria in the
absence of information about how much critical path delay that coupling
capacitance actually induces. Detailed analytical models are too com-
plex and slow to be used in the inner loop of a routing algorithm. Sapat-
nekar [Sap00] developed an efficient crosstalk model that can be used
during routing.

The effect of the coupling capacitance depends on the relative transi-
tions of the aggressor and victim nets:

• When the aggressor changes and the victim does not, the coupling
capacitance takes its nominal value Cc.

• When the aggressor and victim switch in opposite directions, the
coupling capacitance is modeled as 2Cc.

• When the aggressor and victim switch in the same direction, the cou-
pling capacitance is modeled as 0.

The major problem in modeling the effect of coupling is that those effects
depend on the relative switching times of the two nets. If the driver inputs
of two nets switch in the intervals and and
the propagation delays for those two signals are and

, then the lines can switch during the intervals
 and . We

can write the above observations on the coupling capacitance more pre-
cisely in terms of these intervals:

•
Coupling capacitance is 0 or 2Cc, depending on whether the aggres-
sor and victim nets switch in the same or opposite directions.

c

b

d

a

a

d

c

b

c

b

d

a
Figure 4-21 Twizzling wires
to randomize crosstalk.

Tmin,1 Tmax,1 Tmin,2 Tmax,2
d1,min d1,max

d2,min d2,max
Tmin,1 d1,min+ Tmax,1 d1,max+ Tmin,2 d2,min+ Tmax,2 d2,max+

max Tmin,1 d1,min+ Tmin,2 d2,min+() t min Tmax,1 d1,max+ Tmax,2 d2,max+()

Modern VLSI Design: IP-Based Design, Fourth Edition Page 257 Return to Table of Contents

246 Chapter 4: Combinational Logic Networks

•
Coupling capacitance is Cc.

•
Coupling capacitance is Cc.

Furthermore, the values for the ds depend on the values chosen for the
coupling capacitance, which of course depends on the ds. As a result, an
iterative algorithm must be used to solve for the transition times and
coupling capacitances. The effective coupling capacitance’s value
changes over the course of the signal propagation and the order in which
the transition times and coupling capacitances are updated affect the
speed at which the solution converges.

Sapatnekar’s algorithm iteratively finds the delays through the signals;
since only a few iterations are generally required, the algorithm can be
used in the inner loop of a router. This allows the router to exchange
nets to reduce the actual crosstalk between the wires, not just their cou-
pling capacitance.

There are several other ways to redesign the layout to reduce the amount
of coupling capacitance between wires. One method is to increase the
spacing between critical signals [Cha93]. Since the coupling capaci-
tance decreases with distance, this technique can reduce the coupling
capacitance to an acceptable level. However, this may require signifi-
cant space when applied to signals that are coupled over a long distance.
Alternatively, signals may be swapped in their tracks [Gao94] or a more
global view may be taken to assign signals to tracks to minimize total
crosstalk risk [Kir94]. Xue et al. [Xue96] developed an algorithm that
tries to minimize the total crosstalk risk across the chip. It starts with
crosstalk risk values for signal pairs, based on an assessment of the crit-
icality of a signal, etc. It then selects nets for rip-up and reroute in order
to minimize the total crosstalk risk.

4.5 Power Optimization

Power consumption is an important metric in VLSI system design. In
this section, we will look at estimating power in logic networks and
optimizing those networks to minimize their power consumption.

min Tmin,1 d1,min+ Tmin,2 d2,min+() t max Tmin,1 d1,min+ Tmin,2 d2,min+()

min Tmax,1 d1,max+ Tmax,2 d2,max+() t max Tmax,1 d1,max+ Tmax,2 d2,max+()

Modern VLSI Design: IP-Based Design, Fourth Edition Page 258 Return to Table of Contents

4.5 Power Optimization 247

4.5.1 Power Analysis
glitches and power We saw in Section 3.3.5 how to optimize the power consumption of an

isolated logic gate. One important way to reduce a gate’s power con-
sumption is to make it change its output as few times as possible. While
the gate would not be useful if it never changed its output value, it is
possible to design the logic network to reduce the number of unneces-
sary changes to a gate’s output as it works to compute the desired value.

Figure 4-22 shows an example of power-consuming glitching in a logic
network. Glitches are more likely to occur in multi-level logic networks
because the signals arrive at gates at different times. In this example, the
NOR gate at the output starts at 0 and ends at 0, but differences in
arrival times between the gate input connected to the primary input and
the output of the NAND gate cause the NOR gate’s output to glitch to 1.

sources of glitching Some sources of glitches are more systematic and easier to eliminate.
Consider the logic networks of Figure 4-23, both of which compute the
sum a+b+c+d. The network on the left-hand side of the figure is con-
figured as a long chain. The effects of a change in any signal—either a
primary input or an intermediate value—propagate through the succes-
sive stages. As a result, the output of each adder assumes multiple val-
ues as values reach its inputs. For example, the last adder first takes on
the value of the d input (assuming, for simplicity, that all the signals
start at 0), then computes c+d as the initial value of the middle adder
arrives, and finally settles at a+b+c+d. The right-hand network, on the
other hand, is more balanced. Intermediate results from various subnet-
works reach the next level of adder at roughly the same time. As a
result, the adders glitch much less while settling to their final values.

t

t

t

Figure 4-22 Glitching in a simple logic network.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 259 Return to Table of Contents

248 Chapter 4: Combinational Logic Networks

signal probabilities We cannot in general eliminate glitches in all cases. We may, however,
be able to eliminate the most common kinds of glitches. To do so, we
need to be able to estimate the signal probabilities in the network. The
signal probability Ps is the probability that signal s is 1. The probability
of a transition Ptr,s can be derived from the signal probability, assuming
that the signal’s values on clock cycles are independent:

. (EQ 4-21)

The first matter to consider is the probability distribution of values on
primary inputs. The simplest model is that a signal is equally likely to be
0 or 1. We may, however, have some specialized knowledge about sig-
nal probabilities. Some control signals may, for example, assume one
value most of the time and only occasionally take on the opposite value

t

+

+

+

b

t

a

t

c

t

d

t

t

c

t

a+b

a+b+c

d
c+d

a+b+c+d

long chain
t

+

+

b

t

a

t

t

a+b

a+b+c+d

t

+

d

t

c

t

c+d

balanced tree

Figure 4-23 Glitching in a chain of adders.

Ptr,s 2Ps 1-Ps=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 260 Return to Table of Contents

4.5 Power Optimization 249

to signal an operation. Some sets of signals may also have correlated
values, which will in turn affect the signal probabilities of logic gate
outputs connected to those sets of signals.

delay-independent and
delay-dependent power
estimation

Signal probabilities are generally computed by power estimation tools
which take in a logic network, primary input signal probabilities, and
perhaps some wiring capacitance values and estimate the power con-
sumption of the network. There are two major ways to compute signal
probabilities and power consumption: delay-independent and
delay-dependent. Analysis based on delay-independent signal proba-
bilities is less accurate than delay-dependent analysis but
delay-independent values can be computed much more quickly. The sig-
nal probabilities of primitive Boolean functions can be computed from
the signal probabilities of their inputs. Here are the formulas for NOT,
OR, and AND:

; (EQ 4-22)

; (EQ 4-23)

. (EQ 4-24)

When simple gates are combined in networks without reconvergent
fanout, the signal probabilities of the network outputs can easily be
computed exactly. More sophisticated algorithms are required for net-
works that include reconvergent fanout.

power estimation tools Delay-independent power estimation, although useful, is subject to
errors because it cannot predict delay-dependent glitching. The designer
can manually assess power consumption using a simulator. This tech-
nique, however, suffers the same limitation as does simulation for delay
in that the user must manually evaluate the combinations of inputs that
produce the worst-case behavior. Power estimation tools may rely either
directly on simulation results or on extended techniques that use simula-
tion-style algorithms to compute signal probabilities. The time/accuracy
trade-offs for power estimation track those for delay estimation: circuit-
level methods are the most accurate and costly; switch-level simulation
is somewhat less accurate but more efficient; logic-based simulation is
less powerful but can handle larger networks.

Given the power estimates from a tool, the designer can choose to rede-
sign the logic network to reduce power consumption as required. Logic
synthesis algorithms designed to minimize power can take advantage of

PNOT 1-Pin=

POR 1- 1-Pi
i in

=

PAND Pi
i in

=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 261 Return to Table of Contents

250 Chapter 4: Combinational Logic Networks

signal probabilities to redesign the network [Roy93]. Figure 4-24 shows
two factorizations of the function [Ped96]. If a glitches
much more frequently than b and c, then the right-hand network exhib-
its lower total glitching: in the left-hand network, both g1 and g2 glitch
when a changes; in the right-hand network, glitches in a cause only h2
to glitch.

Glitch analysis can also be used to optimize placement and routing.
Nodes that suffer from high glitching should be laid out to minimize
their routing capacitance. The capacitance estimates from placement
and routing can be fed back to power estimation to improve the results
of that analysis.

Of course, the best way to make sure that signals in a logic block do not
glitch is to not change the inputs to the logic. Of course, logic that is
never used should not be included in the design, but when a block of
logic is not used on a particular clock cycle, it may be simple to ensure
that the inputs to that block are not changed unnecessarily. In some
cases, eliminating unnecessary register loads can eliminate unnecessary
changes to the inputs. In other cases, logic gates at the start of the logic
block can be used to stop the propagation of logic signals based on a dis-
able signal.

a b c

g1

g2

f = ab+bc+cd

a b c

h1

h2

f = ab+bc+cd

bad factorization good factorization

Figure 4-24 Logic factorization for power.

f ab bc cd+ +=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 262 Return to Table of Contents

4.6 Switch Logic Networks 251

4.6 Switch Logic Networks

switches as Boolean
operators

We have used MOS transistors to build logic gates, which we use to
construct combinational logic functions. But MOS transistors are good
switches—a switch being a device that makes or breaks an electrical
connection—and switches can themselves be used to directly implement
Boolean function [Sha38]. Switch logic isn’t universally useful: large
switch circuits are slow and switches introduce hard-to-trace electrical
problems; and the lack of drive current presents particular problems
when faced with the relatively high parasitics of deep-submicron pro-
cesses. But building logic directly from switches can help save area and
parasitics in some specialized cases.

ANDs and ORs in switches Figure 4-25 shows how to build AND and OR functions from switches.
The control inputs control the switches—a switch is closed when its
control input is 1. The switch drains are connected to constants (VDD or
VSS). A pseudo-AND is computed by series switches: the output is a
logic 1 if and only if both inputs are 1. Similarly, a pseudo-OR is com-
puted by parallel switches: the output is logic 1 if either input is 1. We
call these functions pseudo because when none of the switches is turned
on by the input variables, the output is not connected to any constant
source and its value is not defined. As we will see shortly, this property
causes havoc in real circuits with parasitic capacitance. Switch logic is
not complete—we can compute AND and OR but we cannot invert an
input signal. If, however, we supply both the true and complement
forms of the input variables, we can compute any function of the vari-
ables by combining true and complement forms with AND and OR
switch networks.

1

a b

b

a

1

1pseudo-AND

pseudo-OR

Figure 4-25 Boolean
functions built from switches.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 263 Return to Table of Contents

252 Chapter 4: Combinational Logic Networks

variables as inputs We can reduce the size of a switch network by applying some of the
input variables to the switches’ gate inputs. The network of Figure 4-26,
for example, computes the function ab’ + a’b using two switches by
using one variable to select another. This network’s output is also
defined for all input combinations. Switch networks that apply the
inputs to both the switch gate and drain are especially useful because
some functions can be computed with a very small number of switches.

b
ab' + a'b

a

a'

b'

Figure 4-26 A switch
network with non-constant
source inputs.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 264 Return to Table of Contents

4.6 Switch Logic Networks 253

Example 4-6
Switch
implementation
of a multiplexer

We want to design a multiplexer (commonly called a mux) with four
data inputs and four select inputs—the two select bits s1, s0 and their
complements are all fed into the switch network. The network’s struc-
ture is simple:

In practice, the number of select lines limits the useful size of the multi-
plexer.

delay of switches Computing delay through a switch network is similar to computing pul-
lup or pulldown delay through a logic gate—the switch transistor is in
series with the pullup or pulldown network. However, the resistive
approximation to the transistor becomes less accurate as more transis-
tors are placed in series. For accurate delay analysis, you should per-
form a more accurate circuit or timing simulation. Switch networks with
long paths from input to output may be slow. Just as no more than four
transistors should be in series in a logic gate, switch logic should con-
tain no paths with more than four switches for minimum delay (though
long chains of pass transistors may be useful in some situations, as in
the Manchester carry chain of Section 6.3).

S1 S1' S0 S0'

i0

i1

i2

i3

Modern VLSI Design: IP-Based Design, Fourth Edition Page 265 Return to Table of Contents

254 Chapter 4: Combinational Logic Networks

charge sharing The most insidious electrical problem in switch networks is charge
sharing. Switches built from MOS transistors have parasitic capaci-
tances at their sources and drains thanks to the source/drain diffusion;
capacitance can be added by wires between switches. While this capaci-
tance is too small to be of much use (such as building a memory ele-
ment), it is enough to cause trouble.

Consider the circuit of Figure 4-27. Initially, a = b = c = i = 1 and the
output o is driven to 1. Now set a = b = c = i = 0—the output remains
one, at least until substrate resistance drains the parasitic capacitance,
because the parasitic capacitance at the output stores the value. The net-
work’s output should be undefined, but instead it gives us an erroneous
1.

When we look at the network’s behavior over several cycles, we see that
much worse things can happen. As shown in Figure 4-28, when a switch
connects two capacitors not driven by the power supply, current flows to
place the same voltage across the two capacitors. The final amounts of
charge depend on the ratio of the capacitances. Charge division can
produce arbitrary voltages on intermediate nodes. These bad logic val-
ues can be propagated to the output of the switch network and wreak
havoc on the logic connected there. Consider the value of each input and

a b c

i

C

Figure 4-27 Charge sharing.

C2C1

+ +

V1 V2

Figure 4-28 Charge division
across a switch.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 266 Return to Table of Contents

4.7 Combinational Logic Testing 255

of the parasitic capacitance between each pair of switches/terminals
over time:

The switches can shuttle charge back and forth through the network,
creating arbitrary voltages, before presenting the corrupted value to the
network’s output. Charge sharing can be easily avoided—design the
switch network so that its output is always driven by a power supply.
There must be a path from VDD or VSS through some set of switches to
the output for every possible combination of inputs. Since charge can be
divided only between undriven capacitors, always driving the output
capacitance ensures that it receives a valid logic value.

The severity of charge sharing suggests that strong measures be used to
ensure the correct behavior of switch logic networks. One way to
improve the reliability of transmission gates is to insert buffers before
and after them.

4.7 Combinational Logic Testing

Once we have designed our logic, we must develop tests to allow manu-
facturing to separate faulty chips from good ones. A fault is a manifes-
tation of a manufacturing defect; faults may be caused by mechanisms
ranging from crystalline dislocations to lithography errors to bad etch-
ing of vias. In this section, we will introduce some techniques for testing
logic networks and discuss how they relate to the actual yield of work-
ing chips.

time i Cia a Cab b Cbc c Cco

0 1 1 1 1 1 1 1 1
1 0 0 1 0 0 1 0 1
2 0 0 0 1/2 1 1/2 0 1
3 0 0 0 1/2 0 3/4 1 3/4
4 0 0 1 0 0 3/4 0 3/4
5 0 0 0 3/8 1 3/8 0 3/4

Modern VLSI Design: IP-Based Design, Fourth Edition Page 267 Return to Table of Contents

256 Chapter 4: Combinational Logic Networks

4.7.1 Gate Testing
fault models Testing a logic gate requires a fault model. The simplest fault model

considers the entire logic gate as one unit; more sophisticated models
consider the effects of faults in individual transistors in the gate.

stuck-at-0/1 model The most common fault model is the stuck-at-0/1 model. Under this
model, the output of a faulty logic gate is 0 (or 1), independent of the
value of its inputs. The fault does not depend on the logic function the
gate computes, so any type of gate can exhibit a stuck-at-0 (S-A-0) or
stuck-at-1 (S-A-1) fault. Detecting a S-A-0 fault simply requires apply-
ing a set of inputs that sets a fault-free gate’s output to 1, then examining
the output to see if it has the true or faulty value.

testing difficulty Figure 4-29 compares the proper behavior of two-input NAND and
NOR gates with their stuck-at-0 and stuck-at-1 behavior. While the out-
put value of a gate stuck at 0 isn’t hard to figure out, it is instructive to
compare the difficulty of testing for S-A-0 and S-A-1 faults for each
type of gate. A NAND gate has three input combinations which set a
fault-free gate’s output to 1; that gives three ways to test for a stuck-at-0
fault. There is only one way to test for stuck-at-1—set both inputs to 0.
Similarly, there are three tests for stuck-at-1 for a NOR gate, but only
one stuck-at-0 test.

The number of input combinations that can test for a fault becomes
important when gates are connected together. Consider testing the logic
network of Figure 4-30 for stuck-at-0 and stuck-at-1 faults in the two
NAND gates, assuming, for the moment, that the inverter is not faulty.
We can test both NAND gates for stuck-at-0 faults simultaneously,
using, for example, abc = 011. (A set of values simultaneously applied

a b fault-free S-A-0 S-A-1

0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 0 1

NOR

Figure 4-29 True and faulty behavior for stuck-at-0/1 faults.

a b fault-free S-A-0 S-A-1

0 0 1 0 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1

NAND

Modern VLSI Design: IP-Based Design, Fourth Edition Page 268 Return to Table of Contents

4.7 Combinational Logic Testing 257

to the inputs of a logic network is called a vector.) However, there is no
way to test both NAND gates simultaneously for stuck-at-1 faults: the
test requires that both NAND gate inputs are 1, and the inverter assures
that only one of the NAND gates can receive a 1 from the b input at a
time. Testing both gates requires two vectors: abc = 00- (where - means
the input’s value is a don’t-care, so that doesn’t matter) and abc = -10.

limitations of fault models The stuck-at-0/1 model for faults doesn’t correspond well to real physi-
cal problems in CMOS fabrication. While a gate’s output may be stuck
at 0 by a short between the gate’s output and VSS, for example, that
manufacturing error is unlikely to occur. The stuck-at-0/1 model is still
used for CMOS because many faults from a variety of causes are
exposed by testing vectors designed to catch stuck-at faults. The stuck-
at model, however, does not predict all faults in a circuit; it is comfort-
ing to have a fault model that corresponds more closely to real process-
ing errors.

stuck-open model One such model is the stuck-open model [Gal80], which models faults
in individual transistors rather than entire logic gates. A stuck-open fault
at a transistor means that the transistor never conducts—it is an open
circuit. As Figure 4-31 shows, a stuck-open transistor in a logic gate
prevents the gate from pulling its output in one direction or the other, at
least for some of its possible input values. If t1 is stuck open, the gate
cannot pull its output to VDD for any input combination that should
force the gate’s output to 1. In contrast, if t2 is stuck open, the gate can
pull its output to VSS when a = 1 but not when b = 1.

This example also shows why reliably catching a stuck-open fault
requires a two cycle test. If the gate’s output is not driven to VDD or VSS
due to a stuck-open fault, the gate’s output value depends on the charge
stored on the parasitic capacitance at its output. If we try setting b = 1 to
test for a stuck-open fault at t2, for example, if the last set of inputs

a

b

c

Figure 4-30 A simple logic
network that requires two
tests.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 269 Return to Table of Contents

258 Chapter 4: Combinational Logic Networks

applied to the gate was ab = 01, the gate charged its output to logic 0;
when b is set to 0 to test t2, the output will remain at 0, and we can’t tell
if the gate’s output is due to a fault or not. Testing the stuck-open fault at
t2 requires setting the logic gate’s output to one value with one vector,
then testing with another vector whether the gate’s output changes. In
this case, we must first apply ab = 00 to set the gate’s output to 1; then,
when we apply ab = 01, the gate’s output will be pulled down to 0 if t2
is not faulty but will remain at 1 if t2 is stuck open.

delay fault model Both stuck-at and stuck-open faults check for function. We can also treat
delay problems as faults: a delay fault [Lin87] occurs when the delay
along a path falls outside specified limits. (Depending on the circuit,
too-short paths may cause failures as well as too-long paths.) Delay
faults can be modeled in either of two ways: a gate delay fault assumes
that all the delay errors are lumped at one gate along the path; a path
delay fault is the result of accumulation of delay errors along the entire
path. Detecting either type of fault usually requires a large number of
tests due to the many paths through the logic. However, since delay
faults reduce yield, good testing of delay faults is important. If delay
faults are not adequately caught in the factory, the bad chips end up in
customers’ hands, who discover the problems when they plug the chips
into their systems.

+

t1

t2 CLb a

Figure 4-31 A circuit
model for stuck-open faults.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 270 Return to Table of Contents

4.7 Combinational Logic Testing 259

4.7.2 Combinational Network Testing
controllability and
observability

Just as network delay is harder to compute than the delay through an
individual gate, testing a logic gate in a network is harder than testing it
in isolation. Testing a gate inside a combinational network requires
exercising the gate in place, without direct access to its inputs and out-
puts. The problem can be split into two parts:

• Controlling the gate’s inputs by applying values to the network’s
primary inputs.

• Observing the gate’s output by inferring its value from the values at
the network’s primary outputs.

justifying values Consider testing gate D in Figure 4-32 for a stuck-at-0 fault. The first
job is to control D’s inputs to set both to 0, also called justifying 0 val-
ues on the inputs. We can justify the required values by working back-
ward from the pins to the primary inputs. To set wire w1 to 0, we need
to make gate A’s output 0, which we can do by setting both its inputs to
1. Since those wires are connected to primary inputs, we have succeeded
in justifying w1’s value. The other required 0 can be similarly con-
trolled through B.

observing values The second job is to set up conditions that let us observe the fault at the
primary outputs—one or more of the primary outputs should have dif-
ferent values if D is stuck-at 0. Observing the fault requires both work-
ing forward and backward through the network. D’s faulty behavior can
be observed only through F—we need to find some combination of
input values to F that gives one output value when D is 1 or 0. Setting

i1

i2

i3

i4

i6

i7

i8

w1

w2

i5

o1

o2G

F

A

B

C

D

E

Figure 4-32
Testing for
combinational
faults.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 271 Return to Table of Contents

260 Chapter 4: Combinational Logic Networks

F’s other input to 0 has the desired result: if D’s output is good, the input
combination 10 results in a 0 at F’s output; if D is faulty, the 00 inputs
give a 1 at the output. Since F is connected to a primary output, we don’t
have to propagate any farther, but we do have to find primary input val-
ues that make F’s other input 0. Justification tells us that i5 = 1, i6 = 0, i7
= 0 provides the required value; i8 ‘s value doesn’t matter for this test.
Many tests may have more than one possible sequence. Testing D for
stuck-at-1 is relatively easy, since three input combinations form a test.
Some tests may also be combined into a single vector, such as tests for F
and G.

test generation is hard Finding a test for a combinational fault is NP-complete [Gar79]—find-
ing the test will, in the worst case, require checking every possible input
combination. However, much random logic is relatively easy to test, and
many harder-to-test structures have well-known tests. In practice, pro-
grams do a relatively good job of generating combinational test patterns.

Not all faults in a combinational network can be tested. In Figure 4-33,
testing the NOR gate for stuck-at-0 requires setting both its inputs to 0,
but the NAND gate ensures that one of the NOR’s inputs will always be
1. Observing the NAND gate’s stuck-at-0 fault requires setting the other
input of the NOR gate to 0, but that doesn’t allow the NAND gate’s fault
to be exercised. In both cases, the logic is untestable because it is redun-
dant. Simplifying the logic gives:

The entire network could be replaced by a connection to VSS. Any irre-
dundant logic network can be completely tested. While it may seem
dumb to introduce redundancies in a network—they make the logic
larger and slower as well as less testable—it often isn’t easy to recog-
nize redundancies.

a

b

SA0
SA0

Figure 4-33 Combinational
fault masking.

f ab b+=

a b b+ +=

0=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 272 Return to Table of Contents

4.7 Combinational Logic Testing 261

4.7.3 Testing and Yield
testing goals It is worth considering our goals for testing. Can we ensure that the

chips coming off the manufacturing line are totally defect-free? No—it
is impossible to predict all the ways a chip can fail, let alone test for
them all. A somewhat more realistic goal is to choose one or several
fault models, such as the stuck-at-0/1 model, and test for all possible
modeled faults. Even this goal is hard to achieve because it considers
multiple faults. An even more modest goal is to test for all single
faults—assume that only one gate is faulty at any time. Single-fault cov-
erage for stuck-at-0/1 faults is the most common test; many multiple
faults are discovered by single-fault testing, since many of the fault
combinations are independent.

testing and yield The simulation vectors used for design verification typically cover
about 80% of the single-stuck-at-0/1 faults in a system. While it may be
tempting to leave it at that, 80% fault coverage lets an unacceptable
number of bad parts slip into customers’ hands. Williams and Brown
[Wil81] analyzed the field reject rate as a function of the yield of the
manufacturing process (called Y) and the coverage of manufacturing
defects (called T). They found, using simple assumptions about the dis-
tribution of manufacturing errors, that the percentage of defective parts
allowed to slip into the customers’ hands was

D = 1 - Y(1-T) (EQ 4-25)

What does this equation mean in practice? Let’s be generous for a
moment and assume that testing for single stuck-at-0/1 covers all manu-
facturing defects. If we use our simulation vectors for testing, and our
process has a yield of 50%, then the defect rate is 13%—that is, 13% of
the chips that pass our tests are found by our customers to be bad. If we
increase our fault coverage to 95%, the defect rate drops to 3.4%—bet-
ter, but still unacceptably large. (How would you react if 3.4% of all the
quarts of milk you bought in the grocery store were spoiled?) If we
increase the fault coverage to 99.9%, the defect rate drops to 0.07%,
which is closer to the range we associate with high quality.

But, in fact, single stuck-at-0/1 testing is not sufficient to catch all
faults. Even if we test for all the single stuck-at faults, we will still let
defective chips slip through. So how much test coverage is sufficient?
Testing folklore holds that covering 99-100% of the single stuck-at-0/1
faults results in low customer return rates, and that letting fault coverage
slip significantly below 100% results in excessive defect rates.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 273 Return to Table of Contents

262 Chapter 4: Combinational Logic Networks

4.8 References

Dogleg channel routing was introduced by Deutsch [Deu76]. Devadas
et al. [Dev91] describe algorithms for eliminating false paths during
combinational logic delay analysis. Lawrence Pillage and Lawrence
Pileggi are two well-known researchers in interconnect analysis who are
in fact the same person; Prof. Pileggi reverted to his family’s traditional
name. Algorithms for technology-independent performance optimiza-
tion of combinational logic have been developed by Singh et al. [Sin88].
Jha and Kundu [Jha90] discuss CMOS testing methods in detail.

4.9 Problems

Use the parameters for the 180 nm process of Chapter 2 whenever pro-
cess parameters are required, unless otherwise noted.

Q4-1. Compute the density of these channels. Vertically aligned pins are
shown with dotted lines:

a)

b)

d

a c

e

d

a

b

c

e

b

b

a c

d

f

e

d

c

e

f

b

a

Modern VLSI Design: IP-Based Design, Fourth Edition Page 274 Return to Table of Contents

4.9 Problems 263

c)

Q4-2. Design a hierarchical stick diagram in the style of Example 4-1
for each of these logic networks. Use the gate types as shown. Choose a
placement in the layout and show all necessary wires.

a) NAND2(a,NOR3(b,c,d)).
b) XOR(NAND2(a,b),NAND2(NOT(c),d)).
c) AOI221(a,NAND2(b,c),NOR2(d,e),f,g).

Q4-3. For each of these logic networks, draw the logic diagram and find
the critical path, assuming that the delay through all two-input gates is 2
and the delay through an inverter is 1.

a) NAND2(NAND2(a,b),NOT(c)).
b) NAND2(NAND2(a,NOT(b)),NAND2(c,d)).
c) NAND2(NAND2(a,b),NAND2(c,d)).

Q4-4. Use logical effort to compute the delay through each logic net-
work of Question Q4-3. Assume all transistors are of minimum size and
each output drives a minimum-size inverter and P=1.

Q4-5. For each of these pin configurations, draw a spanning tree and a
Steiner tree that connects the points.

a)

a

b g

e

c

b

f

d

d

e

a

f

g

gc

a
b

d

c

Modern VLSI Design: IP-Based Design, Fourth Edition Page 275 Return to Table of Contents

264 Chapter 4: Combinational Logic Networks

b)

c)

Q4-6. For each of these channels, swap pins (interchange the positions
of pairs but don’t change the overall locations of pins) to reduce cross-
talk.

a)

a
b

d

c

e

f

a

bd

c

e

f

d

a c

c

d

a

b

b

Modern VLSI Design: IP-Based Design, Fourth Edition Page 276 Return to Table of Contents

4.9 Problems 265

b)

c)

Q4-7. Design a switch logic network for the function f = a’b + c using
two different styles:

a) Constant inputs.
b) Non-constant inputs.

Q4-8. How many tests are required to fully test for S-A-0 faults for a
network with 8 primary inputs?

Q4-9. Give the values for the primary inputs that allow each of the iden-
tified faults in these networks to be tested one at a time:

a)

b

a c

a

b

d

d

c

b

c a

d

d

c

b

a

o

S-A-1

Modern VLSI Design: IP-Based Design, Fourth Edition Page 277 Return to Table of Contents

266 Chapter 4: Combinational Logic Networks

b)

c)

Q4-10. Draw a simple logic network with an untestable fault.

o

S-A-0

S-A-0

S-A-1

o

S-A-1 S-A-0

Modern VLSI Design: IP-Based Design, Fourth Edition Page 278 Return to Table of Contents

5

Sequential Machines

Highlights:

Latches and flip-flops.

Clocking structures and timing disciplines.

Sequential system design.

Verification and testing of FSMs.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 279 Return to Table of Contents

268 Chapter 5: Sequential Machines

QD QDΔ2

δ1 δ2

Δ1

flip-flop 1 flip-flop 2

φ

Model system for clock skew in flip-flop based
machines (Figure 5-34).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 280 Return to Table of Contents

5.1 Introduction 269

5.1 Introduction

A sequential machine is a machine for which the output values depend
not only on the present input values but also the history of previous
inputs. The sequential machine’s memory lets us build much more
sophisticated functions; it also complicates design, validation, and
testing.

In this chapter we will learn the design methods common to all sequen-
tial systems. Section 5.2 introduces the memory elements that we add to
combinational logic to build sequential machines. Section 5.3 describes
our basic model of synchronous sequential machines. Section 5.4 dis-
cusses how to determine the speed at which a sequential machine will
run. Section 5.5 discusses how to generate a clock that drives a sequen-
tial machine. Section 5.6 surveys methods for optimizing and imple-
menting sequential machines Section 5.10 talks about how to optimize a
sequential machine’s power consumption. Section 5.8 introduces meth-
ods for verifying a sequential machine’s design. Section 5.9 describes
the challenges of testing sequential machines.

5.2 Latches and Flip-Flops

Latches and flip-flops are the circuits that we use to add memory to a
sequential machine. In this section, we will determine the characteristics
we desire in a latch or flip-flop and introduce some circuits for these
functions. We will start with a brief introduction to timing diagrams,
which we use to describe the operation of latches and flip-flops.

5.2.1 Timing Diagrams
timing diagrams Logic behavior is sometimes specified as timing diagrams. An exam-

ple timing diagram is shown in Figure 5-1. The system described by this
diagram shows communication from d to c to signal followed by a
response from c back to d. The d line is specified as either unknown,
changing, or stable: the unknown value is the horizontal line through
the signal value; the changing value are the diamond-shaped points and
the stable value is shown as a pair of low and high horizontal lines. The
data line can take on different values; unlike the control signal, we do
not want to tie the timing specification to a given data value. An

5.2 Latches and Flip-Flops

Modern VLSI Design: IP-Based Design, Fourth Edition Page 281 Return to Table of Contents

270 Chapter 5: Sequential Machines

unknown value indicates that the data value on the wire is not useful,
perhaps because no component on the wire is driving the data lines. A
changing value indicates a transition between unknown and stable
states.

Figure 5-1 also shows timing constraints between the d and c signals.
The head and tail of the arrow tell us what is constrained while the label
tells us the value of the timing constraint. The arrow represents an
inequality relating the times of events on the d and c signals. If we
denote the time of d becoming stable as td and the time of c rising to 1 as
tc, then the arrow tells us that

. (EQ 5-1)

5.2.2 Categories of Memory Elements
memory elements Building a sequential machine requires memory elements that read a

value, save it for some time, and then can write that stored value some-
where else, even if the element’s input value has subsequently changed.
A Boolean logic gate can compute values, but its output value will
change shortly after its input changes. Each alternative circuit used as a
memory element has its own advantages and disadvantages.

A generic memory element has an internal memory and some circuitry
to control access to the internal memory. In CMOS circuits, the memory
is formed by some kind of capacitance or by positive feedback of energy
from the power supply. Access to the internal memory is controlled by

d

c

time

t1 t20

1

1

0

Figure 5-1 A simple timing
diagram.

tc td t1+

Modern VLSI Design: IP-Based Design, Fourth Edition Page 282 Return to Table of Contents

5.2 Latches and Flip-Flops 271

the clock input—the memory element reads its data input value when
instructed by the clock and stores that value in its memory. The output
reflects the stored value, probably after some delay.

memory element
characteristics

Different types of memory elements differ in many key respects:

• exactly what form of clock signal causes the input data value to be
read;

• how the behavior of data around the read signal from clock affects
the stored value;

• when the stored value is presented to the output;
• whether there is ever a combinational path from the input to the

output.

Introducing a terminology for memory elements requires cau-
tion—many terms are used in slightly or grossly different ways by dif-
ferent people. We choose to follow Dietmeyer’s convention [Die78] by
dividing memory elements into two major types:

• Latches are transparent while the internal memory is being set from
the data input—the (possibly changing) input value is transmitted to
the output.

• Flip-flops are not transparent—reading the input value and changing
the flip-flop’s output are two separate events.

Within these types, many subclasses exist. But the latch vs. flip-flop
dichotomy is most important because, as we will see in Section 5.3, the
decision to use latches or flip-flops dictates substantial differences in the
structure of the sequential machine.

Memory elements can also be categorized along another dimension,
namely the types of data inputs they present.

• The most common data input type in VLSI design is the D-type
memory element. Think of “D” as standing for data—the Q output
of the memory element is determined by the D input value at the
clocking event.

• The T-type memory element toggles its state when the T input is set
at the clocking event.

• The SR-type memory element is either set by the S input or reset by
the R input (the S and R inputs are not allowed to be 1 simultane-
ously).

• The JK-type is similar but its J and K inputs can both be 1. The
other memory element types can be built using the JK-type as a com-
ponent.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 283 Return to Table of Contents

272 Chapter 5: Sequential Machines

timing parameters The two most commonly quoted parameters of a memory element are its
setup time and hold time, which define the relationship between the
clock and input data signals. The data value to be latched must remain
stable around the time the clock signal changes value to ensure that the
memory element retains the proper value. In Figure 5-2, the memory
element stores the input value around the clock’s falling edge. The setup
time is the minimum time the data input must be stable before the clock
signal changes, while the hold time is the minimum time the data must
remain stable after the clock changes. The setup and hold times, along
with the delay times through the combinational logic, determine how
fast the system can run. The duty cycle of a clock signal is the fraction
of the clock period for which the clock is active.

5.2.3 Latches

dynamic latch The simplest memory element in MOS technology is the dynamic latch
shown in Figure 5-3. It is called dynamic because the memory value is
not refreshed by the power supply and a latch because its output follows
its input under some conditions. The latch is a D-type, so its input is D
and its output is Q’. The inverter connected to the output should be
familiar. The storage capacitance has been shown in dotted lines since

changing stable

setup hold

Figure 5-2 Setup and hold
times.

D Q'

φ

φ'

Cg

Figure 5-3 A dynamic latch
circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 284 Return to Table of Contents

5.2 Latches and Flip-Flops 273

it is a parasitic component; this capacitance has been named Cg since
most of the capacitance comes from the gates of the transistors in the
inverter.

The latch capacitance is guarded by a fully complementary transmis-
sion gate. Dynamic latches generally use p-n pair switches because
they transmit logic 0 and 1 equally well and provide better storage on
the capacitor. (The inverter requires both p- and n-type transistors, so
the area savings from an n-type transmission gate would be small.)
The transmission gate is controlled by two clock signals, and ’—a
complementary switch requires both true and false forms of the con-
trol signal.

latch operation The latch’s operation is straightforward. When the transmission gate is
closed, whatever logic gate is connected to the D input is allowed to
charge or discharge Cg. As the voltage on Cg changes, Q’ follows in
complement—as Cg goes to low voltages, Q’ follows to high voltages,
and vise versa. When the transmission gate opens, Cg is disconnected
from any logic gate that could change its value. Therefore, the value of
the latch’s output Q’ depends on the voltage of the storage capacitor: if
the capacitor has been discharged, the latch’s output will be a logic 1; if
the storage capacitor has been charged, the latch’s output will be a 0.
Note that the value of Q’ is the logical complement of the value pre-
sented to the latch at D; we must take this inversion into account when
using the latch. To change the value stored in the latch, we can close the
transmission gate by setting = 1 and ’ = 0 and change the voltage
on Cg.

When operating the latch, we must be sure that the final voltage stored
on Cg is high enough or low enough to produce a valid logic 1 or 0 volt-
age at the latch’s output. The storage capacitance adds delay, just as
does any other parasitic capacitance; we must be sure that the logic gate
connected to the latch’s input has time to drive Cg to its final value
before is set to 0 and the latch is closed. This latch does not keep its
value forever. Parasitic resistances on the chip conspire to leak away the
charge stored in the capacitor. A latch’s value can usually be maintained
for about a millisecond (10-3 s). Since gate delays range in the picosec-
onds (10-12 s), however, memory degradation doesn’t present a signifi-
cant problem, so long as the clock ticks regularly. The memory’s value
is restored when a new value is written to the latch, and we generally
want to write a new value to the latch as quickly as possible to make
maximum use of the chip’s logic.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 285 Return to Table of Contents

274 Chapter 5: Sequential Machines

dynamic latch layout Figure 5-4 shows one possible stick diagram for a dynamic latch. The
familiar inverter is on the right-hand side of the cell and the transmis-
sion gate is on the left. Figure 5-5 shows a layout of the latch. This
latch’s setup time is determined by the time required to charge the stor-
age capacitance. The hold time is dominated by the time required to turn
off the transistors in the transmission gate.

multiplexed latch We should consider one simple but useful extension of the basic
dynamic latch, the multiplexed latch shown in Figure 5-6. This latch
has two data inputs, D1 and D2; the control signals A and B (and their
complements) control which value is loaded into the latch; A and B
should be the AND of the clock and some control signal. To ensure that
a valid datum is written into the latch, A and B must never simultane-
ously be 1. This latch, which can be extended to more inputs, is useful
because either of two different pieces of data may be loaded into a latch,
depending on the value of an independently computed condition.

quasi-static latch The dynamic latch has a small layout, but the value stored on the capac-
itor leaks away over time. The recirculating latch eliminates this prob-
lem by supplying current to constantly refresh the stored value. A
recirculating latch design is shown in Figure 5-7. This latch is called
quasi-static because the latched data will vanish if the clocks are
stopped, but as long as the clocks are running, the data will be recircu-
lated and refreshed. The latch is also said to be static on one phase
because the stored data will be saved so long as the clock controlling the
feedback connection remains high. During , if the latch is to be loaded
with a new value, LD is set to 1, turning on the transmission gate and
changing the value stored on the first inverter’s gate capacitance. During

Q'D

VDD

VSS

φ φ'

Figure 5-4 A stick diagram
of a dynamic latch.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 286 Return to Table of Contents

5.2 Latches and Flip-Flops 275

, the two inverters are connected in a cycle; since there is an even
number of inverters in the cycle, their values reinforce each other. So
long as the clock ticks, the latch will be repeatedly refreshed.

latches and charge sharing This latch can suffer from charge sharing when placed in a larger lay-
out. The latch’s value is stored on node A. When is high, the stor-
age node is connected to the latch’s output; if the output node has a

Figure 5-5 A layout of a dynamic latch.

VDD

VSS

’

D

Q’

storage
node

p-type
pass
transistor

n-type
pass
transistor

Modern VLSI Design: IP-Based Design, Fourth Edition Page 287 Return to Table of Contents

276 Chapter 5: Sequential Machines

large capacitance, the charge stored there will redistribute itself to the
storage node, destroying its value. Another way to look at this problem
is that the output inverter won’t be able to drive the large capacitance to
its final value in the clock period, and the storage node’s value will be
destroyed as a side effect since it is connected to the output capacitance
by the transmission gate. If you need to drive a large capacitance with
this latch (for example, when the latch drives a long wire), you can add a

A

A'

B

B'

D1

D2

Figure 5-6 A multiplexed
dynamic latch.

LD(qφ1)

LD'(qφ1)

φ2

φ2'

sφ2
sφ1

sφ2
sφ2

Figure 5-7 A recirculating
quasi-static latch.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 288 Return to Table of Contents

5.2 Latches and Flip-Flops 277

buffer to the output to present an insignificant capacitance to the latch’s
feedback loop.

clocked inverter The clocked inverter, shown in Figure 5-8, lets us build more sophisti-
cated latch circuits. As implied by its schematic symbol, the clocked
inverter is controlled by its clock input . When = 1, both n1 and p1
are turned on and the circuit acts as a normal inverter. When = 0, both
transistors are turned off and the output is disconnected from the rest of
the inverter circuit. The control transistors p1 and n1 are closest to the
output to ensure that the output is disconnected as quickly as possible
when goes low. The clocked inverter is a clever way of combining
transmission gate and logic gate functions into a single, compact circuit.

A latch circuit built from clocked inverters is shown in Figure 5-9. This
latch takes a clock and its complement and has a non-inverting output.
When = 0, ’ = 1 and the inverters i2 and i3 form a positive feedback
loop that retains the latch’s value. When = 1, i2 is turned off, breaking
the feedback loop, and i1 is turned on to inject a new value into the loop.

in out

+

φ'

φ

in out

p1

n1
symbol

circuit

φ

Figure 5-8 A clocked inverter.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 289 Return to Table of Contents

278 Chapter 5: Sequential Machines

The hold time depends on the time required to turn off the clocked
inverter. An alternative design uses a weak inverter rather than a
clocked inverter for i2; if i1 is much stronger than i2, i1 can flip the state
of the inverter pair when it is enabled.

advanced latches Figure 5-10 shows a latch with feedback that was used in the DEC
Alpha 21064 [Dob92]. Both stages of the latch use the clocked inverter
structure in their pulldown networks. The two p-type transistors in the

D Qi1 i2 i3

φ φ'

Figure 5-9 A D latch built from clocked inverters.

+

f

+

+

in out

Figure 5-10 A
regenerative latch.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 290 Return to Table of Contents

5.2 Latches and Flip-Flops 279

latch’s second stage form the feedback loop for the latch. When the
latch value is set to 1 by a 0 value from the first stage while the clock is
high, the output also turns off the upper p-type transistor, reinforcing the
output value. If the first stage output goes to 1 and then subsequently to
0 without a clock event, the clocked inverter structure prevents the
p-type feedback pair from flipping state.

Cells that require both true and complement forms of the clock usually
generate CLK’ internally. Such circuits often require close synchroniza-
tion between the true and complement clocks, which is very difficult to
achieve when the two are distributed from a distant driver. In many stan-
dard cells, the cell’s clock input is connected to two inverters; this is
largely a bookkeeping measure to ensure that the load presented to the
clock signal by the cell is independent of the cell’s internals. One
inverter delivers CLK’ while the other feeds another inverter to regener-
ate CLK. These two chains obviously don’t have the same delay. One
way to equalize their delays is to insert a transmission gate before the
single-inverter to slow down that path. However, if the clock duty cycle
and circuit are such that overlapping phases are a serious concern, cir-
cuit simulation with accurate parasitics may be warranted.

5.2.4 Flip-Flops
types of flip-flops There are two major types of flip-flops: master-slave and edge-

triggered. The structure of a master-slave flip-flop is shown in Figure
5-11. It is built from two back-to-back latches called, naturally enough,
the master and the slave. The master latch reads the data input when the
clock is high. Meanwhile, the internal inverter assures that the slave
latch’s clock input is low, insulating the slave latch from changes in the
master’s output and leaving the flip-flop’s output value stable. After the
clock has gone low, the slave’s clock input is high, making it transpar-
ent, but a stable value is presented to the slave by the master. When the
clock moves back from 0 to 1, the slave will save its value before the
master’s output has a chance to change. An edge-triggered flip-flop uses
additional circuitry to change the flip-flop’s state only at a clock edge; a
master-slave flip-flop, in contrast, is sensitive to the input as long as the
clock remains active.

D-type flip-flop Figure 5-12 shows a D-type master-slave flip-flop built from the D-type
quasi-static latch. This circuit follows the basic structure shown in Fig-
ure 5-11, using the quasi-static latch structure for each of the component
latches.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 291 Return to Table of Contents

280 Chapter 5: Sequential Machines

SR flip-flop Figure 5-13 shows the circuit diagram for an SR-type clocked flip-flop
[Rab96]. (The traditional SR-type flip-flop, built from cross-coupled
NOR gates, does not have a clock input.) This circuit uses a pair of
cross-coupled inverters to implement the storage nodes. The additional
transistors flip the state according to the SR protocol. This flip-flop is
fully static and consumes no quiescent power. It can be used as a build-
ing block for more complex flip-flops.

QDQD

latches

Figure 5-11 A master-slave
flip-flop built from latches.

φ

D

φ

φ'

φ'
φ'

φ

Q

φ' φ

Figure 5-12 A quasi-static D-type flip-flop.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 292 Return to Table of Contents

5.3 Sequential Systems and Clocking Disciplines 281

5.3 Sequential Systems and Clocking Disciplines

It is now time to study large sequential systems built from combina-
tional networks and memory elements. We need to understand how to
build a sequential system that performs a desired function, paying spe-
cial attention to the clocks that run the memory elements to ensure that
improper values are never stored; we also need to understand how to
build a testable sequential machine.

FSM structure The structure of a generic sequential system—also known as a finite-
state machine or FSM—is shown in Figure 5-14. Memory elements
hold the machine’s state; the machine’s inputs and outputs are also
called primary inputs and primary outputs. If the primary outputs are
a function of both the primary inputs and state, the machine is known as
a Mealy machine; if the primary outputs depend only on the state, the
machine is called a Moore machine. A properly interconnected set of
sequential systems is also a sequential system. It is often convenient to
break a large system into a network of communicating machines: if
decomposed properly, the system can be much easier to understand; it
may also have a smaller layout and run faster.

S R

f f

Q'

Q

Figure 5-13 An SR-type
flip-flop.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 293 Return to Table of Contents

282 Chapter 5: Sequential Machines

5.3.1 Clocking Disciplines
rules for FSM construction We need reliable rules that tell us when a circuit acts as a sequential

machine—we can’t afford to simulate the circuit thoroughly enough to
catch the many subtle problems that can occur. A clocking discipline is
a set of rules that tell us:

• how to construct a sequential system from gates and memory
elements;

• how to constrain the behavior of the system inputs over time.

Adherence to the clocking discipline ensures that the system will work
at some clock frequency. Making the system work at the required clock
frequency requires additional analysis and optimization.

signal types The constraints on system inputs are defined as signal types, which
define both how signals behave over time and what signals can be com-
bined in logic gates or memory elements. By following these rules, we
can ensure that the system will operate properly at some rate; we can
then worry about optimizing the system to run as fast as possible while
still functioning correctly.

Q D

combinational
logic

memory elements

clock

primary
inputs

primary
outputs

Figure 5-14 Structure of a
generic sequential system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 294 Return to Table of Contents

5.3 Sequential Systems and Clocking Disciplines 283

clocking rules Different memory element types require different rules, so we will end
up with a family of clocking disciplines. All disciplines have two com-
mon rules, however. The first is simple:

Clocking rule 1: Combinational logic gates cannot be
connected in a cycle.

Gates connected in a cycle form a primitive memory element and cease
to be combinational—the gates’ outputs depend not only on the inputs
to the cycle but the values running around the cycle. In fact, this rule is
stronger than is absolutely necessary. It is possible to build a network of
logic gates which has cycles but is still combinational—the values of its
outputs depend only on the present input values, not past input values.
However, careful analysis is required to ensure that a cyclic network is
combinational, whereas cycles can be detected easily. For most practical
circuits, the acyclic rule is not overly restrictive.

The second common rule is somewhat technical:

Clocking rule 2: All components must have bounded
delay.

This rule is easily satisfied by standard components, but does rule out
synchronizers for asynchronous signals.

5.3.2 One-Phase Systems for Flip-Flops
The clocking discipline for systems built from flip-flops is simplest, so
let’s consider that first. A flip-flop system looks very much like that of
the generic sequential system, with a single rank of memory elements.

conservative properties
for signals

We can define conditions that the clock and data signals must satisfy
that are conservative but safe. A flip-flop system has one type of clock
signal, , and one type of data signal, S, as shown in Figure 5-15. The
figure assumes that the flip-flops read their inputs on the positive (0
1) clock edge. The data inputs must have reached stable values at the
flip-flop inputs on the rising clock edge, which gives this requirement
on the primary inputs:

Flip-flop clocking rule 1: All primary inputs can change
only in an interval just after the clock edge. All primary
inputs must become stable before the next clock edge.

The length of the clock period is adjusted to allow all signals to propa-
gate from the primary inputs to the flip-flops. If all the primary inputs

Modern VLSI Design: IP-Based Design, Fourth Edition Page 295 Return to Table of Contents

284 Chapter 5: Sequential Machines

satisfy these conditions, the flip-flops will latch the proper next state
values. The signals generated by the flip-flops satisfy the clocking disci-
pline requirements.

5.3.3 Two-Phase Systems for Latches
multiple ranks of latches A single rank of flip-flops cutting the system’s combinational logic is

sufficient to ensure that the proper values will be latched—a flip-flop
can simultaneously send one value to its output and read a different
value at its input. Sequential systems built from latches, however, are
normally built from two ranks of latches. To understand why, consider
the relationships of the delays through the system to the clock signal that
controls the latches, as illustrated in Figure 5-16. The delay from the

Q D

combinational
logic

S S

φ

S S

structure

stableS

φ

changing

signal relationships

Figure 5-15 Signal types in a
flip-flop system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 296 Return to Table of Contents

5.3 Sequential Systems and Clocking Disciplines 285

present state input to the next state output is very short. As long as the
latch’s clock is high, the latch will be transparent. If the clock signal is
held high long enough, the signal can make more than one loop around
the system: the next state value can go through the latch, change the
value on the present state input, and then cause the next state output to
change.

two-sided clocking
constraints

In such a system, the clock must be high long enough to securely latch
the new value, but not so long that erroneous values can be stored. That
restriction can be expressed as a two-sided constraint on the relative
lengths of the combinational logic delays and the clock period:

• the latch must be open less than the shortest combinational delay;
• the period between latching operations must be longer than the lon-

gest combinational delay.

It is possible to meet two-sided constraint, but it is very difficult to make
such a circuit work properly.

strict two-phase system A safer architecture—the strict two-phase clocking discipline sys-
tem—is shown in Figure 5-17. Each loop through the system is broken
by two ranks of latches:

Two-phase clocking rule 1: Every cycle through the logic
must be broken by n latches and n latches.

non-overlapping clocks The latches are controlled by the non-overlapping clock phases shown
in Figure 5-18. A -high, -high sequence forms a complete clock
cycle. The non-overlapping clocks ensure that no signal can propagate

Q D

Figure 5-16 Single latches
may let data shoot through.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 297 Return to Table of Contents

286 Chapter 5: Sequential Machines

all the way from a latch’s output back to its input. When is high, the
-controlled latches are disabled; when is high, the latches

are off.

one-sided clocking
constraints

As a result, the delays through combinational logic and clocks in the
strict two-phase system need satisfy only a one-sided timing constraint:
each phase must be longer than the longest combinational delay through
that phase’s logic. A one-sided constraint is simple to satisfy—if the
clocks are run slow enough, the phases will be longer than the maxi-
mum combinational delay and the system will work properly. (A chip
built from dynamic latches that is run so slowly that the stored charge
leaks away won’t work, of course. But a chip with combinational logic
delays over a millisecond wouldn’t be very useful anyway.)

Q D

combinational
logic

φ1

QD

φ2

combinational
logic

I1

I2

O1
O2

Figure 5-17 The
strict two-phase
system.

φ1

φ2

Figure 5-18 A two-phase,
non-overlapping clock.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 298 Return to Table of Contents

5.3 Sequential Systems and Clocking Disciplines 287

It is easy to see that we can stretch the clock phases and inter-phase gaps
to ensure that the strict two-phase system works. The inputs to the com-
binational logic block at the latch outputs are guaranteed to have set-
tled by the time goes low; the outputs of that block must have settled
by the time goes low for the proper values to be stored in the
latches. Because the block is combinational there is an upper bound on
the delay from settled inputs to settled outputs. If the time between the
falling edges of and is made longer than that maximum delay, the
correct state will always be read in time to be latched. A similar argu-
ment can be made for the latches and logic attached to their outputs.
Therefore, if the clock cycle is properly designed, the system will func-
tion properly.

clock types The strict two-phase system has two clock types, and . Each clock
type has its own data type [Noi82], the stable signal, which is equiva-
lent to a valid signal on the opposite clock phase. Figure 5-19 shows the
two clock phases and the output of a -clocked latch. The latch output
changes only during a portion of the phase. It therefore meets the
setup and hold requirements of the succeeding latch once the clock
phase durations are properly chosen. Because the signal’s value is set-
tled during the entire portion of the clock cycle, it is called stable ,
abbreviated as s 2. The output of a -clocked latch is stable . A s
signal is also called valid , abbreviated as v , since it becomes valid
around the time the latch closes. Similarly, a signal that is stable dur-
ing the entire portion of the clock is known as stable or s .

φ1

φ2

sφ2 stable

Figure 5-19 A stable 2 signal.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 299 Return to Table of Contents

288 Chapter 5: Sequential Machines

combinations of clocking
types

Figure 5-20 summarizes how clocking types combine. Combinational
logic preserves signal type: if all the inputs to a gate are s then its out-
put is s . Clocking types cannot be mixed in combinational logic: a
gate cannot have both s and s inputs. The input to a 1-controlled
latch is s and its output is s .

signal types in an FSM Figure 5-21 shows how signal types are used in the strict two-phase sys-
tem. The system can have inputs on either phase, but all inputs must be
stable at the defined times. The system can also have outputs on either
phase. When two strict two-phase systems are connected, the connected
inputs and outputs must have identical clocking types. Assigning clock-
ing types to signals in a system ensures that signals are properly com-

φ1

sφ1

sφ1

sφ1 sφ1 sφ2

Figure 5-20
How strict two-
phase clocking
types combine.

Q D

combinational
logic

φ1

QD

φ2

combinational
logic

I1(sφ2)

I2(sφ1)

O1(sφ2)
O2(sφ1)

sφ1

sφ2

Figure 5-21
Clocking types
in the strict two-
phase system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 300 Return to Table of Contents

5.3 Sequential Systems and Clocking Disciplines 289

bined, but it will not guarantee that all loops are broken by both and
 latches.

two-coloring This check can be performed by two-coloring the block diagram. To
two-color a schematic, color and all signals derived from it red, and
all -related signals green. For the system to satisfy the two-phase
clocking discipline, the two-colored diagram must satisfy these rules:

• No latch may have an input and output signal of the same color.
• The latch input signal and clock signal must be of the same color.
• All signals to a combinational logic element must be of the same

color.

The two-coloring check is a simple way to ensure that the rules of the
clocking discipline are satisfied.

The next example builds a shift register from latches operated by a two-
phase clock.

Example 5-1
Shift register
design

The simplest machine we can build with the dynamic latch is a shift
register. An n-bit shift register has a one-bit input and a one-bit output;
the value at the input on a clock cycle appears at the output n clock
cycles later. We can save design time by building a single cell and repli-
cating it to create the complete shift register. We will design a compo-
nent that stores a value for one clock cycle, then connect together n
copies of the component so the value is shifted from one to the next for
n clock cycles.

The basic bit storage component is built from a pair of latches. The
schematic for a two-bit shift register looks like this:

The stick diagram for a single shift register cell is identical to the
dynamic latch cell, though we want to be sure that the input and output

φ1

φ1'

φ2

φ2'

Modern VLSI Design: IP-Based Design, Fourth Edition Page 301 Return to Table of Contents

290 Chapter 5: Sequential Machines

are both in poly so they can be directly connected. To build a shift regis-
ter, we simply tile or abut the cells to make a linear array:

This arrangement gives us a large number of clock phase lines through
the cell. Eventually, the 1s will be connected together, etc. Exactly how
we do that depends on the design of the other components around this
shift register.

The shift register’s operation over one cycle looks like this:

φ1 φ1' φ2 φ2' φ1 φ1' φ2 φ2'

c1(latch) c2(latch) c3(latch) c4(latch)

VDD

VSS

outin

φ1 φ2

1 1

1

φ1 φ2

0 0

1 = 1, 2 = 0

Modern VLSI Design: IP-Based Design, Fourth Edition Page 302 Return to Table of Contents

5.3 Sequential Systems and Clocking Disciplines 291

In the first phase, when = 1, the first latch in each bit is loaded with
the value input to that bit. In the second phase, when = 1, that value is
transferred to the second bit in the latch. So after one cycle of operation,
the bit that appeared at the output of the first bit has been transferred to
the output of the second and last bit of the shift register.

qualified clock The multiplexed latch of Figure 5-6 needs a new type of control signal,
the qualified clock. In the strict two-phase system there are two quali-
fied clock types, qualified (q) and qualified (q). Qualified
clocks may be substituted for clocks at latches. Since a static latch con-
trolled by a qualified clock is no longer refreshed on every clock cycle,
the designer is responsible for ensuring that the latch is reloaded often
enough to refresh the storage node and to ensure that at most one trans-
mission gate is on at a time. Qualified clocks are generated from the log-
ical AND of a stable signal and a clock signal. For instance, a q signal
is generated from a s signal and the clock phase. When the clock is
run slowly enough, the resulting signal will be a stable 0 or 1 through
the entire period.

clocking types and
quasi-static latches

The quasi-static latch of Figure 5-7 does not satisfy the strict clocking
discipline. First, it requires qualified clocks to operate; second, its feed-
back loop makes the type of its output problematic. If the clocking types
shown in Figure 5-22 are used, the latch will operate properly in a strict
two-phase system. The latch itself works even though it does not inter-
nally obey the clocking discipline—synchronous machine design hides
many circuit difficulties in the memory elements.

φ1 φ2

1 0

1

φ1 φ2

0 1

1 = 0, 2 = 1

Modern VLSI Design: IP-Based Design, Fourth Edition Page 303 Return to Table of Contents

292 Chapter 5: Sequential Machines

5.4 Performance Analysis

Clocking disciplines help us construct systems that will operate at some
speed. However, we usually want the system to run at some minimum
clock rate. We saw in Section 4.3 how to determine the delays through
combinational logic. We need additional analysis to ensure that the
machine will run at the clock rate we want.

logic delays The desired clock period determines the maximum allowable delays
through the combinational logic. Because most machines are built from
several blocks of combinational logic and the clock period is determined
by the longest combinational delay, the worst-case delay through the
system may not be obvious when you look at the component blocks of

LD(qφ1)

LD'(qφ1)

φ2

φ2'

sφ2
sφ1

sφ2
sφ2

Figure 5-22
Clocking types
in the
recirculating
latch.

QD + QD + + QD

Figure 5-23 A sequential system with unbalanced delays.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 304 Return to Table of Contents

5.4 Performance Analysis 293

combinational logic in isolation. Consider the system of Figure 5-23:
one path from flip-flop to flip-flop has one adder while the other has
two. The system’s clock period will be limited by the two-adder path. In
some cases, the result of a long path is not used every cycle—for exam-
ple, the flip-flop may be conditionally loaded. The system’s clock
period is still limited by the delay through this occasionally used path,
since we can’t predict the cycles on which that path will be used.

register characteristics Our analysis must also take into account the timing characteristics of the
registers used in the design. We have already seen that latch-based sys-
tems have more complicated timing relationships even when we con-
sider only correctness; determining the clock rate of a latch-based
system is also somewhat harder.

skew Finally, we must consider the effects of clock skew. One of the basic
assumptions of sequential machine design is that the clock is ideal—the
clock arrives instantaneously at all points in the design. That assumption
doesn’t hold for systems of any reasonable size. Clock skew is the rela-
tive delay between the arrival of the clock signal at different physical
points in the system. We can factor skew into our performance analysis
and understand how it limits clock rate; this analysis helps us determine
what parts of our system are most sensitive to clock skew.

retiming In many cases, we have freedom in where we place memory elements.
We will look at retiming, an algorithm for optimally placing memory
elements, in Section 5.4.4.

reliability Reliability is partially determined by performance concerns in sequen-
tial systems. A variety of physical causes can result in transient errors,
many of which are due to timing problems. We will briefly look at some
techniques for detecting and correcting errors in Section 5.4.5.

5.4.1 Performance of Flip-Flop-Based Systems
To start our analysis of machines with flip-flops, let us make some semi-
ideal assumptions:

• The clock signal is perfect, with no rise or fall times and no skew.
The clock period is P.

• We will assume for simplicity that the flip-flops store new values on
the rising clock edge.

• The flip-flops have setup time s and propagation time p.
• The worst-case delay through the combinational logic is C.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 305 Return to Table of Contents

294 Chapter 5: Sequential Machines

The structure of our sequential machine is shown in Figure 5-24. This is
a very generic structure that describes machines with multiple flip-flops
and as many combinational logic blocks as necessary.

Figure 5-25 shows how the various delays through the system fall into
the clock period. The physical parameters of the combinational logic
and flip-flops contribute to overall delay:

• The flip-flop’s propagation time (p) determines how long it takes for
the new value to move from the flip-flop’s input to its output.

QD

combinational
logic

clock

Figure 5-24 Model system
for performance analysis of
flip-flop-based machines.

P

Cp s

0

1

Figure 5-25 Timing
of the semi-ideal
flip-flop-based
system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 306 Return to Table of Contents

5.4 Performance Analysis 295

• Once the new value reaches the flip-flop’s data output, the new val-
ues start to propagate through the combinational logic. They require
C time to compute the results.

• The results must arrive at the flip-flop one setup time (s) before the
next rising clock edge.

clock period We can therefore write our constraint on the clock period as

. (EQ 5-2)

Longer clock periods (lower clock frequencies) will also work. Notice
that this discussion does not rely on the duty cycle of the clock (the
duty cycle is the percentage of the clock period for which the clock is
high). The duty cycle does not matter here because the flip-flop is
edge-triggered.

rise and fall times If we relax one of our assumptions about the clock, we end up with a
clock signal with non-zero rise and fall times, as shown in Figure 5-26.
In practice, the clock’s rise and fall times are noticeable when compared
to the other system delays because clock nets are large and hard to drive
at high speeds. The rise (tr) and fall time (tf) add to the overall clock
period:

. (EQ 5-3)

min/max delays One additional non-ideality that you may occasionally see mentioned is
minimum and maximum delays. We have assumed so far that delays

P C s p+ +

P

Cp s

0

1

tr
Figure 5-26
Constraints with
rise and fall times.

P C s p tr+ + +

Modern VLSI Design: IP-Based Design, Fourth Edition Page 307 Return to Table of Contents

296 Chapter 5: Sequential Machines

are known—we can provide a single number that accurately reflects the
delay through the component. However, delay may vary for several
reasons:

• Manufacturing variations may cause different parts to exhibit differ-
ent delays.

• As we saw in Section 3.3.4, delay may vary with temperature.

Min/max delays provide bounds on the delay—if the delay is given as
 then the delay is at least t1 and at most t2 but can vary anywhere

in between. Figure 5-27 shows a timing diagram with min-max delays
on a clock signal that goes between 0 and 1, but they can also be applied
to logic stable/changing values in general logic signals.

In the worst case, min/max delays can cause substantial problems. If
each component exhibits min/max delays and we do not know anything
about the relationships between the components’ delays, we must
assume that delay bounds add—after going through two components,
the delay bounds would be and so on. Since we must assume
that the signal is not valid during any part of the min/max delay window,
we must run the system more slowly unless we can more accurately
determine the actual delays through the logic.

However, on a single chip the delays through the components are in fact
correlated. The physical parameters that determine delay through the
logic and wires vary only slowly over the chip. This means that it is
unlikely that one gate on the chip would have the best-case delay while
the other would have the worst-case delay. The best-case/worst-case
range characterizes variations over all the chips. Therefore, within a
chip, min/max bounds tend to be considerably smaller than the min/max

0

1

t1 t2

Figure 5-27 Min/max delays.

t1 t2

2t1 2t2

Modern VLSI Design: IP-Based Design, Fourth Edition Page 308 Return to Table of Contents

5.4 Performance Analysis 297

bounds across chips. When designing multi-chip systems, we need to
make much more pessimistic assumptions.

5.4.2 Performance of Latch-Based Systems
The analysis of latch-based systems follows the same general principles.
But the paths through the combinational logic are more complex
because latches are transparent.

latch-based model system Figure 5-28 shows the model system we will use to analyze a two-phase
latch-based machine. The delays through the two blocks of combina-
tional logic are C1 and C2; we will assume that all the latches have the
same setup and propagation times of s and p. We will also assume for
convenience that all latches close at the downward edge of their clock.

two-phased timing
analysis

Figure 5-29 shows the timing chart for the two-phased system. First
consider the upper block of logic C1, which is fed by the 1-controlled
latch. The inputs to that block are not stable until h time units after the
downward transition of 1. They then propagate through the block with
C1 delay and must arrive s time units before the downgrade transition of

2. A similar analysis can be made for propagation through the C2 block.
This gives a constraint on the clock period of

. (EQ 5-4)

Q D

φ1

QD

φ2

C1

C2

Figure 5-28
Model system for
performance
analysis of latch-
based machines.

P C1 C2 2s 2p+ + +

Modern VLSI Design: IP-Based Design, Fourth Edition Page 309 Return to Table of Contents

298 Chapter 5: Sequential Machines

hacking FSM timing However, we can improve these results (though implementing this
scheme is tricky and not recommended). If the signal from C1 arrives
early, it can shoot through the 2 latch and start to propagate through the
C2 block. This head start can reduce the total period if a short path in C1
feeds a long path in C2. In a latch-based system we can equalize the
length of each phase to 50 ns, as shown in Figure 5-29, by taking advan-
tage of the transparency of latches. Ignore for a moment the setup and
hold times of the latches to simplify the explanation. Signals that
become valid at the end of propagate through the short-delay combi-
national logic. If the clock phases are arranged so that = 1 when they
arrive, those signals can shoot through the latch and start the compu-
tation in the long-delay combinational block. When the latch closes,
the signals are kept stable by the latch, leaving the latch free to
open and receive the signals at the end of the next 50 ns interval. How-

P

C1p s

0

1

φ1

φ2

0

1

C2p s

Figure 5-29 Timing chart for a two-phased system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 310 Return to Table of Contents

5.4 Performance Analysis 299

ever, this scheme violates the strict two-phase clocking discipline. Mak-
ing sure that you have properly measured the delays and have not
violated a timing constraint can be tricky.

5.4.3 Clock Skew
skew problems Skew describes a relative delay or offset in time between any two sig-

nals. Skew causes problems when we think we are combining two sets
of values but are in fact combining a different set of values. We may see
skew between two data signals, a data signal and a clock, or between
clock signals in a multi-clock system. In Figure 5-31, the registers that
provide inputs a and b produce valid signals over the range [0,5 ns]. At
those a and b inputs, the two signals are aligned in time to be simultane-

delay = 70 delay = 30

φ1 φ2

50 ns

φ1

delay = 70 delay = 30

φ1 φ2

50 ns

φ2

Figure 5-30 Spreading a computation across two phases in a latch-based system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 311 Return to Table of Contents

300 Chapter 5: Sequential Machines

ously valid. By the time a’s signal has propagated to point x, however,
the combinational logic has delayed that signal so that it does not
become valid until after b has ceased to be valid. As a result, the gate
that combines b and x produces garbage during the time window marked
by the dotted lines. However, this sort of problem shouldn’t occur in a
system that satisfies a clocking discipline, since a and b should remain
stable until the end of the clock period.

clock skew But in synchronous design, skew of one of the clocks can be fatal. Fig-
ure 5-32 illustrates clock skew. The clock is delayed relative to its
source. If, for example, the signal provided to the latch is valid from 0 to
5 ns but the clock edge does not arrive at the latch until 6 ns, then the
latch will store a garbage value. The difficulty of solving this problem
depends on the source of the delay on the clock line.

QD
a

b

φ

x

a

b

x

stable

stable

stable

changing

changing

changing

time0 5 10

circuit

timing diagram

Figure 5-31 A circuit that introduces signal skew relative to a clock.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 312 Return to Table of Contents

5.4 Performance Analysis 301

QD

δ

delay

Figure 5-32 Clock skew.

QD
combinational

logic QD

φ1

φ2

A

δcl

Figure 5-33 Clock skew
and qualified clocks.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 313 Return to Table of Contents

302 Chapter 5: Sequential Machines

sources of clock skew Clocks can be skewed for several reasons:

• If they are from external sources, they may arrive skewed.
• The delays through the clock network may vary with position on the

chip.
• Qualified clocks may add delay to some clock destinations and not

others.
• Skew can vary with temperature due to temperature dependencies on

gate/buffer delay and wire delay. In a 130 nm process, clock skew
can increase by 10% when the junctions at different points on the
chip differ in temperature by [Sat05, Ped06].

skew and qualified clocks Qualified clocks are a common source of clock skew. Consider the cir-
cuit of Figure 5-33: the latch is run by a qualified clock while the
latch is not. When the signal falls at the system input, the clock input
to the latch falls clk time later. In the worst case, if clk is large enough,
the and phases may both be 1 simultaneously. If that occurs, sig-
nals can propagate completely through latches and improper values may
be stored.

skew in flip-flop systems We can build a simple model to understand how clock skew causes
problems in flip-flop systems. The model is shown in Figure 5-34. The
clock is distributed to two flip-flops; each connection has its own

40 C

QD QDΔ2

δ1 δ2

Δ1

flip-flop 1 flip-flop 2

φ

Figure 5-34 Model system for clock skew analysis in flip-flop-based machines.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 314 Return to Table of Contents

5.4 Performance Analysis 303

skew. The combinational logic blocks feeding each flip-flop each have
their own delays 1 and 2. Clock skew is measured from one point to
another: the skew from the clock input of flip-flop 1 to the clock input of
flip-flop 2 is and the skew from flip-flop 2’s clock input to
flip-flop 1’s clock input is . The clock controls when the D
input to each flip-flop is read and when the Q output changes. Clock
skew gives the signal at the D input more time to arrive but it simultane-
ously gives the signal produced at the Q output less time to reach the
next flip-flop. If we assume that each flip-flop instantaneously reads its
D input and changes its Q output, then we can write this constraint on
the minimum clock period T:

. (EQ 5-5)

This formula tells us that the clock period must be adjusted to take into
account the late arrival of the clock at flip-flop 1. This formula also
makes it clear that if the clock arrives later at flip-flop 2 than at flip-flop
1, we actually have more time for the signal to propagate.

Figure 5-35 shows that as the clock skew increases, there is less
time for the signal to propagate through the combinational logic. As the
clock edge 1 moves forward in time, the output of flip-flop 1 Q1 is
delayed. This in turn delays the input to flip-flop 2 D2, pushing it closer
to missing the clock edge 2.

s12 1 2–=
s21 2 1–=

T 2 1 2–+ 2 s12+=

D1

φ1

Q1

D2

φ2

Q2

time

Figure 5-35 Timing in the
skew model.

1 2–

Modern VLSI Design: IP-Based Design, Fourth Edition Page 315 Return to Table of Contents

304 Chapter 5: Sequential Machines

Equation 5-5 is easy to use in the case when we can choose the clock
period after we know the combinational logic delay and the skew. How-
ever, the more common situation is that we are given a target clock
period, then design the logic. It is often useful to know how much skew
we can tolerate at a given flip-flop. For this case, we can rewrite the
relation as

. (EQ 5-6)

taming clock skew What can we do about clock skew? Ideally, we can distribute the clock
signal without skew. In custom chips, a great deal of effort goes into
designing a low-skew clock distribution network.We will discuss clock
distribution in more detail in Section 7.3.3.

In practice, we cannot always eliminate skew. In these cases, we can
exploit physical design to minimize the effects of skew. Consider the
clock distribution tree of Figure 5-36. Each output of the tree has its
own delay so there are many possible skew values between pairs of taps
on the clock tree. The skew between taps that are physically close is
often less than the skew between taps that are further apart. By proper
placement of the combinational logic we can minimize the skew
between adjacent ranks of flip-flops. The next example looks at how to
deal with clock skew.

s12 T 2+

φ

φ1 φ4

φ2 φ5

φ3 φ6

Figure 5-36 Skew in a clock
distribution tree.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 316 Return to Table of Contents

5.4 Performance Analysis 305

Example 5-2
Dealing with
clock skew

The delays in our clock distribution network are distributed like this:

The placement of logic around the clock tree will affect both the combi-
national logic delays and the clock skew. Let’s consider several
examples.

Here is a very bad case:

This design has both large clock skew and long wires that lead to large
combinational delays.

φ

φ1 = 10 ns φ4 = 10 ns

φ2 = 20 ns φ5 = 20 ns

φ3 = 30 ns φ6 = 30 ns

φ

φ1 = 10 ns

φ6 = 30 ns

QD

QD

Modern VLSI Design: IP-Based Design, Fourth Edition Page 317 Return to Table of Contents

306 Chapter 5: Sequential Machines

This case is better:

We have no clock skew here but we still have long wires.

This case is even better:

This design reduces the combinational delay and keeps the flip-flops
within one island of clock skew.

skew in latch-based
systems

Sakallah, Mudge, and Olukotun [Sak92] developed a set of constraints
which must be obeyed by a latch-controlled synchronous system. Their
formulation allows an arbitrary number of phases and takes into account
propagation of signals through the latches. While the constraints must

φ

φ1 = 10 ns φ4 = 10 ns
QD QD

φ

φ1 = 10 ns
QD QD

Modern VLSI Design: IP-Based Design, Fourth Edition Page 318 Return to Table of Contents

5.4 Performance Analysis 307

be solved by an algorithm for problems of reasonable size, studying the
form of the constraints helps us understand the constraints which must
be obeyed by a latch-controlled system.

The system clock period is Tc. The clock is divided into k phases
, each of which is specified by two values: the start time si, rel-

ative to the beginning of the system clock period, of the ith phase; and
Ti, the duration of the active interval of the ith phase. Connectivity is
defined by two matrices. Cij = 1 if and 0 otherwise; it defines
whether a system clock cycle boundary must be crossed when going
from phase i to phase j. Kij = 1 if any latch in the system takes as its
input a signal from phase i and emits as its output a signal of phase j
and is 0 otherwise. We can easily write basic constraints on the compo-
sition of the clock phases:

• periodicity requires that and ;

• phase ordering requires that ;

• the requirement that phases not overlap produces the constraints
;

• clock non-negativity requires that , and
.

We now need constraints imposed by the behavior of the latches. The
latches are numbered from 1 to l for purposes of subscripting variables
that refer to the latches. The constraints require these new constraints
and parameters:

• pi is the clock phase used to control latch i; we need this mapping
from latches to phases since we will in general have several latches
assigned to a single phase.

• Ai is the arrival time, relative to the beginning of phase pi, of a valid
signal at the input of latch i.

• Di is the departure time of a signal at latch i, which is the time, rel-
ative to the beginning of phase pi, when the signal at the latch’s data
input starts to propagate through the latch.

• Qi is the earliest time, relative to the beginning of phase pi, when
latch i’s data output starts to propagate through the combinational
logic at i’s output.

• DCi is the setup time for latch i.

• DQi is the propagation delay of latch i from the data input to the
data output of the latch while the latch’s clock is active.

1 k

k k i j

Ti Tc i 1 k= si Tc i 1 k=

si si 1+ i 1 k-1=

si sj Tj-CjiTc i j Kij+ 1=

Tc 0 Ti 0 i 1 k=
si 0 i 1 k=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 319 Return to Table of Contents

308 Chapter 5: Sequential Machines

• ij is the propagation delay from an input latch i through combina-
tional logic to an output latch j. If there is no direct, latch-free com-
binational path from i to j, then .The array gives all the
combinational logic delays in the system.

The latches impose setup and propagation constraints:

• Setup requires that . These constraints
ensure that a valid datum is set up at the latch long enough to let the
latch store it.

• Propagation constraints ensure that the phases are long enough to
allow signals to propagate through the necessary combinational
logic. We can use a time-zone-shift equation to move a latch vari-
able from one clock phase to another: . A signal
moving from latch j to latch i propagates in time , relative
to the beginning of phase pj. We can use the time-zone-shift for-
mula to compute the arrival time of the signal at latch i measured in
the time zone pi, which is . The signal at the input of
latch i is not valid until the latest signal has arrived at that latch: the
time . To make sure that propagation
delays are non-negative, we can write the constraints as

.

• Solving the constraints also requires that we constrain all the Di’s to
be non-negative.

Optimizing the system cycle time requires minimizing Tc subject to
these constraints.

5.4.4 Retiming
In many cases, we can move registers to balance combinational delays.
A simple example of retiming [Lei83] is shown in Figure 5-37. Moving
the register from the output of the NAND to its inputs doesn’t change
the combinational function computed, only the time at which the result
is available. We can often move registers within the system to balance
delays without changing the times of the signals at the primary inputs
and outputs. In the example of Figure 5-23, we could move the middle
flip-flop to split the middle addition in two. CAD tools can retime logic
by using an optimization algorithm.

ij -=

Di DCi Tpi i+ 1 l=

Sij si- sj CijTc+
Qj ij+

Qj ji Spipj+ +

Ai maxi Qj ij Spipj+ +()=

Di max 0 Ai() i 1 l= =

Modern VLSI Design: IP-Based Design, Fourth Edition Page 320 Return to Table of Contents

5.4 Performance Analysis 309

5.4.5 Transient Errors and Reliability
detecting and correcting
errors

A variety of causes—temperature gradients, alpha particles, marginal
component parameters, etc.—can cause transient errors. Transient errors
can be detected and corrected in some cases. There are two major tech-
niques for correcting errors: on-the-fly correction substitutes a correct
value for an incorrect one using combinational logic, so that the rest of
the system does not see any delay; rollback causes the system to return
to an earlier state where the value can be recomputed.

redundancy and diversity Redundant computational units are one important technique for detect-
ing and correcting errors. For example, triple modular redundancy
uses three identical units that are fed the same inputs. A voter compares
the results and chooses the value selected by the majority of the units
(assuming that they do not all disagree). Another common technique is
design diversity, in which redundant units are implemented using dif-
ferent components (and often different design teams). Design diversity
aims to reduce common factors across the design that may disable a
large part of the system. Siewiorek and Swarz [Sie98] discuss reliable
system design in detail.

razor latches One technique for identifying errors is the razor latch [Ern03]. As
shown in Figure 5-38, the razor latch includes two latches that are
clocked at slightly different times: one is clocked by the system clock,

QD

QD

QD

Figure 5-37 Retiming preserves combinational function.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 321 Return to Table of Contents

310 Chapter 5: Sequential Machines

the other by a razor clock that is slightly later than the system clock. If
the value was not stable at the end of the system clock, the values in the
two latches will be different. In this case, the XOR gate identifies the
error and the value from the razor latch is used as the output value.

5.5 Clock Generation

Generating a high-speed clock is a non-trivial problem in itself. Many
chips require clock signals of frequencies much too high to be driven
onto the chip from the pads. As a result, the high-frequency clock must
be generated on-chip from a lower-frequency input. Furthermore, the
on-chip clock must be aligned in phase with the external refer-
ence—multiple chips are usually driven from the same external refer-
ence clock, and they will not communicate properly if their internal
clocks are not phase-locked.

phase-locked loops The phase-locked loop (PLL) shown in Figure 5-39 is commonly used
to generate the on-chip clock signal. The higher-frequency output clock
is generated by a voltage-controlled oscillator (VCO). The VCO’s fre-
quency is controlled by the feedback loop of the PLL. The signal gener-
ated by the PLL is divided down to the frequency of the input reference

QD
0
1

QD

system clock

razor clock

error

Figure 5-38 A razor latch.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 322 Return to Table of Contents

5.5 Clock Generation 311

clock; the phase detector compares the difference in phases between the
input and output clocks; a filter is imposed between the phase detector
and VCO to ensure that the PLL is stable. The PLL is designed to
quickly lock onto the input clock signal and to follow the input clock
with low jitter. The phase-locked loop compares the input clock to the
internal clock to keep the internal clock in the proper phase relationship.
The circuit design of PLLs is beyond the scope of this book, but several
articles [You92, Bow95, Man96] and a book [Raz98] describe PLL cir-
cuits used in high-speed chips.

delay-locked loops Many chips use circuits that minimize the delay from the off-chip clock
input to the internal clock signals; this can be particularly important for
asynchronous designs. The delay-locked loop shown in Figure 5-40 is
one circuit commonly used for this purpose. It compares the input clock
to the internal clock using a filter. The output of the filter controls the
delay in a variable delay line so as to align the clock edges on the input
and internal clock lines.

phase
detector filter VCO

programmable
counter

input
clock

output
clock

Figure 5-39 Block diagram of a phase-locked loop for clock generation.

delay line

filter
input

Figure 5-40 A delay-locked
loop.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 323 Return to Table of Contents

312 Chapter 5: Sequential Machines

5.6 Sequential System Design

To design a sequential machine, we need to first specify it, and then
implement it. This section covers several methods for specifying FSMs
and techniques for choosing a good implementation for the FSM.

5.6.1 Structural Specification of Sequential Machines
counters as sequential
machines

Now that we know how to construct reliable sequential machines, we
can experiment with building real sequential machines, starting with a
specification of function and finishing with a layout. We have already
designed the simplest sequential machine—the shift register with no
combinational logic. The shift register is relatively boring, not only
because it has no combinational logic, but for another reason as well:
there is no feedback, or closed path, between the latches. A binary coun-
ter is a simple system that exhibits both properties. We will define the
counter as a structure: an n-bit counter will be defined in terms of inter-
connected one-bit counters.

The next example describes the design of a counter.

Example 5-3
A counter

A one-bit counter consists of two components: a specialized form of
adder, stripped of unnecessary logic so that it can only add 1; and a
memory element to hold the value. We want to build an n-bit binary
counter from one-bit counters.

What logical function must the one-bit counter execute? The truth table
for the one-bit counter in terms of the present count stored in the latch
and the carry-in is shown below. The table reveals that the next value of
the count is the exclusive-or (XOR) of the current count and Cin, while
the carry-out is the AND of those two values.

count Cin
next
count Cout

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Modern VLSI Design: IP-Based Design, Fourth Edition Page 324 Return to Table of Contents

5.6 Sequential System Design 313

Here is a logic schematic for the one-bit counter:

The AND function is built from a NAND gate and an inverter. The
latches in this counter have the same basic connections as the latches in
the shift register, except that logic is added between the 1 and 2
latches to compute the count. The next count is loaded into one latch
while 2 is high, then transferred to the other latch during 1, allowing
the next count cycle to be computed.

The n-bit counter’s structure looks like this:

Each bit has one input and two outputs: the input Cin,i is the carry into
the ith bit; the output bi is the current value of the count for that bit; and

QD

φ1
φ2

QD

Cout,i

bi

Cin,i

countn-1

cout,n-1

bn-1

countn-2

cin,n-1 = cout,n-2

bn-2

count0

cout,0 = cin,1

b0

cin,n-2 = cout,n-3

...

cin,0 = 1

Modern VLSI Design: IP-Based Design, Fourth Edition Page 325 Return to Table of Contents

314 Chapter 5: Sequential Machines

Cout,i is the carry out of the bit. The carry-in value for the 0th bit is 1; on
each clock cycle this carry value causes the counter to increment itself.
(The counter, to be useful, should also have a reset input that forces all
bits in the counter to 0; we have omitted it here for simplicity.)

Here is a hierarchical stick diagram for the one-bit counter:

It has been designed to tile vertically to form an n-bit counter. All the
one-bit counter’s components are arranged in one long row. The 1 and

2 latches are on opposite ends of the cell, so a long metal wire must be
used to connect them. The connections between the logic gates are rela-
tively simple, though care must be taken to route the wires over cells so
they do not create inadvertent shorts.

5.6.2 State Transition Graphs and Tables
functional specification
of FSMs

To build complex sequential systems, we need powerful specification
techniques. We described the counter of Example 5-3 as a structure. A
more abstract and powerful specification is functional—describing the
next-state and output functions directly, independent of the structure
used to compute them. We can then use programs to generate the Mealy
or Moore structure of Figure 5-14 to generate an initial structure, which
can be optimized by CAD tools. Some behaviors are cumbersome to
specify as state transition tables or graphs and are best described as
structures—a register file is a good example of a sequential machine

φ1 φ1' φ2 φ2'

l1(latch) n(NAND) i(INV) l2(latch)

VDD

VSSx(XOR)

cout,i

cin,i

bi

Modern VLSI Design: IP-Based Design, Fourth Edition Page 326 Return to Table of Contents

5.6 Sequential System Design 315

best described structurally—but functional descriptions of FSMs occur
in nearly every chip design.

state transition tables
and graphs

An FSM can be specified in one of two equivalent ways: as a state tran-
sition table or a state transition graph. Either is a compact description
of a sequential machine’s behavior. The next example shows how to
design a simple machine from a state transition table.

Example 5-4
A 01-string
recognizer

Consider as an example a very simple FSM with one input and one out-
put. If the machine’s inputs are thought of as a string of 0’s and 1’s, the
machine’s job is to recognize the string “01”—the FSM’s output is set to
1 for one cycle as soon as it sees “01.” This table shows the behavior of
the recognizer machine over time for a sample input:

We can describe the machine’s behavior as either a state transition graph
or a state transition table. The machine has one input, the data string,
and one output, which signals recognition. It also has two states: bit1 is
looking for “0”, the first bit in the string; bit2 is looking for the trailing
“1”. Both representations specify, for each possible combination of
input and present state, the output generated by the FSM and the next
state it will assume.

Here is the state transition table:

time 0 1 2 3 4 5

input 0 0 1 1 0 1

present state bit1 bit2 bit2 bit1 bit1 bit2

next state bit2 bit2 bit1 bit1 bit2 bit1

output 0 0 1 0 0 1

input
present
state

next
state output

0 bit1 bit2 0
1 bit1 bit1 0
0 bit2 bit2 0
1 bit2 bit1 1

Modern VLSI Design: IP-Based Design, Fourth Edition Page 327 Return to Table of Contents

316 Chapter 5: Sequential Machines

And here is the equivalent state transition graph:

Assume that the machine starts in state bit1 at time t=0. The machine
moves from bit1 to bit2 when it has received a 0 and is waiting for a 1 to
appear on the next cycle. If the machine receives a 0 in state bit2, the
“01” string can still be found if the next bit is a 1, so the machine stays
in bit2. The machine recognizes its first “01” string at t=2; it then goes
back to state bit1 to wait for a 0. The machine recognizes another “01”
string at t=5.

Translating the state transition graph/table into a chip layout requires
several steps, most of which are familiar from the counter design. The
first step is to encode the machine’s states into binary values, a step also
known as state assignment. We didn’t discuss the encoding of the
counter machine because we already knew a good encoding, namely,
two’s-complement binary numbers. All the counter’s signals were spec-
ified as binary values, which mapped directly into the 0s and 1s pro-
duced by logic gates.

The present and next state values of a machine specified as a state tran-
sition graph, however, are symbolic—they may range over more than
two values, and so do not map directly into Boolean 0s and 1s. This
string-recognizer machine has only two states, but even in this simple
case we don’t know which state to code as 0 and which as 1. The encod-
ing problem is difficult and important because the choice of which
Boolean value is associated with each symbolic state can change the
amount of logic required to implement the machine.

Encoding assigns a binary number, which is equivalent to a string of
Boolean values, to each symbolic state. By substituting the state codes
into the state transition table, we obtain a truth table which specifies
the combinational logic required to compute the machine’s output and

1/1

1/0 0/0

input=0/
output=0

bit1 bit2

Modern VLSI Design: IP-Based Design, Fourth Edition Page 328 Return to Table of Contents

5.6 Sequential System Design 317

next state. If we choose the encoding bit1 = 0, bit2 = 1 for the 01-string
recognizer, we obtain this truth table:

From the encoded state transition table we can design the logic for to
compute the next state and the output, either manually or by using logic
optimization. Here is one logic network for the 01-string recognizer:

Inspection shows that the gates in fact implement the functions
described in the truth table. Creating a logic network for this machine is
easy but the task is more difficult for machines with larger state transi-
tion tables. Luckily, programs can design small, fast logic networks for
us from encoded state transition tables. For example, we can use a set of
synthesis tools that will take a truth table, optimize the logic, then create
a standard-cell layout. The resulting layout looks somewhat different
than our hand-designed examples because the standard cells’s transis-
tors are designed to drive larger loads and so are much wider than the

input
present
state

next
state output

0 0 1 0
1 0 0 0
0 1 1 0
1 1 0 1

output

next state

present state

input

Modern VLSI Design: IP-Based Design, Fourth Edition Page 329 Return to Table of Contents

318 Chapter 5: Sequential Machines

ones we have been drawing by hand, but the layout is still two rows of
CMOS gates with wiring in between:

If necessary, we can use a layout editor to examine the layout and deter-
mine exactly how the logic functions were designed and where the tran-
sistors for each gate were placed. However, one of the nicest things
about synthesis tools (well-debugged tools, at least) is that we don’t
have to worry about how they did their job. All we need to know is the
position of each input and output around the edge of the layout cell.

A slightly more complex example of finite-state machine designs is a
controller for a traffic light at the intersection of two roads. This exam-
ple is especially interesting in that it is constructed from several commu-
nicating finite-state machines; just as decomposing stick diagrams into
cells helped organize layout design, decomposing sequential machines
into communicating FSMs helps organize machine design.

logic cellVDD

VSS

input

wiring

Modern VLSI Design: IP-Based Design, Fourth Edition Page 330 Return to Table of Contents

5.6 Sequential System Design 319

Example 5-5
A traffic light
controller

We want to control a road using a traffic light:

There are many possible schemes to control when the light changes. We
could alternate between giving the two roads green lights at regular
intervals; that scheme, however, wouldn’t give us an interesting sequen-
tial machine to study. A slightly more complex and interesting system
can be built by taking traffic loads into account. The highway will gen-
erally have more traffic, and we want to give it priority; however, we do
not want to completely block traffic on the farm road from crossing the
highway. To balance these competing concerns, we install traffic sensors
on the farm road at the intersection. If there is no traffic waiting on the
farm road, the highway always has a green light. When traffic stops at
the farm road side of the intersection, the traffic lights are changed to
give the farm road a green light as long as there is traffic. But since this
simple rule allows the highway light to be green for an interval too short
to be safe (consider a second farm road car pulling up just as the high-
way light has returned to green), we ensure that the highway light (and,
for similar reasons, the farm light) will be green for some minimum
time.

We must turn this vague, general description of how the light should
work into an exact description of the light’s behavior. This precise
description takes the form of a state transition graph. How do we know

traffic sensors

highway

traffic light

farm road

Modern VLSI Design: IP-Based Design, Fourth Edition Page 331 Return to Table of Contents

320 Chapter 5: Sequential Machines

that we have correctly captured the English description of the light’s
behavior as a state transition table? It is very difficult to be absolutely
sure, since the English description is necessarily ambiguous, while the
state transition table is not. However, we can check the state transition
table by mentally executing the machine for several cycles and checking
the result given by the state transition table against what we intuitively
expect the machine to do. We can also assert several universal claims
about the light’s behavior: at least one light must be red at any time;
lights must always follow a green yellow red sequence; and a light
must remain green for the chosen minimum amount of time.

We will use a pair of communicating sequential machines to control the
traffic light:

The system consists of a counter and a sequencer. Both are finite-state
machines, but each serves a different purpose in the system. The counter
counts clock cycles, starting when its reset input is set to 1, and signals
two different intervals—the short signal controls the length of the yel-
low light, while the long signal determines the minimum time a light
can be green.

The sequencer controls the behavior of the lights. It takes as inputs the
car sensor value and the timer signals; its outputs are the light values,

counter sequencer

reset

long

short

cars highway farm

Modern VLSI Design: IP-Based Design, Fourth Edition Page 332 Return to Table of Contents

5.6 Sequential System Design 321

along with the timer reset signals. The sequencer’s state transition graph
looks like this:

The states are named to describe the value of one of the lights; the com-
plete set of light values, however, is presented at the machine’s outputs
on every cycle. Tracing through the state transition graph shows that this
sequencer satisfies our English specification: the highway light remains
green until cars arrive at the farm road (as indicated by the sensor) and
the minimum green period (specified by the long timeout) is met. The
machine then sets the highway light to yellow for the proper amount of
time, then sets the highway light to red and the farm light to green. The
farm light remains green so long as cars pull up to the intersection, but
no longer than the long timeout period. Inspection also shows that the
state transition graph satisfies all our assertions: one light is always red,
each light always changes colors in the green yellow red

hwy-
green

farm-
green

hwy-
yellow

farm-
yellow

(cars · long)' / 0 green red

cars · long' / 0 red green

cars' + long /
1 red green

cars · long /
1 green red

short' /
0 yellow red

short / 1 yellow red

short / 1 red yellow

short' /
0 red yellow

transition labels
condition / reset highway farm

Modern VLSI Design: IP-Based Design, Fourth Edition Page 333 Return to Table of Contents

322 Chapter 5: Sequential Machines

sequence; and each light, when it turns green, remains green for at least
the period specified by the long timer.

We can also write the state transition graph as a table. Some of the tran-
sitions in the graph are labeled with OR conditions, such as cars +
long’. Since each line in a state transition table can only refer to the
AND of input conditions, we must write the OR conditions in multiple
lines. For example, one line can specify a transition out of the farm-
green state when cars = 1, while another can specify the same next
state and outputs when long = 0.

The sequencer and counter work in tandem to control the traffic light’s
operation. The counter can be viewed as a subroutine of the
sequencer—the sequencer calls the counter when it needs to count out
an interval of time, after which the counter returns a single value. The
traffic light controller could be designed as a single machine, in which
the sequencer counts down the long and short time intervals itself, but
separating the counter has two advantages. First, we may be able to bor-
row a suitable counter from a library of pre-designed components, sav-
ing us the work of even writing the counter’s state transition table.
Second, even if we design our own counter, separating the machine
states that count time intervals (counter states) from the machine states
that make decisions about the light values (sequencer states), clarifies
the sequencer design and makes it easier to verify.

We can implement each machine in the traffic light controller just as any
other FSM, moving from the state transition table through logic to a
final layout. We can either design custom layouts or synthesize
standard-cell layouts from optimized logic. However, we have the addi-
tional problem of how to connect the two machines. We have three
choices. The least palatable is to write a combined state transition table
for the sequencer and counter, then synthesize it as a single FSM. Since
the states in the combined machine are the Cartesian product of the
states in the two component machines, that machine is unacceptably
large. The simplest solution is to design each machine separately, then
wire them together by hand. This option requires us to intervene after
the FSM synthesis task is done, which we may not want to do. The third
alternative is to interrupt the FSM synthesis process after logic design,
splice together the net lists for the two machines, and give the combined
net list to standard cell placement and routing.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 334 Return to Table of Contents

5.6 Sequential System Design 323

5.6.3 State Assignment
State assignment is the design step most closely associated with FSMs.
(Input and output signals may also be specified as symbolic values and
encoded, but the state variable typically has the most coding freedom
because it is not used outside the FSM.) State assignment can have a
profound effect on the size of the next state logic, as shown in the next
example.

Example 5-6
Encoding a shift
register

Here is the state transition table for a two-bit shift register, which echoes
its input bit two cycles later:

The state names are, of course, a hint at the optimal encoding. But let’s
first try another code: s00 = 00, s01= 01, s10 = 11, s11 = 10. We’ll name
the present state bits , the next state bits , and the input i. The
next state and output equations for this encoding are:

Both the output and next state functions require logic. Now consider the
shift register’s natural encoding—the history of the last two input bits.
The encoding is s00 = 00, s10 = 10, s01 = 01, s11 = 11. Plugging these
code values into the symbolic state transition table shows that this
encoding requires no next state or output logic:

input
present
state

 next
state output

0 s00 s00 0
1 s00 s10 0
0 s01 s00 1
1 s01 s10 1
0 s10 s01 0
1 s10 s11 0
0 s11 s01 1
1 s11 s11 1

S1S0 N1N0

output S1S0 S1S0+=

N1 i=

N0 iS1 iS1+=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 335 Return to Table of Contents

324 Chapter 5: Sequential Machines

This example may seem contrived because the shift register function is
regular. But changes to the state codes can significantly change both the
area and delay of sequencers with more complex state transition graphs.
State codes can be chosen to produce logic that can be swept into a com-
mon factor during logic optimization—the common factors are found
during logic optimization, but exist only because the proper logic was
created during state assignment.

common factors from
states

State assignment creates two types of common factors: factors in logic
that compute functions of the present state; and factors in the next state
logic. Input encoding can best be seen as the search for common factors
in the symbolic state transition table. Consider this state machine frag-
ment:

If we allow combinations of the present state variable, we can simplify
the state transition table as:

How can we take advantage of the OR by encoding? We want to find the
smallest logic that tests for . For example, if we assume that the
state code for the complete machine requires two bits and we encode the
state variables as s1 = 00, s2 = 11, the present state logic is .
The smallest logic is produced by putting the state codes as close
together as possible—that is, minimizing the number of bits in which

output S0=

N1 i=

N0 S1=

input
present
state

 next
state output

0 s1 s3 1
0 s2 s3 1

input
present
state

 next
state output

0 s3 1s1 s2

s1 s2

S1S0 S1S0+

Modern VLSI Design: IP-Based Design, Fourth Edition Page 336 Return to Table of Contents

5.6 Sequential System Design 325

the two codes differ. If we choose s1 = 00, s2 = 01, the present state
logic reduces to .

As shown in Figure 5-41, we can interpret the search for symbolic
present state factors in the state transition table as a forward search for
common next states in the state transition graph [Dev88]. If two states
go to the same next state on the same input, the source states should be
coded as close together as possible. If the transitions have similar but
not identical input conditions, it may still be worthwhile to encode the
source states together.

relationships
between codes

Figure 5-42 illustrates the relationship between bit differences and dis-
tance between codes. We can embed a three-bit code in a
three-dimensional space: one axis per code bit, where each axis includes
the values 0 and 1. Changing one code bit between 0 and 1 moves one
unit through the space. The distance between 000 and 111 is three
because we have to change three bits to move between the two codes.
Putting two codes close together puts them in the same subspace: we
can put two codes in the 00- subspace and four in the 1– subspace. We
can generate many coding constraints by searching the complete state
transition graph; the encoding problem is to determine which constraints
are most important.

We can also search backward from several states to find common pres-
ent states. As shown in Figure 5-44, one state may go to two different
states on two different input values. In this case, we can minimize the
amount of logic required to compute the next state by making the sink

S1

s1

s2

s3

00/1

00/1

Figure 5-41 Common next
states.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 337 Return to Table of Contents

326 Chapter 5: Sequential Machines

states’ codes as close as possible to the source state’s code. Consider
this example:

We can make use of the input bit to compute the next state with the min-
imum amount of logic: if s0 = 00, we can use the input bit as one bit of
the codes for s1 and s2: s1 = 10, s2 = 11. One bit of the next state can be
computed independently of the input condition. Once again, we have
encoded s1 and s2 close together so that we need the smallest amount of
logic to compute which next state is our destination.

state assignment and delay So far, we have looked at codes that minimize the area of the next state
logic and the number of registers. State assignment can also influence
the delay through the next state logic; reducing delay often requires add-
ing state bits. Figure 5-43 shows the structure of a typical operation per-
formed in either the next-state or the output logic. Some function f() of
the inputs is computed. This value will usually control a conditional
operation: either a conditional output or a conditional change in state.
Some test of the present state is made to see if it is one of several states.
Then those two results are combined to determine the proper output or

s1 code = 111

s2 code = 110

0

1

1

1

Figure 5-42 State codes
embedded in a three-
dimensional space.

input
present
state

 next
state output

0 s0 s1 1
1 s0 s2 1

Modern VLSI Design: IP-Based Design, Fourth Edition Page 338 Return to Table of Contents

5.6 Sequential System Design 327

next state. We can’t do much about the delay through f(), but we can
choose the state codes so that the important steps on the state are easy to
compute. Furthermore, the FSM probably computes several f()s for dif-
ferent operations, which in general don’t have the same delay. If we
can’t make all computations on the state equally fast, we can choose the
codes so that the fastest state computations are performed on the FSM’s
critical path.

As shown in Figure 5-45, state codes can add delay both on the output
and next state sides. On the output logic side, the machine may need to
compute whether the present state is a member of the set that enables a
certain output—in the example, the output is enabled on an input condi-
tion and when the present state is either s2 or s4. The delay through the

state
logic

primary
inputs

f()

state
state in {s1, s2, ...}

result

Figure 5-43 An FSM computes
new values from the primary
inputs and state.

s1

s2

s3

0/1

1/1

Figure 5-44 Common present
states.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 339 Return to Table of Contents

328 Chapter 5: Sequential Machines

logic that computes the state subset depends on whether the state codes
were chosen to make that test obvious.

one-hot codes A one-hot code uses n bits to encode n states; the ith bit is 1 when the
machine is in the ith state. We can use such a code to easily compute
state subset membership, by simply computing the OR of the state bits
in the subset. But this solution has two problems. First, it requires a lot
of memory elements for the present state: a machine with 64 states
requires at least six memory elements for arbitrary codes, but 64 states
for a one-hot encoding. Second, one-hot encoding doesn’t help if an out-
put depends on more than one state. It’s best to examine the machine for
time-critical outputs that depend on the present state and to construct
codes that efficiently represent the time-critical state combinations, then
use area-minimizing coding for the rest of the states.

output
logic

QD

input

state

state in {s2, s4}

next state
logic

QDinput

state

present state

next state

Figure 5-45 How state codes affect delay.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 340 Return to Table of Contents

5.7 Power Optimization 329

On the next state side, the machine needs to compute the next state from
the inputs and the present state. The delay to compute the next state
depends on the complexity of the next-state function. The fastest next-
state logic uses the result of the test of the primary inputs to indepen-
dently change bits in the state code. For example, setting bit 0 of the
next state to 1 and bit 2 to 0 is relatively fast. Computing a new value for
bit 0, then setting bit 2 to the complement of bit 1 is slower.

5.7 Power Optimization

glitches and power As was described in Section 4.3, eliminating glitching is one of the most
important techniques for power reduction in CMOS logic. Glitch reduc-
tion can often be applied more effectively in sequential systems than is
possible in combinational logic. Sequential machines can use registers
to stop the propagation of glitches, independent of the logic function
being implemented.

retiming and glitches Many sequential timing optimizations can be thought of as retiming
[Mon93]. Figure 5-46 illustrates how flip-flops can be used to reduce
power consumption by blocking glitches from propagating to high
capacitance nodes. (The flip-flop and its clock connection do, of course,
consume some power of their own.) A well-placed flip-flop will be
positioned after the logic with high signal transition probabilities and
before high capacitance nodes on the same path.

blocking glitch
propagation

Beyond retiming, we can also add extra levels of registers to keep
glitches from propagating. Adding registers can be useful when there
are more glitch-producing segments of logic than there are ranks of flip-

QD
t t

C

Figure 5-46 Flip-flops stop
glitch propagation.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 341 Return to Table of Contents

330 Chapter 5: Sequential Machines

flops to catch the glitches. Such changes, however, will change the num-
ber of cycles required to compute the machine’s outputs and must be
compatible with the rest of the system.

Proper state assignment may help reduce power consumption. For
example, a one-hot encoding requires only two signal transitions per
cycle—on the old state and new state signals. However, one-hot encod-
ing requires a large number of memory elements. The power consump-
tion of the logic that computes the required current-state and next-state
functions must also be taken into account.

5.8 Design Validation

design verification
problems

A sequential machine is a chunk of logic large enough to demand its
own validation strategy. You can verify functionality both from the top
down—checking that your logic matches the machine’s descrip-
tion—and from the bottom up—extracting the circuit from the layout
and comparing the results of its simulation with the simulation results
from the logic network you specified. You must also make sure that the
system runs at the required rate; one of the advantages of building
sequential systems according to a clocking methodology is that we can
verify performance without simulation.

verification tools You may have access to true verification tools, which can automatically
compare a combinational logic or sequential machine description
against the implementation, using tautology or FSM equivalence algo-
rithms. You are more likely to use simulation to validate your design.
You can simulate a single description of your machine, such as the
register-transfer description, to be sure you designed what you wanted;
you can also compare the results of two different simulations, such as
the logic and register-transfer designs, to ensure that the two are equiva-
lent. You may need to use several simulators to verify the design,
depending on your available tools:

• A register-transfer simulator exhibits the correct cycle-by-cycle
behavior at its inputs and outputs, but the internal implementation of
the simulator may have nothing to do with the logic implementation.
Several specialized languages for hardware description and simula-
tion have been developed. Hardware simulation languages, such as
VHDL and Verilog, provide primitives that model the parallelism of
logic gate evaluation, delays, etc., so that a structural description
such as a net list automatically provides accurate simulation. In a

Modern VLSI Design: IP-Based Design, Fourth Edition Page 342 Return to Table of Contents

5.8 Design Validation 331

pinch, a C program makes a passable register-transfer simulator: the
component is modeled as a procedure, which takes inputs for one
cycle and generates the outputs for that cycle. However, hardware
modeling in C or other general-purpose programming languages
requires more attention to the mechanics of simulation.

• A logic simulator accepts a net list whose components are logic
gates. The simulator evaluates the output of each logic gate based on
the values presented at the gate’s inputs. You can trace though the
network to find logic bugs, comparing the actual value of a wire to
what you think the value should be. Verilog and VHDL can be used
for logic simulation: a library provides simulation models for the
logic gates; a net list tells the simulation system how the components
are wired together.

• A switch simulator models the entire system—both combinational
logic gates and memory elements—as a network of switches. Like a
logic simulator, the simulator evaluates individual nets, but the simu-
lation is performed at a lower level of abstraction. A switch simula-
tor can find some types of charge sharing bugs, as well. You must
use a switch simulator if your circuit contains mixed switch and gate
logic; a switch simulator is most convenient for a circuit extracted
from a complete layout, since the circuit extractor generates a net list
of transistors.

You should simulate your sequential machine specification—register-
transfer description, state transition graph, etc.—before designing the
logic to implement the machine. If you specify the wrong function and
don’t discover the error before implementation, you will waste a lot of
logic and layout design before you discover your mistake. This step
ensures that your formal description of behavior matches your informal
requirements.

comparing different levels
of abstraction

To verify your implementation, you should check your logic design
against the register-transfer/sequential machine description. Once again,
catching any errors before layout saves time and effort. That is defi-
nitely true if you design the logic yourself; if the logic was designed by
a CAD tool, the results are probably correct, though the more paranoid
designers among you may want to perform some simulation to make
sure the logic optimizer didn’t make a mistake.

You should also extract the circuit from your completed layout, simulate
it using the same inputs you used to simulate your logic, and compare
the results. Switch or circuit simulation not only check the correctness
of the layout, they also identify charge-sharing bugs that can be found
only in a switch-level design. Simulation tests that are comprehensive

Modern VLSI Design: IP-Based Design, Fourth Edition Page 343 Return to Table of Contents

332 Chapter 5: Sequential Machines

enough to ensure that your original logic design was correct should also
spot differences between the logic and the layout. If you do not have a
logic simulator available, but you do have layout synthesis, one way to
simulate the logic is to generate a layout, then extract a switch-level cir-
cuit and simulate it.

If you specify a schematic or net list of the logic before layout, a net list
comparison program can check the layout against that schematic. The
net list extracted from the layout will use n-type and p-type transistors
as its components. If the schematic was designed in terms of logic gates,
it can be expanded to a transistor-level schematic. A net list comparison
program tries to match up the components and nets in the two schemat-
ics to produce a one-to-one correspondence between the two net lists.
Such programs usually require that only a few major signals—VDD,
VSS, clocks, and the primary inputs and outputs—be identified. If the
program can’t match up the two net lists, it will try to identify a small
part of each circuit that contains the error.

performance verification Performance verification—making sure the system runs fast
enough—can be separated from functionality if the system is properly
designed. If we have obeyed a clocking methodology, we know that the
system will work if values arrive at the memory elements within pre-
scribed times. Timing analysis algorithms such as those described in
Section 4.3 are the best way to ensure that the chip runs at the required
rate. Circuit or timing simulation should be used to optimize paths that
are expected to be critical. However, unexpected critical paths may have
crept into the design. Timing analysis is the guardian that ensures that
the paths you optimized are in fact the critical paths.

5.9 Sequential Testing

We studied in the last chapter manufacturing faults in combinational
networks and how to test them. Now we are prepared to study the test-
ing of sequential systems, which is made much harder by the inaccessi-
bility of the memory elements to the tester.

ATPG A suite of test vectors for a chip is generated using a combination of
CAD techniques called automatic test pattern generation (ATPG) and
expert human help. Test generation for combinational networks can be
done entirely automatically. Automated methods for sequential circuits
are improving, but manual intervention is still required in many cases to

Modern VLSI Design: IP-Based Design, Fourth Edition Page 344 Return to Table of Contents

5.9 Sequential Testing 333

provide full test coverage. The designer or test expert may be able to
find a test for a fault that a program cannot. Often, however, it is better
to redesign a hard-to-test chip to make it easier to find test vectors. Not
only does design for testability let automatic test generation programs
do more of the work, it reduces the risk that the chip will be abandoned
in frustration with low test coverage.

sequential
testing challenges

Testing a sequential system is much harder than testing a combinational
network because you don’t have access to all of the inputs and outputs
of the machine’s combinational logic. Figure 5-47 shows a sequential
machine. We want to test the NAND gate for a stuck-at-1 fault at its out-
put, which requires applying 1 to both its inputs. Setting one input to 1
is easy, since the gate’s input is tied to one of the machine’s primary
inputs. (If there were combinational logic between i1 and the NAND
gate’s input, finding the proper stimulus would be hard, but we could
still apply the value directly, assuming the logic is not redundant.) The
other input is more difficult, because it is fed only by logic tied to the
machine’s state registers. Setting the NAND gate’s lower input to 1
requires driving the NOR gate’s output to 0; this can be done only when
the machine is in a state that has a 1 for either ps0 or ps1. Although there

Q D

Q D

i1

ps0

ps1

Figure 5-47 Testing a
sequential machine.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 345 Return to Table of Contents

334 Chapter 5: Sequential Machines

may be several states that meet this criterion, getting the machine to a
proper state may take several cycles. Testing a single fault in the combi-
national logic may take many, many cycles, meaning that testing all the
faults becomes much more expensive than for purely combinational
logic.

The state transition graph and state encoding for the machine of Figure
5-47 are given in Figure 5-49. Examining the state transition graph
helps us understand how hard it can be to test for a fault in a sequential
system. When we start the test sequence, we may not know the
machine’s present state. (Even if the machine is reset at power-up time,
the previous test may have left it in one of several different states.) In
that case, we have to find a sequence of inputs to the FSM that drive it to
the desired state independent of its starting state. Since this machine has
a reset input that lets us get to s0 from any state in one cycle, we can get
to s3 in three cycles by the sequence * s0 s1 s3, where * stands
for any state.

CL

primary inputs0

primary outputs0 =
primary inputs1

present state0 next state0 =
present state1

i=0

CL

i=1

CL

i=2

Figure 5-48 Time-frame expansion of a sequential test.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 346 Return to Table of Contents

5.9 Sequential Testing 335

At this point, we can apply i1 = 0, run the machine for one more cycle,
and perform the test. Of course, some of the combinational logic’s pri-
mary outputs may be connected only to the next state lines in a way that
the result of the test is not visible at the primary outputs. In this case, we
must run the machine for several cycles until we observe the test’s out-
come at the machine’s primary outputs.

states and justification State assignment may make it impossible to justify the required values
in the machine’s combinational logic. The next example illustrates the
problem.

s0 s1

s2 s3

0/

1/

0/ 1/

0/

0/1/

1/

ps1 ps0

s0 1 1
s1 1 0
s2 0 1
s3 0 0

state transition graph

state codes

Figure 5-49 A state
transition graph to
test.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 347 Return to Table of Contents

336 Chapter 5: Sequential Machines

Example 5-7
Unreachable
states

We are given this state transition graph to implement:

This machine has three states. Let’s choose the state assignment s0 = 00,
s1 = 01, s2 = 10. Since this state code has two bits, our implementation
will actually have four states. However, let’s ignore this complication
for the moment and design the machine’s combinational logic taking
into account only the states specified in the state transition graph. The
truth table for the encoded machine is:

The equations for the next-state logic are N1=i’S1’S0, N0=i’S1’S0’. This
next-state logic creates transitions for the remaining state code, 11.

s0 s1

s2

0/

1/

0/ 1/

1/

0/

i S1 S0 N1 N0

0 0 0 0 1

1 0 0 0 0

0 0 1 1 0

1 0 1 0 0

0 1 0 0 0

1 1 0 0 0

Modern VLSI Design: IP-Based Design, Fourth Edition Page 348 Return to Table of Contents

5.9 Sequential Testing 337

When we use this combinational logic, the state transition graph of the
machine we actually implement is this:

If the machine happens to start in state 11 at power-up, we can apply an
input to get it to one of the specified states, but there is no way to get the
machine from any of our specified states to the 11 state. If any part of
the machine, such as the output logic, requires the present state to be 11
to test for a fault, we can’t test for that fault. A strongly connected state
transition graph has a path from any state to any other state. A reset sig-
nal goes a long way to making a state transition graph strongly con-
nected and more easily testable.

multiple-fault behavior To make sequential testing even more difficult, a single fault in the logic
can mimic a multiple fault. Time-frame expansion, illustrated in Fig-
ure 5-48, helps us understand this phenomenon. A sequential test can be
analyzed by unrolling the hardware over time: one copy of the hardware
is made for each cycle; the copies are connected so that the next state
outputs at time t are fed to the present state inputs of the time t+1 frame.
Time-frame expansion helps us visualize the justification and propaga-
tion of the fault over several cycles.

Copying the combinational logic clearly illustrates how a single fault
mimics multiple-fault behavior in a sequential test. Each time-frame
will have its own copy of the fault. Over several cycles, the faulty gate
can block its own detection or observation. Any test sequence must
work around the fault under test on every cycle. Test generation pro-
grams can help create test vector suites for a machine. But, given the
inherent difficulty of testing, we cannot expect miracles. Proper design
is the only way to ensure that tests can be found. The chip must be

00 01

10

0/

1/

0/ 1/

1/

0/

11

0, 1/

Modern VLSI Design: IP-Based Design, Fourth Edition Page 349 Return to Table of Contents

338 Chapter 5: Sequential Machines

designed so that all logic is made accessible enough that faults can be
exercised and the results of a combinational test can be propagated to
the pins. Many design-for-testability techniques take advantage of par-
ticularities of the component or system being designed; others impose a
structure on the system.

scan design Scan design turns a sequential testing problem into combinational test-
ing by making the present state inputs and next state outputs directly
accessible. LSSD (level-sensitive scan design) was invented at IBM;
another scan-path methodology was developed independently at NEC.
An LSSD system uses special latches for memory elements, and so runs
in two phases. As shown in Figure 5-50, the system has non-scan and
scan modes. In non-scan mode, the latches are clocked by and and
the system operates as any other two-phase system. In scan mode, the
latches are clocked by the and clocks, and the latches work as a
shift register. The latches are connected in a chain so that all the present
state can be shifted out of the chip and the new state can be shifted in.

Figure 5-51 illustrates the logic design of an LSSD latch [Wil83]. Each
LSSD latch can function as a regular latch in non-scan mode and
includes latches for both scan-mode clock phases. The memory ele-
ments used as components in the scan latch are normal, non-LSSD

combinational
logic

scan in

scan out

φ1,2 Ψ1,2

Q D

mode

Figure 5-50 A level-
sensitive scan design
(LSSD) system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 350 Return to Table of Contents

5.9 Sequential Testing 339

QDmux

sel

φ1 or 2

DQ

Ψ2

Ψ1

D
Q

scan latch

QDmux

sel

φ1 or 2

DQ

Ψ2

Ψ1

D
Q

scan latch

mode

mode

scan path

Figure 5-51 The
structure of an LSSD
latch.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 351 Return to Table of Contents

340 Chapter 5: Sequential Machines

latches. The latch closest to the D input is shared by the normal and scan
paths; the multiplexer at its input determines whether the value clocked
into the latch is from the data input or the scan path. The second latch is
used only for scan mode. The two latches together form a strict two-
phase system in scan mode. This LSSD latch operates as a normal latch
in non-scan mode and as a pair of latches in scan mode. The delay
through this latch is slightly longer thanks to the multiplexer at the
input.

5.10 References

Dietmeyer [Die78] gives the most comprehensive and well-structured
survey of memory elements. The Mississippi State University (MSU)
Cell Library [MSU89] contains combinational logic, latch, and flip-flop
designs. The traffic light controller machine was originally presented in
books by Unger [Ung69] and Mead and Conway [Mea80]. The “01”-
string recognizer machine was developed at Stanford by Prof. Robert
Mathews. The two-phase clocking discipline for latches was introduced
in David Noice et al. [Noi82].

5.11 Problems

Q5-1. Draw a stick diagram for a two-input dynamic mux latch.

Q5-2. Draw a stick diagram for a D-latch built from clocked inverters.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 352 Return to Table of Contents

5.11 Problems 341

Q5-3. Which of these state machines is a Mealy machine? Explain.

a)

b)

Q5-4. Show the clocking types for all signals in a four-bit shift register,
assuming that the data input to the shift register is s 1.

Q5-5. If you want to connect a state machine built with flip-flops to a
latch-based state machine using the clocking discipline, how much you
change the flip-flop machine?

Q5-6. Modify Equation 5-2 to give the clock period constraint for a sys-
tem with two combinational logic blocks separated by flip-flops.

Q5-7. Is a single-phase or a two-phase system more sensitive to clock
skew? Justify your answer.

s1 s2

s3

0/0

-/0

0/1 1/0
1/1

s1 s2

s4 s3

out=0 out=1

out=0 out=1

0

1

0

0
0

1
1

1

Modern VLSI Design: IP-Based Design, Fourth Edition Page 353 Return to Table of Contents

342 Chapter 5: Sequential Machines

Q5-8. You are given a clock tree of the following form:

We can connect logic to the points a, b, c, d, and e. We want to use the
clock tree to drive a five-state pipeline of machines M1-M2-M3-M4-
M5, with M1 as the input and M5 as the output. Given that each leg of
the clock tree has a skew of 1 ps, place the machines M1-M5 at points a,
b, c, d, and e to equalize clock skews.

Q5-9. Draw a block diagram for an eight-bit shift register built from two
four-bit shift registers, which is in turn built from one-bit shift registers.

Q5-10. Draw a state transition graph for a simple combination lock. The
lock machine has ten inputs 0-9 plus a reset input. The combination is
entered as a sequence of three values to the ten numeric inputs; the reset
input can be used to start over. When the correct combination (use 345
as the combination for this example) is found, the open output is
asserted.

Q5-11. Draw state transition graphs that repeatedly executes these func-
tion, assuming that each statement requires one clock cycle to execute:

a)
if (c)

a <= c and d;
else

d <= e or f;
end;

e

a b

dc

Modern VLSI Design: IP-Based Design, Fourth Edition Page 354 Return to Table of Contents

5.11 Problems 343

b)
w <= a or b;
if (c)

x <= a and c;
else

x <= b or c;
end;
c)
w <= a or b;
if (c)

x <= a and c;
y <= b or d;

else
x <= b or c;

end;

Q5-12. How many different state assignments are possible for a
machine with 4 states? With 16 states?

Q5-13. How many inputs are required to exhaustively simulate a state
machine with two primary inputs and four states?

Q5-14. Draw a block diagram for a four-bit counter with an LSSD scan
chain.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 355 Return to Table of Contents

Modern VLSI Design: IP-Based Design, Fourth Edition Page 356 Return to Table of Contents

6

Subsystem Design

Highlights:

Pipelines and data paths.

Adders.

Multipliers.

Memory.

PLAs.

FPGAs.

Image sensors.

Buses and networks-on-chips.

Standards for IP.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 357 Return to Table of Contents

346 Chapter 6: Subsystem Design

x0
y1

x1
y1

x2
y1

x0
y2

x1
y2

x2
y2

x0
y3

x1
y3

x2
y3

0 0 0

x3 y0 x2 y0 x1 y0

x3 y1

x3 y2

x3 y3

x0 y0

p7 p6 p5 p4 p3 p2 p1 p0

+++

FAFAFA

FAFAFA

FAFAFA

Structure of an array multiplier (Figure 6-12).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 358 Return to Table of Contents

6.1 Introduction 347

6.1 Introduction

chips and their subsystems Most chips are built from a collection of subsystems: adders, register
files, state machines, etc. Of course, to do a good job of designing a
chip, we must be able to properly design each of the major components.
Studying individual subsystems is also a useful prelude to the study of
complete chips because a single component is a focused design prob-
lem. When designing a complete chip, such as the HP 7200 CPU shown
in Figure 6-1, we often have to perform several different types of com-
putation, each with different cost constraints. A single component, on
the other hand, performs a single task; as a result, the design choices are
much more clear.

subsystem optimization As always, the cost of a design is measured in area, delay, and power.
For most components, we have a family of designs that all perform the
same basic function, but with different area/delay trade-offs. Having
access to a variety of ways to implement a function gives us architec-
tural freedom during chip design. Area and delay costs can be reduced
by optimization at each level of abstraction:

• Layout. We can make microscopic changes to the layout to reduce
parasitics: moving wires to pack the layout or to reduce source/drain
capacitance, adding vias to reduce resistance, etc. We can also make
macroscopic changes by changing the placement of gates, which
may reduce wire parasitics, reduce routing congestion, or both.

• Circuit. Transistor sizing is the first line of defense against circuits
that inherently require long wires. Advanced logic circuits, such as
precharged gates, may help reduce the delay within logic gates.

• Logic. As we saw in Chapter 3, redesigning the logic to reduce the
gate depth from input to output can greatly reduce delay, though usu-
ally at the cost of area.

• Register-transfer and above. Proper placement of memory ele-
ments makes maximum use of the available clock period. Proper
encoding of signals allows clever logic designs that minimize logic
delay. Pipelining provides trade-offs between clock period and
latency.

While it may be tempting to optimize a design by hacking on the layout,
that is actually the least effective way to achieve your desired area/delay
design point. If you choose to make a circuit faster by tweaking the lay-
out and you fail, all that layout work must be thrown out when you try a
new circuit or logic design. On the other hand, changing the register-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 359 Return to Table of Contents

348 Chapter 6: Subsystem Design

Figure 6-1 The HP 7200 CPU. (Copyright 1996 Hewlett-Packard Company. Reproduced with
permission.)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 360 Return to Table of Contents

6.2 Combinational Shifters 349

transfer design does not preclude further work to fine-tune area or per-
formance. The gains you can achieve by modificsations within a level of
abstraction grow as you move up the abstraction hierarchy: layout mod-
ifications typically give 10%–20% performance improvement; logic
redesign can cut delay by more than 20%; we will see how the register-
transfer modifications that transform a standard multiplier into a Booth
multiplier can cut the multiplier’s delay in half. Furthermore, layout
improvements take the most work—speeding up a circuit usually
requires modifying many rectangles, while the architecture can be easily
changed by redrawing the block diagram. You are best off pursuing the
largest gains first, at the highest levels of abstraction, and doing fine-
tuning at lower levels of abstraction only when necessary.

Logic and circuit design are at the core of subsystem design. Many
important components, foremost being the adder, have been so exten-
sively studied that specific optimizations and trade-offs are well under-
stood. However, there are some general principles that can be applied to
subsystems. We will first survey some important design concepts, then
delve into the details of several common types of subsystem-level com-
ponents.

We will start with a description of several logical and arithmetic opera-
tors: shifters in Section 6.2, adders in Section 6.3, ALUs in Section 6.4,
and multipliers in Section 6.5. We will then move onto memories in
Section 6.6 and image sensors in Section 6.7, which bear a striking
resemblance to memory arrays. We will then discuss two types of struc-
tured logic: field-programmable gate arrays in Section 6.8 and program-
mable logic arrays in Section 6.9. We will then consider buses and
networks-on-chips in detail in Section 6.10. We will close with a discus-
sion of data path design in Section 6.11. Section 6.12 describes some
standards for IP specification and implementation that are useful when
building subsystem-level IP.

6.2 Combinational Shifters

shifters A shifter is most useful for arithmetic operations since shifting is equiv-
alent to multiplication by powers of two. Shifting is necessary, for
example, during floating-point arithmetic. The simplest shifter is the
shift register, which can shift by one position per clock cycle. However,
that machine isn’t very useful for most arithmetic operations—we gen-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 361 Return to Table of Contents

350 Chapter 6: Subsystem Design

erally need to shift several bits in one cycle and to vary the length of
the shifts.

barrel shifter A barrel shifter [Mea80] can perform n-bit shifts in a single combina-
tional function, and it has a very efficient layout. It can rotate and extend
signs as well. Its architecture is shown in Figure 6-2. The barrel shifter
accepts 2n data bits and n control signals and produces n output bits. It
shifts by transmitting an n-bit slice of the 2n data bits to the outputs. The
position of the transmitted slice is determined by the control bits; the
exact operation is determined by the values placed at the data inputs.
Consider two examples:

• Send a data word d into the top input and a word of all zeroes into
the bottom input. The output is a right shift (imagine standing at the
output looking into the barrel shifter) with zero fill. Setting the con-
trol bits to select the top-most n bits is a shift of zero, while selecting
the bottom-most n bits is an n-bit shift that pushes the entire word
out of the shifter. We can shift with a ones fill by sending an all-ones
word to the bottom input.

• Send the same data word into both the top and bottom inputs. The
result is a rotate operation—shifting out the top bits of a word causes
those bits to reappear at the bottom of the output.

How can we build a circuit that can select an arbitrary n bits and how do
we do it in a reasonably sized layout? A barrel shifter with n output bits
is built from a 2n vertical by n horizontal array of cells, each of which
has a single transistor and a few wires. The schematic for a small group
of contiguous cells is shown in Figure 6-3. The core of the cell is a
transmission gate built from a single n-type transistor; a complementary
transmission gate would require too much area for the tubs. The control
lines run vertically; the input data run diagonally upward through the
system; the output data run horizontally. The control line values are set
so that exactly one is 1, which turns on all the transmission gates in a
single column. The transmission gates connect the diagonal input wires
to the horizontal output wires; when a column is turned on, all the inputs

input 1

input 2

output

n bits

n bits

n bits

Figure 6-2 How a barrel
shifter performs shifts and
rotates.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 362 Return to Table of Contents

6.2 Combinational Shifters 351

outi

outi-1

outi-2

ini

ini-1

ini-2

shift0 shift1 shift2

structure

outi

outi-1

ini-1

ini-2

shift0=0 shift1=1 shift2=0

operation

Figure 6-3 A section
of the barrel shifter.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 363 Return to Table of Contents

352 Chapter 6: Subsystem Design

are shunted to the outputs. The length of the shift is determined by the
position of the selected column—the farther to the right it is, the greater
the distance the input bits have travelled upward before being shunted to
the output.

Note that, while this circuit has many transmission gates, each signal
must traverse only one transmission gate. The delay cost of the barrel
shifter is largely determined by the parasitic capacitances on the wires,
which is the reason for squeezing the size of the basic cell as much as
possible. In this case, area and delay savings go hand-in-hand.

6.3 Adders

The adder is probably the most studied digital circuit. There are a great
many ways to perform binary addition, each with its own area/delay
trade-offs. A great many tricks have been used to speed up addition:
encoding, replication of common factors, and precharging are just some
of them. The origins of some of these methods are lost in the mists of
antiquity. Since advanced circuits are used in conjunction with
advanced logic, we need to study some higher-level addition methods
before covering circuits for addition.

full adder The basic adder is known as a full adder. It computes a one-bit sum and
carry from two addends and a carry-in. The equations for the full
adder’s functions are simple:

(EQ 6-1)

In these formulas, si is the sum at the ith stage and ci+1 is the carry out of
the ith stage.

ripple-carry adder The n-bit adder built from n one-bit full adders is known as a ripple-
carry adder because of the way the carry is computed. The addition is
not complete until the n-1th adder has computed its sn-1 output; that
result depends on ci input, and so on down the line, so the critical delay
path goes from the 0-bit inputs up through the ci’s to the n-1 bit. (We can
find the critical path through the n-bit adder without knowing the exact
logic in the full adder because the delay through the n-bit carry chain is
so much longer than the delay from a and b to s.) The ripple-carry adder
is area efficient and easy to design but is slow when n is large.

si ai bi ci=

ci 1+ aibi aici bici+ +=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 364 Return to Table of Contents

6.3 Adders 353

carry-lookahead adder Speeding up the adder requires speeding up the carry chain. The carry-
lookahead adder is one way to speed up the carry computation. Carry-
lookahead adders are not often used in VLSI but they illustrate some
important principles that are used in many other adders. The
carry-lookahead adder breaks the carry computation into two steps,
starting with the computation of two intermediate values. The adder
inputs are once again the ai’s and bi’s; from these inputs, P (propagate)
and G (generate) are computed:

(EQ 6-2)

If Gi = 1, there is definitely a carry out of the ith bit of the sum—a carry
is generated. If Pi = 1, then the carry from the i-1th bit is propagated to
the next bit. The sum and carry equation for the full adder can be rewrit-
ten in terms of P and G:

(EQ 6-3)

The carry formula is smaller when written in terms of P and G, and
therefore easier to recursively expand:

. (EQ 6-4)

The ci+1 formula of Equation 6-4 depends on ci-2, but not ci or ci-1.
After rewriting the formula to eliminate ci and ci-1, we used the speedup
trick of Section 4.3—we eliminated parentheses, which substitutes
larger gates for long chains of gates. There is a limit beyond which the
larger gates are slower than chains of smaller gates; typically, four levels
of carry can be usefully expanded.

A depth-4 carry-lookahead unit is shown in Figure 6-4. The unit takes
the P and G values from its four associated adders and computes four
carry values. Each carry output is computed by its own logic. The logic
for ci+3 is slower than that for ci, but the flattened ci+3 logic is faster
than the equivalent ripple-carry logic.

Pi ai bi+=

Gi ai bi=

si ci Pi Gi=

ci 1+ Gi Pici+=

ci 1+ Gi Pi Gi-1 Pi-1 ci-1++=

Gi PiGi-1 PiPi-1 Gi-2 Pi-2 ci-2++ +=

Gi PiGi-1 PiPi-1Gi-2 PiPi-1Pi-2ci-2++ +=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 365 Return to Table of Contents

354 Chapter 6: Subsystem Design

There are two ways to hook together depth-b carry-lookahead units to
build an n-bit adder. The carry-lookahead units can be recursively con-
nected to form a tree: each unit generates its own P and G values, which
are used to feed the carry-lookahead unit at the next level of the tree. A
simpler scheme is to connect the carry-ins and carry-outs of the units in
a ripple chain. This approach is most common in chip design because
the wiring for the carry-lookahead tree is hard to design and
area-consuming.

sum0

a0 b0

sum1

a1 b1

G0 P0 G1 P1

sum3

a3 b3

sum2

a2 b2

carry1 carry2 G2 P2 carry3 G3 P3 carry4

Cin

Figure 6-4 Structure of a carry lookahead adder.

FAi-1 FAi FAi+1

group

Pi-1
Pi

Pi+1

FA FA FA

group

FA FA FA

group

skip skipskip

Figure 6-5 The carry chain in a carry-skip adder.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 366 Return to Table of Contents

6.3 Adders 355

carry-skip adder The carry-skip adder [Leh61] looks for cases in which the carry out of
a set of bits is the same as the carry in to those bits. This adder makes a
different use of the carry-propagate relationship. As illustrated in Figure
6-5, a carry-skip adder is typically organized into m-bit groups; if the
carry is propagated for every bit in the stage, then a bypass gate sends
the stage’s carry input directly to the carry output. The structure of the
carry chain for a carry-skip adder divided into groups of bits is shown in
Figure 6-7. A true carry into the group and true propagate condition P at
every bit in the group is needed to cause the carry to skip.

It is possible to determine the optimum number of bits in a group
[Kor93]. The worst case for the carry signal occurs when there is a carry
propagated through every bit, but in this case Pi will be true at every bit.
Therefore, the longest path for the carry begins when the carry is gener-
ated at the bottom bit of the bottom group (rippling through the remain-
der of the group), is skipped past the intermediate groups, and ripples
through the last group; the carry must necessity ripple through the first
and last groups to compute the sum. Using some simple assumptions
about the relative delays for a ripple through a group and skip, Koren
estimates the optimum group size for an n-bit word as

. (EQ 6-5)

Since the carry must ripple through the first and last stages, the adder
can be further speeded up by making the first and last groups shorter
than this length and by lengthening the middle groups.

carry-select adder The carry-select adder, shown in Figure 6-7, computes two versions of
the addition with different carry-ins, then selects the right one. As with
the carry-skip adder, the carry-select adder is typically divided into m-
bit stages. The second stage computes two values: one assuming that the
carry-in is 0 and another assuming that it is 1. Each of these candidate
results can be computed by your favorite adder structure. The carry-out
of the previous stage is used to select which version is correct: multi-
plexers controlled by the previous stage’s carry-out choose the correct
sum and carry-out. This scheme speeds up the addition because the ith
stage can be computing the two versions of the sum in parallel with the
i-1th’s computation of its carry. Once the carry-out is available, the ith
stage’s delay is limited to that of a two-input multiplexer.

No matter what style of circuit is used for the carry chain, we can size
transistors to reduce the carry chain delay to some extent by increasing
transistor sizes. In a carry-lookahead adder, the carry-in signal is of
medium complexity; depending on the exact logic implementation,

kopt n 2=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 367 Return to Table of Contents

356 Chapter 6: Subsystem Design

either P or G will be most critical, with the other signal being less criti-
cal than carry-in. At the adder’s high-order bits, the non-carry outputs of
the carry chain also become critical, requiring larger transistors; other-
wise, the stages of an optimally-sized adder are identical.

Manchester carry chain Precharged circuits are an obvious way to speed up the carry chain. One
of the most interesting precharged adders is the Manchester carry
chain [Mea80], which computes the sum from P and G. Two bits of a
Manchester carry chain are shown in Figure 6-6. The storage node,
which holds the complement of the carry (ci’), is charged to 1 during the
precharge phase. If Gi = 1 during the evaluate phase, the storage node is
discharged, producing a carry into the next stage. If Pi = 1, then the ith
storage node is connected to the i-1th storage node; in this case, the ith
storage node can be discharged by the Pi-1 pulldown or, if the Ci-1 trans-

Gi

Pi

f

+

stage i

Gi-1

Pi-1

f

+

stage i-1

Figure 6-6 A Manchester carry chain.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 368 Return to Table of Contents

6.3 Adders 357

mission gate is on, by a preceding P pulldown. In the worst case, the n-
1th storage node will be discharged through the 0th pulldown and
through n transmission gates, but in the typical case, the pulldown path
for a storage node is much shorter. The widest transistors should be at
the least-significant bit stage since they see the largest load. The next
example describes the use of a Manchester carry chain in a
high-performance microprocessor.

ai+m-1 bi+m-1 ai bi

... 0

ai+m-1 bi+m-1 ai bi

... 1

...sel sel

10 10

sel

10

mux mux mux

sisi+m-1cout

cin

previous stage

zero
carry in

one
carry in

Figure 6-7 The carry-select adder.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 369 Return to Table of Contents

358 Chapter 6: Subsystem Design

Example 6-1
Carry chain of
the DEC Alpha
21064
microprocessor

The first DEC Alpha microprocessor, the 21064, used a Manchester
carry chain [Dob92]. That processor had a 64-bit word with the carry
chain organized into groups of 8 bits to enable byte-wise operation. The
carry circuit at each stage was made entirely of n-type devices:

The carry chain uses carry propagate, generate, and kill signals. The
chain is pre-discharged and then selectively charged using the n-type
pullups. Pre-discharging was used to avoid the threshold drop on the
carry signal introduced by precharging through an n-type device; pre-
charging to was deemed to provide unacceptable noise margins.
The pass transistors for the carry were sized with the largest transistors
at the least-significant bit.

Each group of eight bits was organized into a 32-bit carry-select, and a
logarithmic carry-select technique was used to generate the 64-bit sum.
As a result, there were two carry chains in each 8-bit group: one for the
zero-carry-in case and another for the one-carry-in case.

serial adder Serial adders present an entirely different approach to high-speed arith-
metic—they require many clock cycles to add two n-bit numbers, but
with a very short cycle time. Serial adders can worsk on nybbles (4-bit
words) or bytes, but the bit-serial adder [Den85], shown in Figure 6-8 is

+

Pi

ci ci-1

Gi

killi
or

pre-discharge

VDD-Vt

Modern VLSI Design: IP-Based Design, Fourth Edition Page 370 Return to Table of Contents

6.3 Adders 359

the most extreme form. The data stream consists of three signals: the
two numbers to be added and an LSB signal that is high when the cur-
rent data bits are the least significant bits of the addends. The addends
appear LSB first and can be of arbitrary length—the end of a pair of
numbers is signaled by the LSB bit for the next pair. The adder itself is
simply a full adder with a memory element for the carry. The LSB sig-
nal clears the carry register. Subsequently, the two input bits are added
with the carry-out of the last bit. The serial adder is small and has a
cycle time equal to that of a single full adder.

adder power consumption Callaway and Schwartzlander [Cal96] evaluated the power consumption
of several types of parallel adders. They found that, in general, slower
adders consume less power. The exception is the carry-skip adder,
which uses less current than the ripple-carry adder because, although it
consumes a higher peak current, the current falls to zero very quickly.

0 1 1 0

LSB

...

format

full
add

QD

QD

2-bit flip-flop

a

b

a+b

LSB

operation

Figure 6-8 A bit-serial
adder.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 371 Return to Table of Contents

360 Chapter 6: Subsystem Design

6.4 ALUs

ALUs as modified adders The arithmetic logic unit, or ALU, is a modified adder. While an ALU
can perform both arithmetic and bit-wise logical operations, the arith-
metic operations’ requirements dominate the design.

ALU opcodes A basic ALU takes two data inputs and a set of control signals, also
called an opcode. The opcode, together with the ALU’s carry-in, deter-
mine the ALU’s function. For example, if the ALU is set to add, then c0
= 0 produces a+b while c0 = 1 produces a+b+1.

mux-based ALUs A basic ALU can be built using a multiplexer—a set of gates imple-
ments each possible function in the ALU and the multiplexer selects the
one that is needed. Figure 6-9 shows an ALU that performs AND, OR,
and NOT functions. The select input to the multiplexer serves as the
opcode input for the ALU.

6.5 Multipliers

digit-by-digit
multiplication

Multiplier design starts with the elementary school algorithm for multi-
plication. Consider the simple example of Figure 6-10. At each step, we
multiply one digit of the multiplier by the full multiplicand; we add the
result, shifted by the proper number of bits, to the partial product. When
we run out of multiplier digits, we are done. Single-digit multiplication
is easy for binary numbers—binary multiplication of two bits is per-
formed by the AND function. The computation of partial products and

opcode

Figure 6-9 A mux-based
ALU.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 372 Return to Table of Contents

6.5 Multipliers 361

their accumulation into the complete product can be optimized in many
ways, but an understanding of the basic steps in multiplication is impor-
tant to a full appreciation of those improvements.

serial-parallel multiplier One simple, small way to implement the basic multiplication algorithm
is the serial-parallel multiplier of Figure 6-11, so called because the n-
bit multiplier is fed in serially while the m-bit multiplicand is held in
parallel during the course of the multiplication. The multiplier is fed in
least-significant bit first and is followed by at least m zeroes. The result
appears serially at the end of the multiplier chain. A one-bit multiplier is
simply an AND gate. The sum units in the multiplier include a combina-
tional full adder and a register to hold the carry. The chain of summation
units and registers performs the shift-and-add operation—the partial
product is held in the shift register chain, while the multiplicand is suc-
cessively added into the partial product.

signed multiplication One important complication in the development of efficient multiplier
implementations is the multiplication of two’s-complement signed num-
bers. The Baugh-Wooley multiplier [Bau73] is the best-known algo-
rithm for signed multiplication because it maximizes the regularity of
the multiplier logic and allows all the partial products to have positive
sign bits. The multiplier X can be written in binary as

, (EQ 6-6)

Figure 6-10 Multiplication
using the elementary school
algorithm. 0 1 1 0 multiplicand

1 0 0 1 multiplier
0 1 1 0

+ 0 0 0 0
0 0 1 1 0

+ 0 0 0 0
0 0 0 1 1 0

+ 0 1 1 0
0 1 1 0 1 1 0

X xn-12n-1 xi2
i

i 0=

n-2

+=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 373 Return to Table of Contents

362 Chapter 6: Subsystem Design

where n is the number of bits in the representation. The multiplicand Y
can be written similarly. The product P can be written as

. (EQ 6-7)

When this formula is expanded to show the partial products, it can be
seen that some of the partial products have negative signs:

(EQ 6-8)

QD sum

* *

QD sum

*

serial
multiplier

parallel multiplicand

QD

carry

+

result

1 1 1

Figure 6-11 Basic structure of a serial-parallel multiplier.

P p2n-122n-2 pi2
i

i 0=

2n-2

+=

P

xn-1yn-122n-2 xiyj2
i j+

j 0=

n-2

i 0=

n-2

+ - xn-1yi yn-1xi+ 2n-1 i+

i 0=

n-2

=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 374 Return to Table of Contents

6.5 Multipliers 363

The formula can be further rewritten, however, to move the negative-
signed partial products to the last steps and to add the negation of the
partial product rather than subtract. Further rewriting gives this final
form:

. (EQ 6-9)

Each partial product is formed with AND functions and the partial prod-
ucts are all added together. The result is to push the irregularities to the
end of the multiplication process and allow the early steps in the multi-
plication to be performed by identical stages of logic.

array multiplier The elementary school multiplication algorithm (and the Baugh-Wooley
variations for signed multiplication) suggest a logic and layout structure
for a multiplier that is surprisingly well-suited to VLSI implementa-
tion—the array multiplier. The structure of an array multiplier for
unsigned numbers is shown in Figure 6-12. The logic structure is shown
in parallelogram form both to simplify the drawing of wires between
stages and also to emphasize the relationship between the array and the
basic multiplication steps shown in Figure 6-10. As when multiplying
by hand, partial products are formed in rows and accumulated in col-
umns, with partial products shifted by the appropriate amount. In layout,
however, the y bits generally would be distributed with horizontal wires
since each row uses exactly one y bit.

Notice that only the last adder in the array multiplier has a carry chain.
The earlier additions are performed by full adders which are used to
reduce three one-bit inputs to two one-bit outputs. Only in the last stage
are all the values accumulated with carries. As a result, relatively simple
adders can be used for the early stages, with a faster (and presumably
larger and more power-hungry) adder reserved for the last stage. As a
result, the critical delay path for the array multiplier follows the trajec-
tory shown in Figure 6-13.

Booth encoding One way to speed up multiplication is Booth encoding [Boo51], which
performs several steps of the multiplication at once. Booth’s algorithm
takes advantage of the fact that an adder-subtractor is nearly as fast and
small as a simple adder. In the elementary school algorithm, we shift the
multiplicand x, then use one bit of the multiplier y if that shifted value is
to be added into the partial product. The most common form of Booth’s
algorithm looks at three bits of the multiplier at a time to perform two
stages of the multiplication.

P 2n-1 -2n 2n-1 xn-12n-1 xn-1 xn-1yi2
i

i 0=

n-2

+ + + +=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 375 Return to Table of Contents

364
C

hapter 6: S
ubsystem

 D
esign

x0
y1

x1
y1

x2
y1

x0
y2

x1
y2

x2
y2

x0
y3

x1
y3

x2
y3

0 0 0

x3 y0 x2 y0 x1 y0

x3 y1

x3 y2

x3 y3

x0 y0

p7 p6 p5 p4 p3 p2 p1 p0

+++

FAFAFA

FAFAFA

FAFAFA

Figure 6-12
Structure of an
unsigned array
m

ultiplier.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 376 Return to Table of Contents

6.5 Multipliers 365

Consider once again the two’s-complement representation of the multi-
plier y:

(EQ 6-10)

We can take advantage of the fact that to rewrite this as

. (EQ 6-11)

Now, extract the first two terms:

. (EQ 6-12)

Each term contributes to one step of the elementary-school algorithm:
the right-hand term can be used to add x to the partial product, while the
left-hand term can add 2x. (In fact, since yn-2 also appears in another
term, no pair of terms exactly corresponds to a step in the elementary
school algorithm. But, if we assume that the y bits to the right of the
decimal point are 0, all the required terms are included in the multiplica-
tion.) If, for example, yn-1 = yn, the left-hand term does not contribute to
the partial product. By picking three bits of y at a time, we can deter-
mine whether to add or subtract x or 2x (shifted by the proper amount,
two bits per step) to the partial product. Each three-bit value overlaps

+++

FAFAFA

FAFAFA

FAFAFA

Figure 6-13 The critical delay path in the array multiplier.

y -2 nyn 2n-1yn-1 2n-2yn-2+ + +=

2a 2a 1+ -2a
=

y 2n yn-1-yn 2n-1 yn-2-yn-1 2n-2 yn-3-yn-2+ + +=

2n yn-1-yn 2n-1 yn-2-yn-1+

Modern VLSI Design: IP-Based Design, Fourth Edition Page 377 Return to Table of Contents

366 Chapter 6: Subsystem Design

with its neighbors by one bit. Table 6-1 shows the contributing term for
each three-bit code from y.

Let’s try an example to see how this works: x = 011001 (2510), y =
101110 (-1810). Call the ith partial product Pi. At the start, P0 =
00000000000 (two six-bit numbers give an 11-bit result):

1. y1y0y-1 = 100, so .

2. y3y2y1 = 111, so .

3. y5y4y3 = 101, so .

In decimal, y1y0y-1 contribute -2x 1, y3y2y1 contribute 0 4, and y5y4y3
contribute -x 16, giving a total of -18x. Since the multiplier is -18, the
result is correct.

Figure 6-14 shows the detailed structure of a Booth multiplier. The mul-
tiplier bits control a multiplexer that determines what is added to or sub-
tracted from the partial product. Booth’s algorithm can be implemented
in an array multiplier since the accumulation of partial products still
forms the basic trapezoidal structure. In this case, a column of control
bit generators on one side of the array analyzes the triplets of y bits to
determine the operation in that row.

Wallace tree Another way to speed up multiplication is to use more adders to speed
the accumulation of partial products. The best-known method for speed-
ing up the accumulation is the Wallace tree [Wal64], which is an adder
tree built from carry-save adders, which is simply an array of full
adders whose carry signals are not connected, as in the early stages of

yi yi-1 yi-2 increment

0 0 0 0
0 0 1 x
0 1 0 x
0 1 1 2x
1 0 0 -2x
1 0 1 -x
1 1 0 -x
1 1 1 0

Table 6-1 Actions during
Booth multiplication.

P1 P0- 10 011001 11111001110= =

P2 P1 0+ 11111001110= =

P3 P2-0110010000 11000111110= =

Modern VLSI Design: IP-Based Design, Fourth Edition Page 378 Return to Table of Contents

6.5 Multipliers 367

the array multiplier. A carry save adder, given three n-bit numbers a, b,
c, computes two new numbers y, z such that y + z = a + b + c. The Wal-
lace tree performs the three-to-two reductions; at each level of the tree, i
numbers are combined to form sums. When only two values are
left, they are added with a high-speed adder. Figure 6-15 shows the
structure of a Wallace tree. The partial products are introduced at the
bottom of the tree. Each of the z outputs is shifted left by one bit since it
represents the carry out.

A Wallace tree multiplier is considerably faster than a simple array mul-
tiplier because its height is logarithmic in the word size, not linear.
However, in addition to the larger number of adders required, the Wal-
lace tree’s wiring is much less regular and more complicated. As a

adder/subtractor

mux sel

op

yi+1

yi+2

yi

code

Pj

x 2x0

left shift 2

stage j

adder/subtractor

mux sel

op

yi+3

yi+4

yi+2

code

Pj+1

Pj+2

x 2x0

left shift 2

stage j+1

Pj+1

Figure 6-14 Structure of a
Booth multiplier.

2i 3

Modern VLSI Design: IP-Based Design, Fourth Edition Page 379 Return to Table of Contents

368 Chapter 6: Subsystem Design

result, Wallace trees are often avoided by designers who do not have
extreme demands for multiplication speed and for whom design com-
plexity is a consideration.

Callaway and Schwartzlander [Cal96] also evaluated the power con-
sumption of multipliers. They compared an array multiplier and a Wal-
lace tree multiplier (both without Booth encoding) and found that the
Wallace tree multiplier used significantly less power for bit widths
between 8 and 32, with the advantage of the Wallace tree growing as
word length increased.

CSA CSA

adder

y z

CSA

y z

CSA

y z

CSA

y z

y z

CSA

y z

Figure 6-15
Structure of a
Wallace tree.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 380 Return to Table of Contents

6.6 High-Density Memory 369

6.6 High-Density Memory

So far, we have built memory elements out of circuits that exhibit
mostly digital behavior. By taking advantage of analog design methods,
we can build memories that are both smaller and faster. Memory design
is usually best left to expert circuit designers; however, understanding
how these memories work will help you learn how to use them in sys-
tem design. On-chip memory is becoming increasingly important as lev-
els of integration increase to allow both processors and useful amounts
of memory to be integrated on a single chip [Kog95].

types of memory Read-only memory (ROM), as the name implies, can be read but not
written. It is used to store data or program values that will not change,
because it is the densest form of memory available. An increasing num-
ber of digital logic processes support flash memory, which is the domi-
nant form of electrically erasable PROM memory. There are two types
of read-write random access memories: static (SRAM) and dynamic
(DRAM). SRAM and DRAM use different circuits, each of which has
its own advantages: SRAM is faster but uses more power and is larger;
DRAM has a smaller layout and uses less power. DRAM cells are also
somewhat slower and require the dynamically stored values to be peri-
odically refreshed, just as in a dynamic latch. Flash memory is
electrically-erasable ROM with erase circuitry that is shared over large
blocks.

Some types of memory are available for integration on a chip, while
others that require special processes are generally used as separate
chips. Commodity DRAMs are based on a one-transistor memory cell.
That cell requires specialized structures, such as poly-poly capacitors,
which are built using special processing steps not usually included in
ASIC processes. A design that requires high-density ROM or RAM is
usually partitioned into several chips, using commodity memory parts.
Medium density memory, on the order of one kilobyte, can often be put
on the same chip with the logic that uses it, giving faster access times, as
well as greater integration. Flash is available in many logic processes at
some additional cost.

A RAM or ROM is used by presenting it with an address and receiving
the value stored at that address some time later. Details differ, of course:
large memories often divide the address into row and column sections,
which must be sent to the memory separately, for example. The simplest
and safest way to use memory in a system is to treat it as a strict sequen-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 381 Return to Table of Contents

370 Chapter 6: Subsystem Design

tial component: send the address to the memory on one cycle and read
the value on the next cycle.

generic memory
architecture

The architecture of a generic RAM/ROM system is shown in Figure 6-
16. Think of the data stored in the memory core as being organized into
n bit-wide words. The address decoders (also known as row decoders)
translate the binary address into a unary address—exactly one word in
the core is selected. A read is performed by having each cell in the
selected word set the bit and bit’ lines to the proper values: bit = 1, bit’ =
0 if a 1 is stored in the array, for example. The bit lines are typically pre-
charged, so the cell discharges one of the lines. The bit lines are read by
circuits that sense the value on the line, amplify it to speed it up, and
restore the signal to the proper voltage levels. A write is performed by
setting the bit lines to the desired values and driving that value from the
bit lines into the cell. If the core word width is narrower than the final
word width (for example, a one-bit wide RAM typically has a core
much wider than one bit to make a more compact layout), a multiplexer
uses the bottom few bits of the address to select the desired bits out of
the word.

address n r

c

data_in

data_out

word

core

bit line amplifiers

column multiplexer

ro
w

 d
ec

od
er

s

Figure 6-16 Architecture of a
high-density memory system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 382 Return to Table of Contents

6.6 High-Density Memory 371

row decoders The row decoders are not very complex: they typically use NOR gates
to decode the address, followed by a chain of buffers to allow the circuit
to drive the large capacitance of the word line. There are two major
choices for circuits to implement the NOR function: pseudo-nMOS and
precharged. Pseudo-nMOS circuits are adequate for small memories,
but precharged circuits offer better performance (at the expense of con-
trol circuitry) for larger memory arrays. Figure 6-17 shows a precharged
row decoder; the true and complement forms of the address lines can be
distributed vertically through the decoders and connected to the NOR
pulldowns as appropriate for the address to be decoded at that row.

+

row

f
A9'A9 A8 A8' A7 A7'

Figure 6-17 A
precharged row
decoder.

A0'

A1'

A0

A1'

mux0

bit0 bit1

...... mux1

Figure 6-18 A column decoding scheme.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 383 Return to Table of Contents

372 Chapter 6: Subsystem Design

column decoders The column decoders are typically implemented as pass transistors on
the bit lines. As shown in Figure 6-18, each output bit will be selected
from several columns. The multiplexer control signals can be generated
at one end of the string of multiplexers and distributed to all the mux
cells.

6.6.1 ROM

ROM core cell circuit A read-only memory is programmed with transistors to supply the
desired values. A common circuit is the NOR array shown in Figure 6-
19. It uses a pseudo-nMOS NOR gate: a transistor is placed at the word-
bit line intersection for which bit’ = 0.

6.6.2 Static RAM
Basic static RAM circuits can be viewed as variations on the designs
used for latches and flip-flops; more aggressive static RAMs make use
of design tricks originally developed for dynamic RAMs to speed up the
system.

+ +

row0

row1

bit'0 bit'1

Figure 6-19 Design of a
ROM core.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 384 Return to Table of Contents

6.6 High-Density Memory 373

SRAM core cell circuit The SRAM core circuit is shown in Figure 6-20. The value is stored in
the middle four transistors, which form a pair of inverters connected in a
loop (try drawing a gate-level version of this schematic). The other two
transistors control access to the memory cell by the bit lines. When
select = 0, the inverters reinforce each other to store the value. A read
or write is performed when the cell is selected:

• To read, bit and bit’ are precharged to VDD before the select line is
allowed to go high. One of the cell’s inverters will have its output at
1, and the other at 0; which inverter is 1 depends on the value stored.
If, for example, the right-hand inverter’s output is 0, the bit’ line will
be drained to VSS through that inverter’s pulldown and the bit line
will remain high. If the opposite value is stored in the cell, the bit
line will be pulled low while bit’ remains high.

• To write, the bit and bit’ lines are set to the desired values, then
select is set to 1. Charge sharing forces the inverters to switch val-
ues, if necessary, to store the desired value. The bit lines have much
higher capacitance than the inverters, so the charge on the bit lines is
enough to overwhelm the inverter pair and cause it to flip state.

The layout of a pair of SRAM cells in the SCMOS rules is shown in
Figure 6-23.

+

select

bit bit'

Figure 6-20
Design of an
SRAM core cell.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 385 Return to Table of Contents

374 Chapter 6: Subsystem Design

sense amplifier A sense amplifier, shown in Figure 6-21, makes a reasonable bit line
receiver for modest-size SRAMs. The n-type transistor at the bottom
acts as a switchable current source—when turned on by the sense input,
the transistor pulls a fixed current I through the sense amp’s two arms.
Kirchoff’s current law tells us that the currents through the two branches
must sum to I. When one of the bit lines goes low, the current through
that leg of the amplifier goes low, increasing the current in the other leg.
P-type transistors are used as loads. For an output of the opposite polar-
ity, both the output and the pullup bias connection must be switched to
the opposite sides of the circuit. More complex circuits can determine
the bit line value more quickly [Gla85].

I

+

bit bit'

out'

sense

Figure 6-21 A differential
pair sense amplifier for an
SRAM.

+ +precharge'

bit bit'

Figure 6-22 An SRAM
precharge circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 386 Return to Table of Contents

6.6 High-Density Memory 375

bit line precharging A precharging circuit for the bit lines is shown in Figure 6-22. Precharg-
ing is controlled by a single line. The major novelty of this circuit is the
transistor between the bit and bit’ lines, which is used to equalize the
charge on the two lines.

multi-port RAMs Many designs require multi-ported RAMs. For example, a register file is
often implemented as a multi-port SRAM. Each port consists of address
input, data outputs, and select and read/write lines. When select is

VDD

bit’

bit

cross-coupled
inverters

VSS

Figure 6-23
Layout of a pair
of SRAM core
cells.

n-type

Modern VLSI Design: IP-Based Design, Fourth Edition Page 387 Return to Table of Contents

376 Chapter 6: Subsystem Design

asserted on the ith port, the ith address is used to read or write the
addressed cells using the ithset of data lines. Reads and writes on sepa-
rate ports are independent, although the effect of simultaneous writes to
a port are undefined. The circuit schematic for a two-port SRAM core
cell is shown in Figure 6-24. Each port has its own pair of access tran-
sistors. The transistors in the cross-coupled inverters must be resized
moderately to ensure that multiple port activations do not affect the
stored value, but the circuit and layout designs do not differ radically
from the single-ported cell.

6.6.3 The Three-Transistor Dynamic RAM
3T RAM The simplest dynamic RAM cell uses a three-transistor circuit [Reg70].

This circuit is fairly large and slow. It is sometimes used in ASICs
because it is denser than SRAM and, unlike one-transistor DRAM, does
not require special processing steps.

+

select 1

bit 1 bit 1'

select 2

bit 2 bit 2'

Figure 6-24 A dual-ported SRAM core cell.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 388 Return to Table of Contents

6.6 High-Density Memory 377

3T RAM core cell The three-transistor DRAM circuit is shown in Figure 6-25. The value is
stored on the gate capacitance of t1; the other two transistors are used to
control access to that value:

• To read, read_data’ is precharged to VDD. We then set read to 1
and write to 0. If t1’s gate has a stored charge, then t1 will pull down
the read_data’ signal, else read_data’ will remain charged.
read_data’, therefore, carries the complement of the value stored on
t1.

• To write, the value to be written is set on write_data, write is set to
1, and read to 0. Charge sharing between write_data and t1’s gate
capacitance forces t1 to the desired value.

RAM refresh Substrate leakage will cause the value in this cell to decay. The value
must be refreshed periodically—a refresh interval of 1 ms is consistent
with the approximate leakage rate of typical processes. The value is
refreshed by rewriting it into the cell, being careful of course to rewrite
the original value.

write

read

write_data read_data'

t1

Figure 6-25 Design
of a three-transistor
DRAM core cell.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 389 Return to Table of Contents

378 Chapter 6: Subsystem Design

6.6.4 The One-Transistor Dynamic RAM
1T DRAM The one-transistor DRAM circuit quickly supplanted the three-transistor

circuit because it could be packed more densely, particularly when
advanced processing techniques are used. The term one-transistor is
somewhat of a misnomer—a more accurate description would be one-
transistor/one-capacitor DRAM, since the charge is stored on a pure
capacitor rather than on the gate capacitance of a transistor. The design
of one-transistor DRAMs is an art beyond the scope of this book. But
since embedded DRAM is becoming more popular, it is increasingly
likely that designers will build chips with one-transistor DRAM subsys-
tems, so it is useful to understand the basics of this memory circuit.

1T RAM core cell Figure 6-26 shows the circuit diagram of a one-transistor DRAM core
cell. The cell has two external connections: a bit line and a word line.
The value is stored on a capacitor guarded by a single transistor. Setting
the word line high connects the capacitor to the bit line. To write a new
value, the bit line is set accordingly and the capacitor is forced to the
proper value. When reading the value, the bit line is first precharged
before the word line is activated. If the storage capacitor is discharged,
then charge will flow from the bit line to the capacitor, lowering the
voltage on the bit line. A sense amp can be used to detect the dip in volt-
age; since the bit line provides only a single-ended input to the bit line, a
reference voltage may be used as the sense amp’s other input. One com-
mon way to generate the reference voltage is to introduce dummy cells
that are precharged but not read or written. This read is destructive—the
zero on the capacitor has been replaced by a one during reading. As a
result, additional circuitry must be placed on the bit lines to pull the bit
line and storage capacitor to zero when a low voltage is detected on the
bit line. This cell’s value must also be refreshed periodically, but it can
be refreshed by reading the cell.

bit

word

Figure 6-26 Circuit diagram
for a one-transistor DRAM
core cell.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 390 Return to Table of Contents

6.6 High-Density Memory 379

DRAM structures Modern DRAMs are designed with three-dimensional structures to min-
imize the size of the storage cell. The two major techniques for DRAM
fabrication are the stacked capacitor and the trench capacitor. The
cross-section of a pair of stacked capacitor cells is shown in Figure 6-27
[Tak85]. The cell uses three layers of polysilicon and one level of metal:
the word line is fabricated in poly 1, the bottom of the capacitor in poly
2, and the top plate of the capacitor in poly 3. The bit line is run in metal
above the capacitor structures. The capacitor actually wraps around the
access transistor, packing a larger parallel plate area in a smaller surface
area. The bottom edge of the bottom plate makes the contact with the
access transistor, saving additional area. The trench capacitor cell cross-
section is shown in Figure 6-28 [Sun84]. A trench is etched into the
chip, oxide is formed, and the trench is filled with polysilicon. This
structure automatically connects the bottom plate to the grounded sub-
strate; a contact is used to directly connect the polysilicon plate to the
access transistor.

One should not expect one-transistor DRAMs that can be fabricated on
a logic process to be equivalent to commodity DRAMs. The processing
steps required to create a dense array of capacitors are not ideal for effi-

channel

poly 1
word line

poly 1
poly 2

poly 3 (plate)
storage cell

channel

Figure 6-27 Cross-
section of a pair of
stacked-capacitor DRAM
cells.

source (n+) drain (n+)channel

substrate (p)
poly

SiO2

contact
Figure 6-28 Cross
section of a one-transistor
DRAM cell built with a
trench capacitor.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 391 Return to Table of Contents

380 Chapter 6: Subsystem Design

cient logic transistors, so high-density DRAMs generally have lower-
quality transistors. Since transistors make up a relatively small fraction
of the circuitry in a commodity DRAM, those chips are optimized for
the capacitors. However, in a process designed to implement large
amounts of logic with some embedded DRAM, processing optimiza-
tions will generally be made in favor of logic, resulting in less-dense
DRAM circuitry. In addition, the sorts of manufacturing optimizations
possible in commodity parts are also not generally possible in logic-and-
DRAM processes, since more distinct parts will be manufactured, mak-
ing it more difficult to measure the process. As a result, embedded
DRAM will generally be larger and slower than what one would expect
from evaluating commodity DRAM in a same-generation process.

6.6.5 Flash Memory

floating-gate transistors Flash memory is a form of electrically erasable ROM. The device used
to build flash memories is the floating gate transistor [Sze81], shown
in Figure 6-29. This device has two gates, one of which (the lower gate)
is disconnected. A charge can be placed on the floating gate by applying
large voltages across the upper gate and the drain; Fowler-Nordheim
tunneling is the physical effect that allows current to flow across the
oxide. When the floating gate is charged, it turns on the transistor; when
the floating gate is discharged, it turns off the transistor. The floating
gate charge will remain for years.

flash architectures Two major architectures for flash memory are in use: NOR flash and
NAND flash. Not only do these architectures use different circuits, but
they present different logical interfaces to the system.

NOR flash A NOR flash cell and its associated pullup are shown in Figure 6-30.
NOR flash is identical in structure to ROM, except that every word/bit

schematic

n+ n+
p+

floating
gate

SiO2

device

Figure 6-29 A floating
gate device.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 392 Return to Table of Contents

6.6 High-Density Memory 381

line intersection is populated with a floating gate transistor. NOR flash
can be used as a random-access memory, just like any other ROM.

+

row0

bit'1

Figure 6-30 A NOR flash
cell.

RA0

bit'1

select top

select bottom

RA1

Figure 6-31 A two-bit
NAND flash cell.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 393 Return to Table of Contents

382 Chapter 6: Subsystem Design

NAND flash NAND flash, in contrast, is designed to provide a banked memory struc-
ture. Memory banks can be addressed independently, allowing higher
data rate transfers. NAND flash was originally designed to support mul-
timedia applications that require high bandwidths, but it is fast becom-
ing the dominant flash architecture.

Figure 6-31 shows a two-bit NAND flash cell. The two storage bits are
accessed using the RA signals. The NAND series connection is guarded
by standard n-type transistors. To program a cell, we would set SELECT
TOP to a high voltage, SELECT BOTTOM to ground, and the RA that
controls the desired transistor to a high voltage. To prevent adjacent col-
umns from being programmed, we set the other RAs to an intermediate
voltage. Those transistors then conduct but are not programmed. The
value to be programmed is put on the bit line.

6.7 Image Sensors

photodiodes and image
sensors

Electronic image sensors can be fabricated using the same basic silicon
technology used for VLSI systems. As shown in Figure 6-32, a silicon
diode acts as detector of photons; the most common form of detector is
the photodiode [Sze81]. When the photodiode absorbs a photon, it gen-
erates one electron that becomes part of the photocurrent. The absorp-
tion band of silicon happens to be in the visible band of light. The
absorption coefficient of silicon is such that most visible light is
absorbed within the first 20 m of silicon, which means that the photo-
diodes are sufficiently close to the surface that they can be manufac-
tured with standard techniques.

The photocurrent density as a function of the photon flux that reaches a
unit area of the photodiode is given by

, (EQ 6-13)

where F0 is the photon flux in photons per square centimeter, x1 and x2
are the boundaries of the depletion region, and x3 is the bottom of the
photodiode’s p-type region. Typical photocurrents run in the tens to
hundreds of nanoamperes per cm2.

jph
qF0--------- 1 e

x1–
–

x1
------------------------- e

ax2–
e

x3–
–

x3 x2–
------------------------------------A cm2=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 394 Return to Table of Contents

6.7 Image Sensors 383

A photodiode can be used to build a pixel that measures the light inten-
sity at one point in the image. An image sensor includes a 2-D array of
pixels and circuitry that allows the system to access those pixels.

image sensor architectures Two very different architectures can be used to organize an image sen-
sor. Both use photodiodes as their photosensors, but they very signifi-
cantly in how they move pixel values off-chip. The first widely-used
silicon image sensors was the charge-coupled devices (CCDs) [Boy70]
to move pixel values. A detailed discussion of CCDs is beyond the
scope of this book, but they manipulate potentials along the chip to
move charge from pixels as in a bucket brigade. CCDs remain to this
day the most sensitive silicon image sensors due to the very high effi-
ciency with which CCDs move charge from a pixel to the pads. But
CCDs require specialized fabrication steps that are not compatible with
bulk CMOS technology.

CMOS image sensor The CMOS image sensor [Fos95] can be fabricated on standard CMOS
processes. A CMOS image sensor uses circuits very similar to those
used in memories to access the pixels: a row line selects a row of pixels
to be read while bit lines run vertically to take the pixel values to ampli-
fiers and outputs.

The dominant form of pixel circuit in use today is the active pixel sen-
sor (APS), shown in Figure 6-33. This circuit uses an amplifier in each
pixel to drive the bit line quickly. A reset transistor is used to reset the
pixel to zero before an exposure. The word line turns on the amplifier,
which drives the bit line. Unlike a digital memory, the output value on
the bit line is analog.

The amplifier takes up additional space in the pixel beyond that required
by the access transistor; this is area that cannot be used for the photo-

photons

photocurrent

circuit device

n

p
x

1

2

x

+

x 3

Figure 6-32
A photodiode.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 395 Return to Table of Contents

384 Chapter 6: Subsystem Design

diode. The ratio of photodiode area to total pixel area is known as the
fill factor. Below 0.5 m, transistors are small enough that the fill factor
is acceptably high to build useful image sensors.

Figure 6-34 shows the readout circuitry for a row of pixels. A bias tran-
sistor sets the proper voltage on the bit line. The pixel selected by the

wordi

+

bit i
reset i

Figure 6-33 Design of an
active pixel sensor.

biasV

bit i

col j

Coj

pixel

pixel

pixel

...

Figure 6-34 Organization
of a column of pixels.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 396 Return to Table of Contents

6.8 Field-Programmable Gate Arrays 385

word line charges the column capacitance. Once all the pixels in a word
have been read, they can be transferred to an output amplifier one at a
time by turning on the column amplifier for each column.

6.8 Field-Programmable Gate Arrays

A field-programmable gate array (FPGA) is a block of programmable
logic that can implement multi-level logic functions. FPGAs are most
commonly used as separate commodity chips that can be programmed
to implement large functions. However, small blocks of FPGA logic can
be useful components on-chip to allow the user of the chip to customize
part of the chip’s logical function.

An FPGA block must implement both combinational logic functions
and interconnect to be able to construct multi-level logic functions.
There are several different technologies for programming FPGAs, but
most logic processes are unlikely to implement anti-fuses or similar
hard programming technologies, so we will concentrate on
SRAM-programmed FPGAs.

lookup tables The basic method used to build a combinational logic block
(CLB)—also called a logic element—in an SRAM-based FPGA is the
lookup table (LUT). As shown in Figure 6-35, the lookup table is an
SRAM that is used to implement a truth table. Each address in the
SRAM represents a combination of inputs to the logic element. The
value stored at that address represents the value of the function for that
input combination. An n-input function requires an SRAM with
locations. Because a basic SRAM is not clocked, the lookup table logic

lookup
table

configuration
bits

out

inputs

mux

n

2n 1

Figure 6-35 A lookup
table.

2n

Modern VLSI Design: IP-Based Design, Fourth Edition Page 397 Return to Table of Contents

386 Chapter 6: Subsystem Design

element operates much as any other logic gate—as its inputs change, its
output changes after some delay.

programming
a lookup table

Unlike a typical logic gate, the function represented by the logic ele-
ment can be changed by changing the values of the bits stored in the
SRAM. As a result, the n-input logic element can represent func-
tions (though some of these functions are permutations of each other). A
typical logic element has four inputs. The delay through the lookup
table is independent of the bits stored in the SRAM, so the delay
through the logic element is the same for all functions. This means that,
for example, a lookup table-based logic element will exhibit the same
delay for a 4-input XOR and a 4-input NAND. In contrast, a 4-input
XOR built with static CMOS logic is considerably slower than a 4-input
NAND. Of course, the static logic gate is generally faster than the logic
element.

Logic elements generally contain registers—flip-flops and latches—as
well as combinational logic. A flip-flop or latch is small compared to
the combinational logic element (in sharp contrast to the situation in
custom VLSI), so it makes sense to add it to the combinational logic ele-
ment. Using a separate cell for the memory element would simply take
up routing resources. As shown in Figure 6-36, the memory element is
connected to the output; whether it stores a given value is controlled by
its clock and enable inputs.

complex logic elements Many FPGAs also incorporate specialized adder logic in the logic ele-
ment. The critical component of an adder is the carry chain, which can
be implemented much more efficiently in specialized logic than it can
using standard lookup table techniques.

The wiring channels that connect to the logic elements’ inputs and out-
puts also need to be programmable. A wiring channel has a number of

22n

logic
element

QD

out

selectFigure 6-36 A flip-flop in
a logic element.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 398 Return to Table of Contents

6.9 Programmable Logic Arrays 387

programmable connections such that each input or output generally can
be connected to any one of several different wires in the channel.

programmable
interconnection points

Figure 6-37 shows a simple version of an interconnection point, often
known as a connection box. A programmable connection between two
wires is made by a CMOS transistor (a pass transistor). The pass transis-
tor’s gate is controlled by a static memory program bit (shown here as a
D register). When the pass transistor’s gate is high, the transistor con-
ducts and connects the two wires; when the gate is low, the transistor is
off and the two wires are not connected. A CMOS transistor has a good
off-state (though off-states are becoming worse as chip geometries
shrink). In this simple circuit, the transistor also conducts bidirection-
ally—it doesn’t matter which wire has the signal driver. However, the
pass transistor is relatively slow, particularly on a signal path that
includes several interconnection points in a row.

6.9 Programmable Logic Arrays

PLAs for two-level logic The programmable logic array (PLA) is a specialized circuit and lay-
out design for two-level logic. While the PLA is not as commonly used
in CMOS technology as in nMOS, due to the different gate circuits used
in the two technologies, CMOS PLAs can efficiently implement certain
types of logic functions.

PLA architecture The architecture of a PLA, as shown in Figure 6-38, is very simple: it
uses two levels of logic, one implementing the ANDs (called product
terms) and another implementing the ORs. One of the best features of
the PLA is that it can compute several functions at once, which can
share product terms. Two-level functions are built from both the true
and complement forms of the variables, so the inputs supply both forms,
usually with a pair of inverters on the true form as buffers. Some sort of
buffer is usually placed at the output. The architecture also suggests the

QD

Figure 6-37 An interconnect
point controlled by an SRAM
cell.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 399 Return to Table of Contents

388 Chapter 6: Subsystem Design

attractiveness of the layout: the inputs to the AND plane flow vertically,
while the outputs flow horizontally and emerge at the right side. The OR
plane is simply a 90 rotation of the AND plane. Such a layout can be
very compact, but we need to find a gate structure compatible with this
layout organization.

PLA circuits We clearly cannot use fully complementary gates for this layout
style—wiring both the pullups and pulldowns would be too complex.
The most common form of the CMOS PLA uses precharged gates for
both AND and OR planes [Sho88]. Using a non-complementary gate
lets us use very regular layouts for the wires: input signals are evenly
spaced in one direction and output signals are also evenly spaced in the
perpendicular direction. Figure 6-39 shows a logic diagram for a dou-
bly-precharged PLA circuit. Setting the precharge lines low enables the
p-type pullup to precharge the planes; bringing the precharge lines low
enables the n-type evaluation transistor. The circuits in the AND and
OR planes are identical, except for programming transistors, which
determine the PLA’s personality.

PLA layout In the AND plane, each precharged gate’s output node runs vertically
through the cell. Pulldowns run between the output node and VSS lines
that run parallel to the output lines; inputs run horizontally to be
attached to the pulldowns’ gates. The AND and OR planes are very sim-

AND
plane

i0
i0 '

i1
i1 '

f0
f1

f2

product termp0p1p2p3p4

OR
plane

Figure 6-38 Organization of
a PLA.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 400 Return to Table of Contents

6.9 Programmable Logic Arrays 389

ple to generate. We first lay down a grid of wires for input signals, VSS,
and output signals. We can create a pulldown transistor at the intersec-
tion of input and output signals by adding small amounts of diffusion

+

in

precharge_AND

+

precharge_OR

out

AND plane OR plane

programming
transistors

Figure 6-39 Precharged gates for the AND and OR planes of a PLA.

input

output

programming tab

no tab

Figure 6-40 A
section of a PLA
AND/OR plane.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 401 Return to Table of Contents

390 Chapter 6: Subsystem Design

and poly along with a via. The pulldown can be added to the wiring by
superimposing one cell on another; the pulldown cell is called a pro-
gramming tab thanks to the shape of the transistor and via. The same
cell can be used for both planes since the OR plane is simply a 90 rota-
tion of the AND plane. Figure 6-40 shows a section of an AND/OR
plane with four inputs running vertically in poly and two outputs run-
ning horizontally in metal 1. Each pair of input lines shares a ground
line running in n-diffusion; pairs also share open space for a program-
ming tab’s via, so that one via can be used for two pulldown transistors
on opposite sides of the via.

PLA delay The delay through the PLA is determined largely by the load introduced
by the vertical and horizontal wires. The neat layout of the PLA keeps
us from using large transistors in the pulldowns to speed up the gates—a
large pulldown would not only add blank space down the entire row but
would also lengthen the perpendicular wires. This doubly-precharged
structure also complicates clocking.

PLA applications Which functions are best implemented as PLAs? Those functions that
are true for about half their input vectors are well-suited. If the PLA has
very few programming tabs, we are wasting most of its area and are
probably better off using fully complementary gates. If the PLA is
nearly full, we can complement the functions to produce a nearly empty
PLA. PLAs are also good for implementing several functions that share
many common product terms, since the AND-OR structure makes it
easy to send one product term to many different ORs. CPU microcode
often has these characteristics.

PLA optimizations Standard two-level minimization algorithms can be used to optimize the
PLA personality. An optimization unique to PLAs is folding. If one
region of the PLA is empty of programming tabs, it may be possible to
remove that section and fold another section of the PLA into the newly
freed space. Folding can leave the PLA with inputs and outputs on all
four sides. While folding can dramatically reduce the size of the PLA, it
also makes the PLA’s layout very sensitive to changes. A small change
in the logic may require a use of a single programming tab in the region
removed for folding, enough to undo the entire folding operation.
Folded PLAs may, with a small logic change, unfold themselves like
origami pieces in the middle of a chip design, destroying floorplans that
relied on the small size of the folded PLA. As a result, PLA folding is
less popular today than it was when PLAs first came into common use.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 402 Return to Table of Contents

6.10 Buses and Networks-on-Chips 391

6.10 Buses and Networks-on-Chips

In this section, we will examine the design of interconnect subsystems:
buses and networks-on-chips. Buses are widely used to connect to
microprocessors and as a common interconnect. Buses also allow us to
explore a new style of logic design, asynchronous logic. Networks-on-
chips are more sophisticated forms of interconnect that are increasingly
necessary on large chips. Our discussion of protocols for buses is also
one of the foundations of network-on-chip design. We will cover several
topics in bus design, ranging from circuits to protocols, and close with a
discussion of network-on-chip design.

6.10.1 Bus Circuits
A bus is a common connection. At the core of this common connection
is a large wire that serves as the communication channel. Busses are bi-
directional, so we cannot use buffers to refresh the signal as it travels
along the bus. This puts a large burden on the circuits driving the bus.

The circuits used for a bus must provide this common connection across
a long region. Although the logical function of a bus may be seen as
multiplexing, it is generally not feasible to distribute the control signals
required for muxes over the distances encountered in a bus.

distributed NOR bus One style of bus circuit is the distributed NOR gate: the common wire
forms the NOR gate’s output, while pulldowns at the sources select the
source and set the NOR gate’s output. (All devices connected to the bus
can read it in this scheme.) The circuit choices for buses are much like

+

A

out

B C

Figure 6-41 A
pseudo-nMOS
bus circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 403 Return to Table of Contents

392 Chapter 6: Subsystem Design

those for the advanced gate circuits of Section 3.5: pseudo-nMOS,
shown in Figure 6-41, and precharged, shown in Figure 6-42. The trade-
offs are also similar: the pseudo-nMOS bus is slow but does not require
a separate precharge phase.

three-state bus An alternative is the three-state bus, as shown in Figure 6-43. Each input
has its own three-state driver. The bus presents a large capacitance,
including both the bus wire itself and the capacitance of all the bus out-
puts. As a result, these drivers would typically use an exponentially-
tapered driver chain using the techniques of Section 3.3.8. A local con-
trol signal determines when the device can write onto the bus. The con-
trol signals must be timed such that two drivers are not on
simultaneously.

6.10.2 Buses as Protocols
buses implement protocols A bus is, most fundamentally, a common connection. It is often used to

refer to a physical connection that carries a protocol for communication
between processing elements. The physical and electrical characteristics
of the bus are closely matched to the protocol in order to maximize the
cost-effectiveness of the bus system.

A simple bus-based system is shown in Figure 6-44. The bus allows us
to construct a system out of communicating components. The compo-
nents in the system communicate via a series of wires. Some of these

+

A

out

f'

f'

B

f'

C

f'

Figure 6-42 A
precharged bus
circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 404 Return to Table of Contents

6.10 Buses and Networks-on-Chips 393

wires carry data while others carry the control information for the proto-
col. The bus specification includes electrical characteristics of these
components: voltages, currents, maximum capacitive loads, etc. The bus
specification also includes the protocol for how to use the control and
data signals to communicate between the components connected to the
bus.

Q
D

input

output

i_control

1

1

input

i_control

2

2

2

Q
D

output 1

bus

o_control1 o_control 2

Figure 6-43
A bus with
three-state
drivers.

box1 box2 box3

ctrl

data

Figure 6-44 A bus-based system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 405 Return to Table of Contents

394 Chapter 6: Subsystem Design

6.10.3 Protocols and Specifications
A protocol is an agreed-upon means for communication. While the pro-
tocol ultimately describes the complete system, the best way to under-
stand a protocol is often by looking at the behavior of the components
that are communicating. Once we understand what each component
expects from the other component and what it does in return, then it is
easier to understand the flow of communication embodied in the
protocol.

events on signals We often talk about events on signals as assertions or deassertions
rather than as 1 or 0. An assertion event may be logically true but at a
zero voltage because that can be more reliably signaled over the particu-
lar physical medium in use. Assert/deassert terminology gives us some
independence from the physical representation of signals that is often
useful.

protocols and state
transition graphs

Protocols for digital systems are often described as state transition
graphs. Each component in the system has a state; inputs from other
components cause it to move to different states and to emit outputs.
Those new states may be good if the component gets the protocol signal
that it expects; the states may also represent bad conditions if the com-
ponent doesn’t see the behavior it expects from other components.

The state machines used to describe protocols are not the synchronous
state machines that we have used for logic design. We use event-driven
state machines to describe protocols. These state machines are similar in
behavior to event-driven simulators—the machine changes state only
when it observes an input event. An event is, in general, a change in a
signal. One might implement a protocol using a synchronous state
machine that polls the input signal, but at the interface the user can only
tell that the machine responds to these events.

timing diagrams
and protocols

One way to specify a part of the protocol used by the bus is with a tim-
ing diagram. It describes one scenario of the bus operation; several such
scenarios are generally needed to fully specify the protocol.

four-cycle handshake Let us use a simple example to show how protocols can be described.
Figure 6-45 shows the activity during a four-cycle handshake, a proto-
col that is the basic building block for many more complex protocols. A
four-cycle handshake is used to reliably communicate between two sys-
tems. At the end of the protocol, not only is some information trans-
formed (either implicitly by performing the handshake or by passing
data in the middle of the handshake) but both sides know that the com-
munication was properly completed.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 406 Return to Table of Contents

6.10 Buses and Networks-on-Chips 395

The four-cycle handshake uses two signals, enq (enquiry) and ack
(acknowledge). Each signal is output by one component and received by
the other. The handshake allows the two components to reliably
exchange information.

Figure 6-46 shows the two components in more detail. The enq and ack
signals move between the components. The figure shows the state
machine describing the protocol in each component machine. The pro-
tocol allows box1 to signal box2; that signal could be a simple comple-
tion signal or it could be used to tell box2 that box1 has some data ready.

Let us first consider box1:

enq

ack

Figure 6-45 Events in a
four-cycle handshake.

a

b
/enq

ack/
enq'

y

z

enq/
ack

enq'/
ack'

enq

ack

box1 box2

Figure 6-46
Components in a
four-cycle
handshake.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 407 Return to Table of Contents

396 Chapter 6: Subsystem Design

1. Box1 raises enq to tell box2 that it is ready. (This action is instigated
by some other activity within box1.)

2. When box1 sees an ack, it lowers enq to tell box2 that it saw the
acknowledgement.

Once box1 has responded to the ack signal from box2, it returns to its
original state and is ready for another round.

Let us consider the same transaction from the side of box2:

1. When box2 sees enq go high, it goes into a new state and sends an
ack to box1.

2. When box2 sees enq go low, it sets ack low and returns to its original
state.

Just as box1 returns to its original state once the handshake is complete,
box2 also returns to its original state and is ready to perform the hand-
shake protocol once again. If we want to use the handshake simply to
allow box1 to tell box2 that it is ready, then the handshake itself is
enough. If we want to pass some additional data, we would pass it after
box2 has raised ack and before box1 lowers enq.

If we want to see the overall action of the protocol, we can form the Car-
tesian product of the two state machines that describes the two compo-
nents. The product machine for the four-cycle handshake is shown in
Figure 6-47. Forming the Cartesian product actually causes the enq and
ack signals to disappear but we have shown them as events on the transi-
tion between states. The names of each Cartesian product state is the

ay by

bzaz

enq

enq'

ackack'

Figure 6-47 The combined
state transition graph for the
four-cycle handshake.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 408 Return to Table of Contents

6.10 Buses and Networks-on-Chips 397

combination of the names of the two component states that combined to
make it. We can now see that the combination of box1 and box2 go
through four states during the four-cycle handshake:

1. ay is the initial state in the protocol. The system leaves that state
when enq is asserted.

2. by is the state in which enq is active but has not yet been acknowl-
edged.

3. bz has both enq and ack asserted. Data can be passed between box1
and box2 in this state.

4. az has enq deasserted by ack still asserted. The system leaves this
state for ay when ack is deasserted.

two-cycle handshake An even simpler protocol is the two-cycle handshake. This protocol is
less reliable but is sometimes good enough for basic signaling. As
shown in Figure 6-48, the two-cycle handshake uses enq but not ack.
The enquiry is simply asserted and then deasserted.

enq

Figure 6-48 Events in a two-
cycle handshake.

a

b

/enq

/enq'

y

z

/enq

enq'/

enq

box1 box2

Figure 6-49
Components in a two-
cycle handshake.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 409 Return to Table of Contents

398 Chapter 6: Subsystem Design

Figure 6-49 shows the component state machines for the two-cycle
handshake. Because box1 does not receive an ack, it must guess as to
when to deassert enq. This makes the protocol less reliable but it does
provide some basic signaling. We generally use some sort of timer to
determine how long to wait before deasserting enq. Either a counter or a
logic path with a known delay can provide us with the necessary delay.

6.10.4 Logic Design for Buses
asynchronous logic in
buses

Why use timing diagrams to describe protocols? Why not use state tran-
sition graphs? Why design systems that depend on particular delay val-
ues? Because buses often connect components that do not (and cannot)
share a common, synchronized clock. As a result, the bus must use
asynchronous logic for communication. Because the types of asynchro-
nous logic used in buses often depends upon timing values, we use tim-
ing diagrams to show the necessary timing constraints. In this section
we will study the design of buses using asynchronous logic.

Asynchronous buses represent a compromise between performance and
cost. Buses are generally used to connect physically distributed compo-
nents that are far enough apart that significant propagation delays are
incurred when sending signals from one component to another. If all
communications were run to a common clock, that clock would run very
slowly. It certainly doesn’t make sense to force the components to run
their internal clocks at the same rate as the external bus. So the bus must
be designed to hide timing problems from the components. Many mod-
ern buses do in fact use clock signals distributed on the bus with all bus
signals synchronized to that clock. However, the bus clock runs much
more slowly than and independent of the components’ internal clocks.

control signals as clocks Consider the simple circuit of Figure 6-50. A flip-flop is used to capture
a data value from the outside world. The data comes into the flip-flop on
the d signal; d is guaranteed to be stable for a certain minimum period.

QD
d

c

Figure 6-50 An
asynchronous element.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 410 Return to Table of Contents

6.10 Buses and Networks-on-Chips 399

But when does it arrive? The flip-flop requires a clock signal that obeys
the setup and hold times of the flip-flop. We use the c signal to tell the
flip-flop when the data on d is ready. This costs an extra signal but it
provides a good deal of timing flexibility. Even if we cannot guarantee
absolute delays between the components on the bus, we can design the
bus so that the relative delays between signals on the bus are closely
matched. (This requires carefully controlling crosstalk, capacitive load,
etc., but it can be done.) Because the relative delays of d and c are
known, generating them with the proper timing at the source ensures
that they will arrive at the destination with the same timing relationship.
Thus, we can generate the timing information required by the flip-flop
and send it along with the data itself.

capturing events We will use flip-flops (or latches) to capture signals sent over the bus.
We must be more careful about timing constraints when we design logic
for a bus. In a fully synchronous system, we tend to separate combina-
tional logic delays and clock skew, controlling the clock skew so that we
only have to check a straightforward delay requirement for all the logic.
Every signal on a bus, in contrast, may have its own timing. The funda-
mental requirements for a flip-flop are its setup and hold times. These
constraints then become constraints on the incoming data and control
signals. In Figure 6-51, the t1 constraint comes from the flip-flop’s setup
time while the t2 constraint comes from its hold time. We can draw a
similar timing diagram for a latch-based bus receiver.

d

c

time

t1 t2

Figure 6-51 Timing
constraints on a flip-flop.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 411 Return to Table of Contents

400 Chapter 6: Subsystem Design

timing constraints These two constraints are defined in terms of the events on the c and d
lines. We can name the events as follows:

• td1 = time at which d becomes stable;

• td2 = time at which d stops being stable;

• tc1 = time at which c rises.

If the setup time of a flip-flop is ts and its hold time is th, then we can
write t1 and t2 as

, (EQ 6-14)

. (EQ 6-15)

The equations for t1 and t2 define them in terms of events on the bus
while the inequalities constrain the minimum time between the events.
We don’t in general know the exact times at which td1 and td2 happen.
But the constraint is written in terms of the difference of the two times,
which we can directly relate to the flip-flop setup and hold times. Given
a particular technology, we determine its setup and hold times and sub-
stitute those values into the inequalities.

communication
and timing

All the timing constraints on the bus ultimately come from the compo-
nents used to build the bus. How we view them depends on our point of
view in the bus. Our own component imposes timing constraints that
must be satisfied from the inside. The component with which we want
to communicate imposes timing requirements from the outside.

Figure 6-52 shows the flip-flop-based bus receiver in the context of the
bus. Box1 wants to send a value to box2. Each component has its own
clock: 1 for box1 and 2 for box2. For the moment, let us assume that

t1 tc1 td1– ts=

t2 td2 tc1– th=

QD
d

c

data

ready

box1 box2

φ1 φ2

Figure 6-52 Two components
communicating over a bus.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 412 Return to Table of Contents

6.10 Buses and Networks-on-Chips 401

box1 somehow generates the data signal and a ready signal that has the
proper timing relationship to the data. Those two signals are sent along
the bus’s d and c wires. The c control signal causes the flip-flop to
remember the data on d as it arrives.

metastability One problem we must consider when transmitting signals asynchro-
nously is metastability [Cha72]. A flip-flop or latch typically remem-
bers a 1 or 0 reliably. As shown in Figure 6-53, the register has two
stable states representing 0 and 1. However, if the data does not satisfy
the setup and hold times and is changing around the critical interval for
the clock, then a bad value may be stored. If the captured value is near
the stable 0 or 1 state, then the memory element will quickly roll down
the hill to the stable value. However, if the value is in the metastable
region, then the memory element captures a value that is finely balanced
between the stable 0 and 1 states. This metastable point is not totally sta-
ble because the value will eventually move toward either 0 or 1. How-
ever, the amount of time it takes the memory element to move to a 0 or 1
is unbounded. Either the receiver must be able to detect a metastable
state and wait for it to resolve or the receiver will get a corrupt value.

out

in

metastable
point

0 1

Figure 6-53 A metastable
state in a register.

QD QDd

φ

dout

Figure 6-54 A multi-stage
synchronizer that minimizes
metastability problems.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 413 Return to Table of Contents

402 Chapter 6: Subsystem Design

We can minimize the chance of metastability with the
multi-stage synchronizer shown in Figure 6-54. It has two flip-flops,
both under control of the clock that controls the receiving logic. The key
part of the design is that the data is captured twice: the signal is sampled
by the first flip-flop and that result is resampled by the second flip-flop.
Because the synchronizer is basically a shift register, it takes two clock
cycles to see the received value. But even if the first register goes meta-
stable, it is less likely that the second register will also go metastable.
Metastability cannot be eliminated, however, and there is always a small
chance that the output of the multistage synchronizer will be metastable.
It is possible to build a multistage synchronizer with more stages, but
the additional stages will only slightly improve the probability of elimi-
nating metastability and will definitely add latency.

bus protocols and events Now that we understand how to receive asynchronous signals, we can
start to consider the complete bus system. Before delving back into the
components and their timing requirements, let us step back to remember
the functionality of a bus transaction. Figure 6-55 shows a flowchart
that functionally approximates the behavior of the components on the
bus. We say approximates because flowcharts are not designed for asyn-

prepare value

d = value
c = control

ack?
0

1

c?

myval = d

wait

1

0
waitd

c

ack

box1 box2

ack=1

Figure 6-55 A flowchart of communication on a bus.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 414 Return to Table of Contents

6.10 Buses and Networks-on-Chips 403

chronous behavior, but this chart gives you a basic idea of the flow of
control between the two components. This chart shows a handshake so
that we can consider how to generate an acknowledgment from the
receiver. Once box1 has prepared the value it wants to send, it then
transmits both the data and an associated control signal. Meanwhile,
box2 is waiting for that control signal. When it sees the control, it saves
the value and sends an acknowledgment. Once box1 sees the ack event,
it goes on to further processing. We have already seen the circuitry used
for box2 to receive the event; we also need circuitry for box1 to generate
the event and for box2 to generate an acknowledgment.

logic implementations Figure 6-56 shows the bus logic in box1. The data value is stored in a
flip-flop to be held on the bus. The control signal for the bus is gener-
ated by another flip-flop. The ack signal causes the flip-flop that holds
the control value to reset itself. Because both flip-flops are clocked by
the internal clock 1, we know that they will acquire their values at the
same time. If we need to change the delay of c relative to d in order to
meet setup and hold constraints on the other side, we can add delay to
one of the signals using a delay element.

Figure 6-57 shows the logic on the box2 side of the bus. The first flip-
flop captures the data signal using c as a clock for activation. The next
flip-flop samples c to tell when the data has arrived. After one tick of the
internal clock 2 that flip-flop sends out an acknowledge signal. When c
goes low, it resets the second flip-flop to drop the ack signal.

QD

QD

value d

control

ack

c

φ1

reset

Figure 6-56 Bus logic for
box1.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 415 Return to Table of Contents

404 Chapter 6: Subsystem Design

QD QDd

c

ack

reset

φ2

Figure 6-57 Bus logic for
box2.

d

c

time

t1

t2

ack

t3

Figure 6-58 A timing
diagram for the bus.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 416 Return to Table of Contents

6.10 Buses and Networks-on-Chips 405

bus timing Figure 6-58 shows a timing diagram for the bus. We can write some tim-
ing relations for this bus, using these names for the events:

• td1 = time at which d becomes stable;

• td2 = time at which d stops being stable;

• tc1 = time at which c rises;

• tc2 = time at which c falls;

• tack1 = time at which ack rises.

If the setup and hold times of all the flip-flops are ts and th respectively
then we can write the constraints as

, (EQ 6-16)

. (EQ 6-17)

. (EQ 6-18)

We could also constrain the fall time of the ack against the next bus
cycle to be sure that enough time is left to properly capture the value.

6.10.5 Microprocessor and System Buses
types of buses Buses are often used to connect microprocessors to memories and

peripherals. Microprocessor buses have come to influence the design of
other buses as well. As shown in Figure 6-59, a local bus is used to con-
nect the microprocessor to high-speed memory while a system bus is
used to connect the local bus to peripherals. The component that con-
nects two buses is called a bridge. A local bus must provide very high
performance to avoid slowing down the microprocessor during the
fetch-execute cycle; system buses come in a wide variety of cost/perfor-
mance points. However, these two different types of buses share some
common characteristics due to their common heritage.

Buses usually talk to devices using addresses. Each device on the bus is
assigned an address or a range of addresses. The device responds when
it sees its address on the address lines. Separate lines are used to send
and receive data. Further lines are used to provide the control signals
required to show when data and addresses are valid, etc.

master-slave operation Buses are generally master-slave systems: one component controls the
operation of the bus and the other devices follow along. A slave device
may send data on the bus but only when the master tells it to. The mas-

t1 tc1 td1– ts=

t2 tack1 tc1– th=

t3 tc2 tack1– th=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 417 Return to Table of Contents

406 Chapter 6: Subsystem Design

ter, in contrast, initiates all the various types of operations on the bus. In
a microprocessor system the microprocessor typically acts as the bus
master. The other components in the system are assigned addresses to
identify them.

signals on buses Figure 6-60 shows some of the basic signals in the bus. The ctrl, adrs,
and data lines are used for basic bus transactions, such as reads and
writes. When another device wants to become the bus master for some
time, it uses the bus request and bus grant signals. This protocol is typi-
cally a four-cycle handshake, with the handshake completed only when

microprocessor memory

bridge

device 1 device 2

local bus

system bus

Figure 6-59 Buses
connected by a bridge.

microprocessor device 1

bus request

bus grant

adrs

data

ctrl

device 2

Figure 6-60 Basic signals in a bus.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 418 Return to Table of Contents

6.10 Buses and Networks-on-Chips 407

the new bus master has finished and returns control to the default bus
master. The process of choosing a master for the bus is known as bus
arbitration. Bus arbitration logic must be carefully designed: not only
must it be fast, it also cannot afford to grant two devices mastership of
the bus under any circumstance.

bus characteristics and
standards

Buses differ greatly in their details:

• physical The bus standard often specifies size of the connector and
cards.

• electrical Different voltages and currents may be used for signaling.
The bus may also define the maximum capacitive load allowed.

• protocols Buses may use different protocols that trade off speed and
flexibility.

The Peripheral Component Interconnect (PCI) bus [Min95] is a widely
used standard originally developed for PCs. The PCI standard is very
complex. The next example touches upon some aspects of PCI to illus-
trate some bus concepts.

Example 6-2
The PCI bus

PCI was developed as a high-speed system bus to replace ISA and
Micro Channel in PCs. The standard has been extended several times
and PCI variants are now used in a wide variety of digital systems.

The standard describes both 33 MHz and 66 MHz implementations. PCI
uses a non-terminated bus and its electrical design takes advantage of
reflections to reduce the switching time on the bus. The bus includes a
clock signal, CLK, that has a 30 ns period at 33 MHz and a 15 ns period
at 66 MHz.

The bus has several types of signals (the PCI spec uses # to mean nega-
tion):

• System signals:

• CLK The system clock is an input to all PCI devices.

• RST# The reset signal initializes all PCI configuration regis-
ters, state machines, and drivers.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 419 Return to Table of Contents

408 Chapter 6: Subsystem Design

• Address/data bus:

• AD[31:0] The combined address and data bus, normally 32
bits but can be extended to 64 bits.

• C/BE#[3:0] Command or byte enable defines the type of trans-
action.

• PAR Set by the sender to ensure even parity on the address
lines and C/BE#.

• Transaction control signals:

• FRAME# Indicates the start and duration of the transaction.

• TRDY# Target ready is driven by the currently-addressed tar-
get and is asserted when the target is ready to complete the cur-
rent data transfer.

• IRDY# Initiator ready is driven by the bus master and indi-
cates that the initiator is driving valid data onto the bus.

• STOP# Allows the target to tell the initiator to stop the trans-
action.

• IDSEL Initiation device select is used as a chip select while
accessing device configuration registers.

• LOCK# Locks the currently-addressed memory target.

• DEVSEL# Device select is asserted by the target when it has
decoded its address.

• Arbitration signals:

• REQ#, GNT# Request and grant lines from each device are
connected to the bus arbiter. The arbiter determines which
device will be the next master.

• Interrupt request signals:

• INTA#, INTB#, INTC#, INTD# Allow devices to request
interrupts.

• Error reporting signals:

• PERR#, SERR# Used to report parity and system errors,
respectively.

PCI handshakes to transfer data. The source of the data must assert its
ready signal when it drives data onto the bus. The receiver does not have
to respond immediately and only raises its ready line when it is ready to
receive. If the receiver takes more than one clock cycle to respond, the

Modern VLSI Design: IP-Based Design, Fourth Edition Page 420 Return to Table of Contents

6.10 Buses and Networks-on-Chips 409

intervening clock periods are known as wait states. Once a sender or
receiver indicates that it is ready to complete a data phase, it cannot
change its control lines until that phase is done.

Here is a timing diagram for a sample read transaction, in which an ini-
tiator reads several locations from a device:

The read transaction starts with the initiator asserting a valid start
address and command on the bus and raising FRAME#. The address is
written onto AD and the command asserted onto C/BE.

On the next cycle, the initiator stops driving AD. This cycle is used to
turn around the AD lines, ensuring that two devices don’t try to drive
them at the same time. The initiator uses the C/BE lines on this cycle to
signal which byte lanes will be used. It also asserts IRDY# to show that
it is ready to receive the first datum from the device.

time

GNT

DEVSEL#

TRDY#

IRDY#

C/BE#

AD

FRAME#

CLK

adrs data data data

bus
cmd

byte enable byte enable byte enable

Modern VLSI Design: IP-Based Design, Fourth Edition Page 421 Return to Table of Contents

410 Chapter 6: Subsystem Design

On the third cycle, the target device asserts DEVSEL# to show that it
has recognized its address. It also starts to drive the data onto the AD
bus and asserts TRDY# to show that the data is on AD. Since the second
cycle was used to turn around AD, the target device can now safely
drive the data onto AD without electrical conflicts.

PCI supports multi-word transfers. When the initiator continues to
assert IRDY# but does not deassert FRAME#, the transaction continues
to the next data item. The address is sent at the start of the transaction
but not with every datum. The target must remember the starting address
and increment it as necessary to keep track with the current address.

If the target needs a wait state, it can deassert TRDY# to tell the initiator
that it needs more time. A total of three data elements are transferred on
this bus transaction. Two of them require wait states—each datum can
take a different number of wait states.

At the end of the transfer, the initiator deasserts IRDY# and the target
deasserts TRDY# and DEVSEL#. The PCI bus is now ready for the next
transaction.

The PCI bus is arbitrated by a central arbiter. Each potential master is
connected to the arbiter by its own REQ# and GNT# signals. A device
can remain master as long as it wants after it gains bus mastership. The
arbiter’s main task is to choose the next bus master when several
devices simultaneously request the bus. The PCI standard does not
define the arbitration algorithm but it does require that a fairness algo-
rithm be used to avoid deadlocks on the bus. Round-robin is a common
example of a fair arbitration scheme.

PCI allows the bus arbitration process to occur while a transfer is taking
place. The new master gains control of the bus at the end of the current
transfer. Hidden arbitration improves bus performance by overlapping
arbitration time with other activities.

6.10.6 Networks-on-Chips
NoCs as subsystems Large chips are sufficiently complex that we need to use packet-based

networks, not just wires, to transport data. The processing elements
(PEs) may be CPUs or hardwired units. The network must connect
memories and I/O ports as well as processing elements. A network-on-
chip (NoC) provides facilities for data transfer between a large number
of units. The network-on-chip serves as an excellent subsystem for com-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 422 Return to Table of Contents

6.10 Buses and Networks-on-Chips 411

munication: it encapsulates physical and circuit design and provides an
abstract interface for processors and memories.

NoC terminology A network-on-chip is built of nodes and links. A node may be a pro-
cessing element or memory; it may also be an intermediate point in
the network. The two major types of network nodes are switches,
which do not process information, and routers, which perform more
complex tasks. A link transmits bits between nodes in the network. A
packet holds a destination address and its associated data. Packets in
NoCs are usually relatively small (compared to Internet Protocol
packets) and of uniform size, and are therefore often referred to as
flits.

NoC modeling Serpanos and Wolf [Ser07] analyzed the asymptotic characteristics of
networks-on-chips and provided basic models for performance. They
assumed that the NoC connected N cores (processing elements, memo-
ries, or I/O ports); they normalized distances to the size of a core in one
dimension, so a string of N cores side-by-side has length N.

n

Q
D

input

output

Figure 6-61
Electrical model
for a bus.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 423 Return to Table of Contents

412 Chapter 6: Subsystem Design

The simplest type of network is a bus, which we will use as a reference
against which to compare our more sophisticated networks. Figure 6-61
shows an electrical model for a bus [Ser07]. Each bus input is connected
to a chain of cascaded drivers whose delay is described by Equation 3-
17. The bus trunk is a set of long wires. Because the bus is bi-direc-
tional, we model it as an unbuffered long wire whose delay is given by
Equation 6-25. Each output has a three-state driver and a register. The

largest components of the delay are the cascaded drivers at the input and
the bus trunk. They found the bus delay to be:

. (EQ 6-19)

crossbar An important category of switch is the crossbar. As shown in Figure 6-
62, a standard crossbar has N inputs and N outputs as well as a control
input. Any input may be connected to any output or to any combination
of outputs as determined by the control. For example, input 2 may be
connected simultaneously to outputs 0 and 5.

One way to make a crossbar is using switches as shown in Figure 6-63.
A wire from each input connects to N switches; each switch is con-
nected to one of the N output wires. (Alternative circuits can also be
used at the crosspoints: a transmission gate or a three-state buffer. Both
provide improved performance at the expense of a larger crosspoint
cell.) Separate control lines determine what switches are on: each output

i1

i2

in

o1 o2 on

control

...

...

...

Figure 6-62 A crossbar.

b k1CL
1 kN1 k k2N k3N2+ +=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 424 Return to Table of Contents

6.10 Buses and Networks-on-Chips 413

is controlled by control signals, one for each switch, giving con-
trol signals for the entire mux. A multicast connection can be made sim-
ply by turning on more than one switch. Serpanos and Wolf showed that
the delay of this style of crossbar is dominated by the buffered transmis-
sion delay formula of Equation 3-40 and can be approximated by

. (EQ 6-20)

An alternative design uses multiplexers [Cho92]. As shown in Figure 6-
64, a tree of 2-to-2 multiplexers is used to select the desired input for
each output. Several possible circuits can be used for the multiplexer
cell; Dutta et al. [Dut98] used a transmission-gate multiplexer. Serpanos
and Wolf showed that the delay through this type of crossbar can be
approximated by

. (EQ 6-21)

crossbar control The crossbar requires logic to generate its control signals. A very simple
control scheme is a counter that always sends packets in a given interval
to a predetermined location. A more sophisticated controller generates
the crossbar control based upon the flit address.

asymptotic
delay comparison

The asymptotic delay of these different networks are summarized in
Figure 6-65 [Ser07]. These results show that the delay of crossbars
grows much more slowly than that of the bus. As a result, the relative
clock speed of crossbars increases over that of buses as the number of
cores on the network increases.

multi-stage networks Multi-stage networks are composed of switches and links. A variety of
network topologies can be built [Dua02]. One important design consid-

i1

o1 o2 on

i2

......

...

Figure 6-63 Model for a
switch-based crossbar.

n n2

c 2.5 N R0C0RintCL=

cm 2 mux N 1–log=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 425 Return to Table of Contents

414 Chapter 6: Subsystem Design

eration in the network is the depth and location of registers. NoCs are
usually introduced because data cannot cross the chip in one clock
cycle, so registers are necessary at some point. Registers can be placed
at the switch inputs or outputs or within the links themselves.

link design Although wide-area networks are often designed with serial links, net-
works-on-chips may take advantage of the relatively cheap wires avail-
able in VLSI. The width of the link, whether an explicit clock is used,
and other design choices must be made. The techniques of Section 3.7
and Section 3.8 can be used to design the design the drivers for the
links.

input 1

input 2

control’

control

control

output

2-to-1 multiplexer cell

...

...

multiplexer tree

Figure 6-64 Architecture of
a multiplexer-based
crossbar.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 426 Return to Table of Contents

6.11 Data Paths 415

6.11 Data Paths

logical and physical
structures

A data path is both a logical and a physical structure: it is built from
components that perform typical data operations, such as addition and it
has a layout structure that takes advantage of the regular logical design
of the data operators. Data paths typically include several types of com-
ponents: registers (memory elements) store data; adders and ALUs per-
form arithmetic; shifters perform bit operations; counters may be used
for program counters. Buses connected these operators together.

bit slices Most data operations are regular—adders, ALUs, shifters, and other
operators can be constructed from arrays of smaller components. The
cleanest way to take advantage of this regularity in most cases is to
design the layout as a bit-slice, as shown in Figure 6-66. A bit-slice, as
the name implies, is a one-bit version of the complete data path, and the

type delay
bus

switch-based
crossbar

mux-based
crossbar

O N2

O N

O Nlog

Figure 6-65 Asymptotic
comparison of networks
[Ser07].

registers shift ALU

control

bus

Figure 6-66
Structure of a
typical bit-slice
data path.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 427 Return to Table of Contents

416 Chapter 6: Subsystem Design

n-bit data path is constructed by replicating the bit-slice. Typically, data
flows horizontally through the bit-slice along point-to-point connections
or buses, while control signals (which provide read and write signals to
registers, opcodes for ALUs, etc.) flow vertically.

Bit-slice layout design requires careful, simultaneous design of the cells
that comprise the data path. Since the bit-slice must be stacked verti-
cally, any signals that pass through the cells must be tilable—the signals
must be aligned at top and bottom. Horizontal constraints are often
harder to satisfy. The VDD and VSS lines must run horizontally through
the cells, as must buses. Signals between adjacent cells must also be
aligned. While the vertical wires usually distribute signals, the horizon-
tal wires are often interrupted by logic gates. The transistors in the cells
impose constraints on the layout that may make it hard to place horizon-
tal connections at the required positions. As shown in Figure 6-67, cells
often need to be stretched beyond their natural heights to make connec-
tions with other cells.

layer assignments The data path’s layout design also requires careful consideration of layer
assignments. With a process that provides two levels of metal, metal 1 is
typically used for horizontal wires and metal 2 for vertical wires. A wir-
ing plan helps organize your thoughts on the wires required, their posi-

Figure 6-67 Abutting cells
may require moving pins or
stretching.

VDD

VSScell1 cell2 ca cb cc cd

bus1

bus2

smallbus

ctl1 ctl2-3 xa xb xd
Figure 6-68 A simple
wiring plan.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 428 Return to Table of Contents

6.12 Subsystems as IP 417

tions, and the best layers to use for each wire. A black-and-white wiring
plan is shown in Figure 6-68; you should draw your wiring plans in
color to emphasize layer choices.

registers Two circuit design problems unique to data path design are registers and
buses. The circuit chosen for the register depends on the number of reg-
isters required. If only a few registers are needed, a standard latch or
flip-flop from Section 5.2 is a perfectly reasonable choice. If many reg-
isters are required, area can be saved by using an n-port static RAM,
which includes one row enable and one pair of bit lines for each port.
Although an individual bit/word can allow only one read or write opera-
tion at a time, the RAM array can support the simultaneous, independent
reading or writing of two words simply by setting the select lines of the
two words high at the same time. One SRAM port is required for each
bus in the data path.

6.12 Subsystems as IP

standards for IP When we design a standard cell library, the logical functions are easy to
identify and specify, since they generally map onto common register-
transfer components. However, as we move to higher levels of abstrac-
tion, we need to be more careful about how we describe our modules.
As a result, an important part of IP-based design is standards. IP is most
useful when transferred between organizations—it can be bought or
sold between companies; transfers within a large company are often
almost as complex as sales between companies. Standards for the IP
itself and the documentation that accompanies the IP are critical for the
successful use of the IP. Even within an organization, standards help to
increase the lifetime of IP. IP that is designed to a certain style can be
transformed and updated more reliably; documentation also helps future
designers use and update the IP.

OCP The OCP Partnership (http://www.ocpip.org) administers the Open Core
Protocol. OCP is designed to help IP components for systems-on-chips
to plug-and-play together. OCP defines a socket that separates a core’s
computational activity from its communication interface.

SPIRIT The SPIRIT Consortium (http://www.spiritconsortium.org) administers
the SPIRIT standard for the documentation of IP. SPIRIT captures meta-
data about an IP component in the XML language; information in this
form is designed to be shared among tools from multiple vendors. This

Modern VLSI Design: IP-Based Design, Fourth Edition Page 429 Return to Table of Contents

418 Chapter 6: Subsystem Design

information can be used to guide design creation, configuration, and
verification.

The next example describes an open-source bus standard.

Example 6-3
The Wishbone
Interconnection
Architecture
Standard

Wishbone [Ope02]1 is a standard for interconnect of system-on-chip
components. Wishbone supports a wide range of implementations based
on a standard for signals and protocols.

The basic unit of Wishbone is the master-slave interface. This interface
defines a handshaking protocol for the transfer of data between the mas-
ter and slave, as controlled by the master. A master may be connected to
one or more slaves.

Wishbone signals use naming conventions as documentation. Input sig-
nals end with _I and output signals end with _O.

The master-slave interface includes several basic signals:

• The RST_I (reset) and CLK_I (clock) signals are supplied by the
interconnect system to both the master and slave.

• The ADRS signal goes from the master to the slave. It appears as
ADRS_O on the master and ADRS_I on the slave. Addresses may
be up to 64 bits.

• The data signals are unidirectional. The master output DATA_O is
connected to the slave input DATA_I; the slave output DATA_O is
connected to the master input DATA_I. These signals may be 8, 16,
32, or 64 bits wide. SEL signals (SEL_O on the master, SEL_I on
the slave) are used to select subsets of these data signals.

• A write enable signal WE goes from the master (WE_O) to the slave
(WE_I).

• The strobe signal (STB_O on the master, STB_I on the slave) indi-
cates when the data is valid.

• The acknowledge signal (ACK_I on the master, ACK_O on the
slave) is used by the slave to indicate successful transfer of data.

• The cycle signal (CYC_O on the master, CYC_I on the slave) is
used to indicate when a valid bus transfer is in progress.

Wishbone defines three types of bus transfers: the single read/write, the
block read/write, and the read/modify/write (RMW).

1. http://www.opencores.org/projects.cgi/web/wishbone/wishbone

Modern VLSI Design: IP-Based Design, Fourth Edition Page 430 Return to Table of Contents

6.12 Subsystems as IP 419

Let’s consider a single read transfer. At the start of the transfer, the mas-
ter asserts address, write enable, select, strobe, and cycle. The slave that
is addressed puts the data on its data output lines and asserts acknowl-
edge. The master then stores the data presented by the slave and negates
its strobe signal.

Wishbone does not mandate the type of interconnect used to implement
master-slave connections. A Wishbone-compliant interconnect system
may use point-to-point wiring, a bus, a crossbar, or any other intercon-
nect topology.

Wishbone mandates a minimum set of documentation for any IP core
that complies with the standard. The documentation must include ele-
ments such as signal names and widths, endianness, and constraints on
the clock signal.

functional verification
of soft IP

Because soft IP is not bound to a particular technology, design verifica-
tion concentrates on functionality. As shown in Figure 6-69, a golden
reference is prepared that calculates the proper output given an input.
This golden reference should either be included in the module’s specifi-
cation or easily derivable from the specification. By simulating the IP
module and generating the expected outputs, we can determine whether
they agree. If they do not agree, the error may be in either the IP module
or the golden reference, but hopefully the golden reference is accurate
and error-free. The IP module and/or the golden reference can be imple-
mented on an FPGA to speed up the comparison process. The input vec-
tors should be chosen to thoroughly exercise the module; given that this
process is performed only once, before the IP module is released, we
can afford to generate a large input vector set.

quality assurance The most widely used quality assurance process for IP modules is the
Quality Intellectual Property (QIP) Metric from the VSI Alliance

input
vectors

golden
reference

IP module

errors-

Figure 6-69 Functional
verification of soft IP.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 431 Return to Table of Contents

420 Chapter 6: Subsystem Design

(http://www.vsi.org). The metric is embodied in a Microsoft Excel
spreadsheet, available from the VSIA Web site, that allows IP providers
to assess many different aspects of their models. The result is a set of
scores that can be quickly scanned by IP users to help them understand
whether your IP module meets their needs. The next example looks at
the QIP process in more detail.

Example 6-4
The QIP Metric

The QIP Metric spreadsheet is divided into several pages, each of which
can be accessed in Microsoft Excel by a tab.

The summary page has entries for some basic information about the
vendor. It also provides the scores that are generated as information
throughout the spreadsheet is filled in. Several of these questions are
multiple choice. Under type of IP, you can select hard IP, digital soft IP,
verification IP, software IP, or mixed-mode IP; your selection will deter-
mine the questions in the rest of the spreadsheet. If you select hard IP,
additional rows will appear that ask you to specify the type of hard IP:
digital, analog or analog mixed signal (AMS), I/O and electrostatic dis-
charge (ESD), memory, or microelectrical mechanical system (MEMS).
Another line allows you to specify the names of several process technol-
ogies supported by this hard IP. Under type of assessment you can select
vendor, vendor and integration, or vendor integration and development.
You can also select whether to see summaries or by-category display of
information. Questions throughout the remainder of the spreadsheet are
categorized as to their importance: imperative, rule, guideline, or
optional.

The vendor assessment page asks a number of questions about the IP
vendor. These questions are not specific to a particular module. The
questions cover many important topics: processes, verification, quality
assurance, revision control, distribution, consistency, liabilities, support,
documentation, deliverables, and vendor confidence.

The hard IP integration page for digital modules asked about IP maturity
assessment, documentation quality, and ease of integration. Documenta-
tion quality questions cover the IP integration manual, characterization
report, test plan, test chip report, silicon interoperability, and release
notes document. Ease-of-integration questions include configurability
and parameterization, build environment, extensibility, system level
modeling, hardware interfaces, block-level verification environment,
electrostatic discharge protection, ease of integration rules, and system-
on-chip integration.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 432 Return to Table of Contents

6.12 Subsystems as IP 421

Hard IP development for digital modules covers IP ease of reuse and
design and verification quality. Ease of integration questions include
configurability and parameterization, build environment, portability,
extensibility, system-level modeling, block-level verification environ-
ment, electrostatic discharge protection, and ease of integration rules.
Design quality questions cover internal design documentation and
design detail (systems engineering, analog design, schematics, physical
design, design style, scripts, and design for test and manufacturing).
Verification quality questions include basic verification techniques, cov-
erage, configuration, simulation and regression scripts, and silicon vali-
dation.

The soft IP integration page relates to IP ease-of-reuse and design and
verification quality. Questions on ease of reuse relate to an assessment
of the maturity of the IP module, documentation, and ease of integra-
tion. The documentation questions ask for several different types of doc-
umentation: product brief, IP integration manual, detailed data sheet,
programmers’ reference manual, and release notes. Questions on ease of
integration cover configurability/parameterization, build environment,
portability, extensibility, system level modeling, application program-
ming interfaces (APIs), hardware interfaces, ease of synthesis, block-
level self-test, and SoC verification assistance. Questions on design
relate to embedded memories, reset guidelines, coding styles (including
clocking and synthesis) design-for-test and manufacturing and scripts.
Questions on verification quality include configuration, regression and
simulation, verification components, protocol checking, and process
checklist.

The soft IP development page is also divided into IP ease of reuse and
design and verification quality sections. Ease of reuse questions con-
sider configurability and parameterization, portability, extensibility,
hardware interfaces, ease of synthesis, and block-level self test. Design
and verification quality questions consider internal IP design documen-
tation, design detail, and verification quality.

The quality levels page describes in detail the scores associated with dif-
ferent levels of achievement. The definitions page gives definitions of
many terms used in the metrics.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 433 Return to Table of Contents

422 Chapter 6: Subsystem Design

6.13 References

Introduction to Algorithms by Cormen, Leiserson, and Rivest [Cor90]
includes a detailed comparison of the computational complexities of
various addition and multiplication schemes. As they point out, asymp-
totically efficient algorithms aren’t always the best choice for small n. I
am indebted to Jack Fishburn for an explanation of transistor sizing in
carry chains. Books by Shoji [Sho88] and Glasser and Dobberpuhl
[Gla85] describe circuit designs for interesting components; The MIPS-
X RISC Microprocessor [Cho89] provides a good survey of the compo-
nents used for a CMOS microprocessor. Hodges and Jackson [Hod83]
give a good introduction to RAM and ROM design; more detailed dis-
cussions can be found in Glasser and Dobberpuhl and Shoji. The static
RAM layout of Figure 6-23 was designed by Kirk Nolan of Princeton
University. Keitel-Schulz and Wehn [Kei01] discuss embedded DRAM
technologies. This description of image sensors is based upon the class
notes of Prof. Abbas El Gamal of Stanford; Nakamura’s book [Nak06]
describes the state-of-the-art in image sensors in detail. Books by
Jantsch and Tenhunen [Jan03] and De Micheli and Benini [DeM06]
describe network-on-chip design in detail.

6.14 Problems

Q6-1. Design a barrel shifter built from static gates and clocked invert-
ers. Draw a schematic for a cell and for a tiling of cells similar to the
drawings for the pass-transistor version of Figure 6-3.

Q6-2. Design a ripple-carry adder using NAND gates and inverters:

a) Draw a schematic for a full adder cell.
b) Size the transistors in a four-bit full adder using logical effort.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 434 Return to Table of Contents

6.14 Problems 423

Q6-3. Here is a one-bit carry unit using P and G:

Size the transistors in the gates using logical effort, ignoring any con-
nections to the adders.

Q6-4. Draw a logic diagram for the carry-skip logic for m=3.

Q6-5. Draw a transistor-level schematic for a four-bit Manchester carry
chain. Use it to show the critical delay path for these values of a and b
addends (assume that the carry in is 0):

a) a = 1010, b = 1011.
b) a = 0110, b = 1011.
c) a = 1111, b = 0001.

Q6-6. Draw a logic diagram for an ALU that performs these functions: a
AND b, a OR b, a XOR b, NOT a, a + b, a -b.

Q6-7. Draw a logic diagram for the adder/subtractor of a Booth multi-
plier.

Q6-8. Draw a transistor-level circuit diagram for a pseudo-nMOS row
decoder.

Q6-9. Draw a transistor-level circuit diagram for a three-input SRAM
core cell.

Q6-10. Estimate the size of a lookup table in the style of Figure 6-35
when n=2 (4 configuration bits). To make your estimate, assume that the
average transistor and associated wiring and other layout elements is 1

m2; make your estimate by counting the number of transistors in the
lookup table component. Ignore the circuitry necessary to load the con-
figuration bits.

P

G

cout’

cin’
a

b

a

b

Modern VLSI Design: IP-Based Design, Fourth Edition Page 435 Return to Table of Contents

424 Chapter 6: Subsystem Design

Q6-11. Draw a transistor-level circuit diagram for a simple FPGA inter-
connection network. The network has four inputs: north, south, east, and
west. Each of these signals can be connected to the others in any combi-
nation using configuration bits. Ignore the circuitry necessary to load
the configuration bits.

Q6-12. Write inequalities for the timing constraints of Figure 6-51 that
show how t1 and t2 are determined from ts, the flip-flop setup time, and
th, the flip-flop hold time.

Q6-13. Draw a timing diagram similar to the diagram of Figure 6-51
that shows the timing requirements on a latch-based bus receiver.
Explain the origin of each of the timing requirements.

Q6-14. Show the timing constraints that might be required between the
end of one four-cycle handshake to the beginning of the next.

Q6-15. Draw a state transition graph for a simple bus that performs read
operations but does not allow wait states—all transfers take one cycle.
The bus uses a clock signal. Define all other signals required on the bus.

Q6-16. Draw a state transition graph for the PCI read operation shown
in Example 6-2.

Q6-17. Derive the bus delay model of Equation 6-19.

Q6-18. Draw a transistor-level circuit diagram for a 2-input x 2-output
crossbar made from switches.

Q6-19. Draw a transistor-level circuit diagram for a 2-input x 2-output
crossbar made from tri-state buffers.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 436 Return to Table of Contents

7

Floorplanning

Highlights:

Floorplanning styles and methodology.

Global routing.

Clock distribution.

Power distribution.

Packaging and pads.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 437 Return to Table of Contents

426 Chapter 7: Floorplanning

A slicable floorplan (Figure 7-8).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 438 Return to Table of Contents

7.1 Introduction 427

7.1 Introduction

In the last chapter we built architectures from fairly abstract compo-
nents. This chapter looks at the chip in more detail. We will assume that
the block diagram is fixed; now we will study chip-level layout and cir-
cuit design. The size of the design problem requires us to develop differ-
ent methods than we used to design the layout for a single NAND gate.
But the basic objectives—area, delay, power—are still the same.

The next section describes methodologies for designing floorplans.
Section 7.3 concentrates on global signals, including power and clock.
Section 7.4 touches upon methodologies for floorplanning. Section 7.5
describes the characteristics of packaging and off-chip connections,
including pads.

7.2 Floorplanning Methods

This section concentrates on placement and routing at the chip level. We
start with a discussion of the basic problems in floorplanning, then
move onto routing and its effects on placement.

7.2.1 Chip-Level Physical Design
chip-level layout Floorplanning is chip-level layout design. When designing a leaf cell,

we used transistors and vias as our basic components; floorplanning
uses the adders, registers, and FSMs as the building blocks. The funda-
mental difference between floorplanning and leaf-cell design is that
floorplanning works with components that are much larger than the
wires connecting them. This great size mismatch forces us to analyze
the layout differently and to make different trade-offs during design.

floorplan styles Many chips are composed from cells of a variety of shapes and sizes, as
shown in Figure 7-1. We call the layout cells blocks during floorplan-
ning because we use them like building blocks to construct the floor-
plan. In bricks-and-mortar style layout, the cells may have radically
different sizes and shapes. The layout program must place the compo-
nents on the chip by position and orientation, leaving sufficient space
between the components for the necessary wires. Blocks may be rede-
signed to change their aspect ratio in order to improve the floorplan. As

7.2 Floorplanning Methods

Modern VLSI Design: IP-Based Design, Fourth Edition Page 439 Return to Table of Contents

428 Chapter 7: Floorplanning

we will see, the more complex traffic pattern of wiring areas makes
routing wires in a bricks-and-mortar layout much harder than in a stan-
dard cell layout. (Some people use the term standard cell for any lay-
out, including bricks-and-mortar, that is built from pre-designed
components. Since standard cell is a much abused term, be sure you
understand its meaning in the context in which it is used.)

The next example shows the floorplan for a large chip.

Example 7-1
Floorplan of the
IBM Power 2
Super Chip

The IBM Power 2 Super Chip (P2SC) is a microprocessor with over 15
million transistors (5.7 million logic, 9.3 million cache) on an

 die. The chip is fabricated in a , 5-level-metal
process. The chip comes in 120 and 135 MHz versions.

standard cell

RAM

datapath

Figure 7-1 A typical layout,
built from a variety of
styles.

18.2 18.4mm2 0.27 m

Modern VLSI Design: IP-Based Design, Fourth Edition Page 440 Return to Table of Contents

7.2 Floorplanning Methods 429

The chip photomicrograph has been overlaid below with the floorplan
showing the major functional units:

This chip is large enough that each of the units in the chip-level floor-
plan has its own internal floorplan. The DCU units contain memory
arrays as well as driver and control logic. The ICU unit contains several
data paths along with the necessary control logic.

Photo courtesy of IBM.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 441 Return to Table of Contents

430 Chapter 7: Floorplanning

phases of floorplanning Floorplanning is divided into three phases: block placement, global
routing, and detailed routing. These three phases successively refine the
design until the layout is complete. Block placement, as the name
implies, places the blocks on the chip.

Floorplanning occurs throughout the design process:

• Early in the design process, a floorplan is designed using estimates
of the sizes of the blocks and of the number of wires between those
blocks. The area required for wiring is estimated during floorplan-
ning. This initial floorplan serves as a budget for the design—if the
sizes of components or of wires actually implemented are signifi-
cantly different from those in the initial floorplan, the floorplan
needs to be rethought. Having a budget for blocks and wires encour-
ages the designers of those sections to live within their allocated
areas.

• The design of the initial floorplan defines the interface requirements
for the blocks. Once those blocks are designed, the chip layout can
be assembled from the blocks. Blocks may need to be modified due
to errors in estimating the properties of the blocks during floorplan-
ning.

global and detailed
routing

Even with layout design divided into placement and routing, the design
of the complete chip layout is a daunting task. Chip-level wiring design
is usually divided into two phases: global routing assigns wires to rout-
ing channels between the blocks; detailed routing designs the layouts
for the wiring. Placement and global routing divide the routing region
into smaller sections that can be designed independently, greatly simpli-
fying the detailed routing of those sections.

floorplanning tools Interactive floorplan editors and global placement-and-routing tools are
a big help in floorplan design. The size of the floorplan and the disparity
in scales between large blocks and individual wires make it difficult to
manage a manually-designed floorplan. Floorplanning tools may allow
you to enter blocks with pinouts, plot rat’s nests to evaluate routability,
define routing channels, and perform global routing. Global layout tools
perform detailed block placement, global routing, and detailed routing,
making sure that the results of the various switchbox and channel rout-
ing tools are assembled into a complete layout.

The routing methodologies used for digital signals are inadequate for
the strict electrical requirements of power/ground and clock nets. VDD
and VSS must be supplied to the logic gates with minimal voltage drop
and must be adequately wide to carry the required current. Clocks must

Modern VLSI Design: IP-Based Design, Fourth Edition Page 442 Return to Table of Contents

7.2 Floorplanning Methods 431

be distributed throughout the chip to minimize skew. We will discuss the
design of these special wires in more detail in Section 7.3.

7.2.2 Block Placement and Channel Definition
block placement A first cut at floorplanning is to arrange the blocks to minimize wasted

space. As illustrated in Figure 7-2, a good way to manually experiment
with floorplans is to draw the blocks on graph paper, cut them out, and
arrange them on another block of graph paper. A block is characterized
by its area and its aspect ratio (the ratio of its width to its height). The
wiring between the blocks (such as a rat’s nest plot) can be used to
adjust the positions of the blocks.

Don’t forget to try different rotations and reflections of the blocks.
The more similar the blocks, the easier they are to interchange. Inter-
changeability makes wiring optimization easier. You will probably not
be able to avoid a design with a few large blocks and a few small ones,
but it may be worthwhile to combine or split some of the blocks, espe-
cially blocks built from standard cells, to equalize block sizes as much
as possible.

routing channel

Figure 7-2 A floorplan
sketch.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 443 Return to Table of Contents

432 Chapter 7: Floorplanning

Experimentation with floorplans may suggest that a change to the shape
or size of a block would make the floorplanner’s job much easier.
Changing the shape of a block or splitting a block in two may make use
of white space that cannot be removed any other way. If area is impor-
tant, floorplanning before block design starts can help guide the design
of blocks. However, blocks are not infinitely malleable. The internal
reorganization of wires and components necessary to change a block’s
aspect ratio may make it larger, particularly if the block is a tightly
designed array of tiled cells; the larger cell may not fit in the desired
hole, even with its new shape. Redesigning a block may also unaccept-
ably increase internal delays by making critical wires too long. Floor-
planning and block design should go hand-in-hand for best results, but
neither can dominate the other.

routability Too much floorplanning without consideration of routing is dangerous.
In fact, it is hard to talk about placement without global routing, because
most placement decisions are determined by the space needed for wires,
not block shape. We have already seen routing channels, which have
pins defined on two opposite sides and so can be stretched in one dimen-
sion to accommodate more wires. A switchbox is a routing area with
connections anywhere along its four sides, which means that it cannot
grow in either direction. Switchboxes are useful in connecting abutting
channels.To take wiring into account during placement, we must define
routing channels and switchboxes, then assign nets to paths through
those channels/switchboxes. (The job of designing each routing chan-
nel/switchbox is left until later.)

channel definition The first job is to define the routing channels and switchboxes. We want
to break up the space between the blocks into rectangular regions for
simplicity during detailed routing; this step is known as channel defini-

channel 1

B

A

C

ch. 2

channel 1B

A

C

ch 2 ch. 3

Figure 7-3 Alternative channel definitions.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 444 Return to Table of Contents

7.2 Floorplanning Methods 433

tion, though it defines both two-sided channels and four-sided switch-
boxes. A natural idea is to use the blocks’ edges to define the routing
channels; while that idea is useful, it doesn’t uniquely define a set of
channels for a floorplan. Figure 7-3 shows several examples of channel
definition. In each case, we use the blocks to define the ends of rectan-
gular routing regions—think of each block casting a shadow over the
space left for routing, with each shadow defining its own routing region.

Channel definition has no single solution for two different reasons.
First, by moving the lighting to change the shadows cast, we can change
the channel definition. There is no way to choose the optimum division
of the chip into routing regions, though it is probably best to use fewer,
larger channels than to break the chip into many small regions. Second,
we can change the way shadows are cast by changing the distance
between the blocks, as shown in Figure 7-4.

channel height We don’t know the space required between two blocks—the channel
height—until we know the number of wires routed through the channel;
the best solution is to base the spacing on a rough guess of the required
wiring capacity. In both cases, small changes to the problem can give us
very different configurations of routing channels and switchboxes with
which to work. However, it is very difficult to tell until detailed routing
is complete which is best. Often, any of several choices will give
roughly equivalent results.

channel graph The full geometric description of the channels and switchboxes is cum-
bersome for global routing—all we really need is the topology of the
paths between blocks. The channel graph reduces the floorplan to a
description of the routes between blocks. As shown in Figure 7-5, each
channel is represented by a node. An edge is added between two nodes
if those channels abut each other. The paths through the graph corre-
spond to global routes—paths from channel to channel. For example,

A

B C

A

B C

Figure 7-4 Channel definition changes with block spacing.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 445 Return to Table of Contents

434 Chapter 7: Floorplanning

two distinct paths from channel A to channel B are (AC, CB) and (AC,
CD, DE, EB). Which path is better depends on the locations of the pins
to be connected and the congestion of the channels. At this point, the
exact layout of the wire within each channel doesn’t matter; that is to be
determined by detailed routing.

T connections If two channels intersect at a T, we can directly connect them. However,
the channels in the channel graph cannot be routed in arbitrary order,
and that fact influences our choice of floorplan designs. Figure 7-6 illus-
trates the problem. The connections to a channel are made at its top and
bottom; we have complete control over the placement of pins along
those edges, but the track to which a wire is assigned is determined by
the routing algorithm or human designer. When two channels meet, the
top and bottom pins of one are determined, in part, by the tracks of
another. We don’t know where a wire through the two channels will
enter the vertical channel until it is assigned a track in the horizontal
channel. Therefore, we must route the horizontal channel first. Any nets
in the horizontal channel that connect to the vertical channel must be
extended to the far end of the channel. The extended net defines an end
pin of the first channel on the second channel.

windmills are hard to route Channel ordering is a problem for placement and global routing because
some channel graphs don’t have any feasible routing order. Figure 7-7
shows a windmill [Pre79]. Careful examination shows that each chan-
nel depends on the one to its left: B depends on A, C on B, D on C, and
D on A. As a result, there is no channel we can route first and guarantee
that the complete structure can be successfully routed.

A

B

D

C

E

Figure 7-5 The channel
graph.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 446 Return to Table of Contents

7.2 Floorplanning Methods 435

slicing structure ensures
routability

The best solution to windmills is to avoid them completely. If the floor-
plan is a slicing structure [Ott80], as shown in Figure 7-8, it has no
windmills. A slicing structure can be recursively sliced down to its
blocks—a slice is a straight cut through the routing region that separates
the chip into two sections. Each section forms a smaller floorplan that
can be cut again. Note that there need be only one slice through the
whole chip—successive slices can cut the pieces cut by the original
slice. (A standard cell layout has several parallel slices through the com-
plete floorplan.) Since a windmill cannot be sliced, any floorplan that is
slicable is guaranteed to have no windmills. As a result, its channels can
be routed in order such that all the pins on every channel are well-
defined at the time it is routed.

channel A

channel B

constraint

Figure 7-6 Channels must
be routed in order.

A

B

C

D

Figure 7-7 Windmill
structures introduce
irresolvable constraints on
routing order.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 447 Return to Table of Contents

436 Chapter 7: Floorplanning

7.2.3 Global Routing
routing algorithms A good algorithm for hand routing is the line-probe method introduced

by Mikami and Tabuchi [Mik68] and by Hightower [Hig69]. Line-probe
routing can work on arbitrary-shaped routing regions; for the moment,
we will restrict ourselves to the rectangular switchbox area, with each
wire segment already routed as an additional obstruction in the switch-
box. As shown in Figure 7-9, the line-probe algorithm starts at one pin
on the net and constructs a series of lines along which the other pin may
lie. The first probe line is perpendicular to the face which holds the pin
and extends to the first obstacle encountered. If the other pin can be
reached from this probe line, we are done. If not, we move to the far end
of the probe line and construct a new, perpendicular line. A probe line
stops when it hits the switchbox edge or an existing wire segment. The
search stops when a probe line runs past the other pin or when there is
nowhere left to probe. The route between the pins follows the probe
lines. This algorithm may not find the shortest route for the wire—it is
not even guaranteed to find an existing path. But it often works in prac-
tice and is very fast.

utilization as a metric We want to choose a global routing that gives the best detailed routing
for all the channels and switchboxes. However, it is difficult to estimate
the exact results of detailed routing at this stage. At this level of abstrac-
tion, a good goal is to equalize channel utilization—the number of
wires that start, end, or flow through a channel. Density gives a good
estimate of utilization without routing the channels. Your goal is to
assign wires to paths such that all channels are about equally full. A few
rules help:

Figure 7-8 A slicable
floorplan.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 448 Return to Table of Contents

7.2 Floorplanning Methods 437

• The first nets to route are those whose delays are critical. These
wires need to be as short as possible, so they should get priority for
the channels that give the shortest paths.

• Some wires may stay entirely within one channel or require a short
trip between a few channels with one obvious choice. Route these
wires early to get them out of the way.

• Don’t be afraid to rip up and reroute wires. You must route the wires
in some order. If you find that an earlier decision was bad, remove
the wires that are in the way, route the new wires, then reroute the
ripped-up wires.

It may be necessary to go through the placement-global routing cycle
several times. Some wiring problems may not be fixable by ripping up
other wires. If necessary, change the floorplan to get around serious
problems. Remember, however, that floorplans are complex—a change
that improves one wire’s route may make another important wire’s route
much worse. Repeatedly designing floorplans and global routes is also
tedious; you are much more likely to try several floorplans and converge
on a good one if you have a CAD tool that can do the detail work for
you.

7.2.4 Switchbox Routing
switchboxes vs. channels Switchbox routing is harder than channel routing because we can’t

expand the switchbox to make room for more wires. As shown in Figure

A

A

line 1

line 2

Figure 7-9 Line-probe
routing.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 449 Return to Table of Contents

438 Chapter 7: Floorplanning

7-10, a switchbox may be used to route wires between intersecting
channels. The track assignments at the ends of the channels define the
pins for the switchbox. It is often possible to define channels without
requiring switchboxes, but switchboxes may sometimes be necessary in
floorplanning.

Since a switchbox has fixed pins on all four sides, there are no obvious
preferred directions to suggest layer assignments. It is tempting to use
the same layer to route both horizontal and vertical segments of a wire,
but that can create problems, as shown in Figure 7-11. If the A and B
pins are on the same layer, routing B as shown completely blocks
A—there is no room to insert a via for the A net.

A common strategy for switchbox routing is to arbitrarily pick layers for
vertical and horizontal problems, then to treat the switchbox as a routing

switchbox

Figure 7-10 A switchbox
formed at the intersection of
two channels.

A

B
A blocked
by B

B

A

Figure 7-11 Net ordering
can be critical when routing
switchboxes.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 450 Return to Table of Contents

7.3 Global Interconnect 439

problem with fixed pins at the ends of the channel. While a channel
routing algorithm may sometimes fail due to the added constraints,
channel routing algorithms can often give reasonably good results in
such circumstances.

7.3 Global Interconnect

In this section, we concentrate on global interconnect. We first look in
more detail at the properties of the many layers of wiring available on
modern chips. We then consider power distribution and clock distribu-
tion in more detail.

7.3.1 Interconnect Properties and Wiring Plans
Not all wires are the same. We need to plan our use of wiring layers to
make the best use of our available resources.

local

global

1X

2X

substrate

6X

Figure 7-12 Wiring layers provide several domains of interconnect.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 451 Return to Table of Contents

440 Chapter 7: Floorplanning

resistance vs. size Echoing the wiring configuration that we saw in the photomicrograph of
Figure 2-15, Figure 7-12 illustrates the wide range in wire dimensions
that are available on modern chips. We saw in Section 2.5.2 that wire
resistance per unit length grows quadratically if we scale down wire
width and height. To combat this problem, manufacturing processes
make larger wires on the upper layers. A 2X layer is twice the size of the
lowest, most scaled interconnect layer.

There is good news and bad news about these non-scaled interconnects.
The good news is that the higher layers provide lower resistance and
delay. The bad news is that, since the wires are larger, we can fit fewer
wires on a layer, meaning that the interconnect on these layers isn’t as
rich as that on the lower layers.

global and local
interconnect

To make best use of these layers, we must use different layers for differ-
ent lengths of wiring. Each layer is most appropriate for a certain
domain of connections: the lowest layers are used for local interconnect,
intermediate layers are used for mid-range interconnect, and the top lay-
ers are used for global interconnect. One implication of this wire plan-
ning strategy is that we need to use a lot of vias. As we go from layer to
layer, we must allocate space for the vias required. And because vias
only go to nearby layers, we must go from layer to layer to make a con-
nection from the top layer to the bottom layer.

cost of repeater Another implication of the properties of interconnection layers is that
repeaters for the wires on higher-level layers are even more expensive
than they appear to be. The repeater is located on the substrate, so vias
must go from the layer that is being buffered all the way down to the
substrate, as well as back up the layers to return the output signal. A
driver costs not just the silicon area on the substrate but also all the
intermediate vias and wires. As we go to higher levels of interconnect,
the cost of these repeaters increases.

thermal effects As we saw in Section 3.7.1, temperature variations cause wire delay to
change. Thermal gradients on the chip cause the resistance of wires that
cross the gradient to change. This change in delay can substantially
affect a system’s timing properties, depending on the signal that is
affected. These thermal effects need to be taken into account during all
phases of wiring design.

7.3.2 Power Distribution
power distribution
problems

Power distribution presents several significant problems. First, we must
design a global power distribution network that runs both VDD and VSS
entirely in metal. Second, we must size wires properly so that they can

Modern VLSI Design: IP-Based Design, Fourth Edition Page 452 Return to Table of Contents

7.3 Global Interconnect 441

handle the required currents. Third, we must ensure that the transient
behavior of the power distribution network does not cause problems for
the logic to which it supplies current. While keeping all these problems
in mind, we must tackle two types of power supply loss:

• IR drops from steady state currents;

• drops from transient current.

power network planarity Design of a planar power network requires attention to cell design even
before routing begins. If we orient all the cells so that their VDD pins are
all on the same side of a dividing line through the cell, we are guaran-
teed that a planar routing exists [Sye82]. Conversely, if we don’t satisfy
the pin placement condition, we are guaranteed that a planar routing
does not exist. We can ensure consistent power/ground pin placement
either by reordering power/ground pins or by internally routing VDD
and VSS connections—if each cell has only one VDD and one VSS pin,
the condition is guaranteed to be satisfied. An example of an
ill-conceived floorplan is shown in Figure 7-13: one of A’s VSS pins
becomes surrounded by the VDD net.

metal migration
and wire sizing

We encountered the metal migration limit in Section 2.4—if too much
current is carried through a wire, the wire quickly disintegrates. Power
lines are usually routed as trees, with the power supply at the root and
the logic gates connected to the twigs. As seen in Figure 7-14, each

Ldi
dt

A

B

C

isolated

VSSVDD

VDD

VDD

VDD

VDDVSS VSS

VSS

VSS

Figure 7-13 A floorplan
that isolates a ground pin.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 453 Return to Table of Contents

442 Chapter 7: Floorplanning

branch must be wide enough to carry the currents in all of its branches.
If your logic gates use only a few standard transistor sizes, computing
power line width is easy: compute the power consumed by the gates on
each twig, then move up the tree, adding together the power require-
ments of branches at one level to get the required sizes for the branches
at the next level.

When designing large chips, using simple rules to choose power supply
widths may not be sufficient. Metal migration is not the only problem in
power supply distribution. Large currents that do not cause metal migra-
tion may still cause power supply noise due to impedance-induced
drops in the power supply network. Circuit simulations of the power
supply network, using high-level models for major components that
model their current requirements over time, can be used to analyze the
power network.

power supply transients The logic across the chip draws varying amounts of current over the
power supply wiring. These currents vary over both short time scales
(charging and discharging loads) and longer time intervals (power man-
agement shutdowns). If the electrical characteristics of the power supply
network are not carefully designed, then transients in the power can
cause errors in the operation of the logic.

The next example illustrates potential problems in the design of large
power supply networks.

VDD

VSS

Figure 7-14
Interdigitated power and
ground trees.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 454 Return to Table of Contents

7.3 Global Interconnect 443

Example 7-2
Power
distribution in the
BELLMAC-32A

The BELLMAC-32A [Sho82] was an early 32-bit single-chip micropro-
cessor. Here is the basic layout of the power bus:

The layout was designed with power pads at both ends, which reduced
power bus noise by a factor of four, since both impedance and switching
current were cut in half.

The designers conducted circuit simulations to determine the
impedance-induced noise on the power bus. An early design resulted in
a 2 V swing on the power lines. The large voltage spike was due to the
precharging of PLAs, which occurred on the same clock phase as the
precharging of a large decoder. Adding pads was insufficient to reduce
the power bus noise to an acceptable level. The problem was solved by
changing the timing of the PLA precharge phase—precharging was
moved to a phase different than that used to precharge the decoder.

This example shows how major events with many correlated transistor
actions, such as precharging, can be responsible for power noise. Initial-
ization also causes problems in modern microprocessors. Most large
microprocessors no longer use single-cycle resets. They instead reset
the machine over several cycles to avoid large amounts of activity that
can cause current spikes. This naturally complicates the sequential
design of the machine.

PLA

VDD

VSS

Modern VLSI Design: IP-Based Design, Fourth Edition Page 455 Return to Table of Contents

444 Chapter 7: Floorplanning

power distribution grids In a large chip, power is distributed using several metal layers. The
upper layers are larger in both width and height. The layers closer to the
silicon are smaller in both dimensions. Global power distribution hap-
pens on the upper layers; connections on the lower layers move power
down to the circuits. In a typical power distribution grid, each layer is
interdigitated, with alternating VDD and VSS lines. Power lines on alter-
nate layers are orthogonal to each other to minimize coupling between
the layers.

decoupling capacitors Decoupling capacitors (decaps)—capacitors across the power supply
pins—are traditionally used in printed-circuit board design to reduce
power supply noise. In large chips, particularly those with inductive
wiring, decoupling capacitors may be used on-chip as well. Figure 7-15
shows a simple model for a decoupling capacitor. The decoupling
capacitor sits between the load circuit that requires current and the
power supply. The power supply network includes its own parasitic

V

+

-

load
decap power

supply

power supply network

decoupling circuit

decap
current

time

Imax

decoupling capacitance current

Figure 7-15 Decoupling
capacitor behavior.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 456 Return to Table of Contents

7.3 Global Interconnect 445

capacitance and inductance—if the power supply wiring were ideal, we
would not need decaps. When the logic is changing state, it draws
increased current that draws down the decoupling capacitor. The decap
is then recharged through the power supply network. The decap and
power supply network must be designed so that the voltage droop across
the decap—which is the effective power supply for the logic connected
to it—is within some specified tolerance.

One DEC Alpha microprocessor [Gie97] uses 250 nF of on-chip capaci-
tance to decouple the power supply. This microprocessor also illustrates
a more radical approach to power supply decoupling: a separate chip is
bonded directly on top of the microprocessor to add 1 f of decoupling
capacitance. The chip capacitor uses a 2 cm2 pMOS device to imple-
ment the large capacitance. The decoupling capacitor is connected to the
microprocessor with approximately 160 wirebond pairs. An alternative
solution to power supply noise is to modify the sequential design of the
machine.

Popovich et al. [Pop06] determined the effective radius of a decoupling
capacitor, which is determined by the load produced by the logic circuits
and the rate at which the decoupling capacitor can be recharged. They
showed that the effective radius of a decoupling capacitor in a modern
fabrication process is several hundreds of microns.

7.3.3 Clock Distribution
clock distribution
challenges

The problems caused by clock skew were discussed in Section 5.6. The
main job of clock routing design is to control clock skew from the clock
pad to all the memory elements. The major obstacle to clock distribution
is capacitance, with resistance playing a secondary but important role.

Gate capacitance cannot be avoided on a clock line even on modest-size
chips. The clock signal is by far the largest capacitive load on a large
chip. Clock distribution is made more challenging by the fact that the
large capacitive load must be driven to produce a very sharp transition.
The slope of the gate signal affects switching speed. A slow-rising clock
edge will cause serious performance problems.

Clocking is a floorplanning problem because clock delay varies with
position on the chip. As a result, clock delay must be taken into account
both in the placement of logic blocks and in the design of the clocking
network. Figure 7-16 shows a typical map of clock delay vs. position,
where height on the surface above the chip gives the clock delay at that
point. Memory elements that are logically related should be connected
to the clock signal tapped at roughly the same position, implying that

Modern VLSI Design: IP-Based Design, Fourth Edition Page 457 Return to Table of Contents

446 Chapter 7: Floorplanning

those memory elements and the combinational logic between them
should all be placed close together in the layout. The designers of the
Alpha processor built such a delay map of the clock signal to determine
when the clock arrived at latches throughout the chip [Dob92].

controlling clock skew There are two complementary ways to improve clock distribution:

• Physical design. The layout can be designed to make clock delays
more even, or at least more predictable.

• Circuit design. The circuits driving the clock distribution network
can be designed to minimize delays using several stages of drivers.

In general, both techniques must be used to distribute a clock signal
with adequate characteristics.

H trees Let us first consider the physical design of clock distribution networks.
The two most common styles of physical clocking networks are the H
tree and the balanced tree. The H tree is a very regular structure which
allows predictable delay. The balanced tree takes the opposite approach
of synthesizing a layout based on the characteristics of the circuit to be
clocked.

An H tree is shown in Figure 7-17. It is a recursive construction of
Hs—given one level of H structure, four smaller H structures can be
added at the four endpoints of the H bars. The H tree structure can be
recursively refined to any level of required detail. The widths of the

φ

delay = 0

delay = max

Figure 7-16 Clock delay vs.
position.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 458 Return to Table of Contents

7.3 Global Interconnect 447

wires in the H tree can be adjusted to account for variations in load
capacitance to equalize skew throughout the H tree. Buffers can also be
added into the H tree network to increase drive capability. An H tree
network can be thought of as a top-down clock distribution methodol-
ogy since the floorplan of the H tree determines the floorplan of the
logic to which it is connected. Since skew increases with physical dis-
tance in the H tree, memory elements must be grouped together to make
use of the same or nearby distribution points in the H tree network.

balanced tree networks A balanced tree clock network, illustrated in Figure 7-18, is generated
by placement and routing. Memory elements are clustered into groups.
The clustering is used to guide placement and a clocking tree is then
synthesized based on the skew information generated during clustering.
The tree is irregular in shape but has been balanced during design to
minimize skew. Once again, wire widths can be varied in the tree and
buffers can be added. Several tools exist for generating balanced clock
trees.

driver circuits Two strategies can be used to distribute the clock: using a driver chain,
as shown in Section 3.3.8, to drive the entire load from a single point; or

φ

Figure 7-17
An H tree.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 459 Return to Table of Contents

448 Chapter 7: Floorplanning

distributing drivers through the clock wiring, forming a hierarchical
clock distribution system [Fri86]. If a hierarchical system like the one in
Figure 7-19 is used, the resistance and capacitance of the clock wiring
needs to be analyzed to determine the points at which buffers should be

Figure 7-18 A balanced
clock tree.

Figure 7-19 A clock distribution tree.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 460 Return to Table of Contents

7.3 Global Interconnect 449

inserted. Of course, since the drivers will probably be inverting, care
must be taken to use an even number of driver stages to avoid delivering
an inverted clock signal to the memory elements.

The next example describes the design of a clocking network which
uses a regular physical design with a sophisticated clock driving net-
work.

Example 7-3
Clock
distribution in the
DEC Alpha 21164

The DEC Alpha 21164 [Bow95] contains 16.5 million transistors on a
 die. Here is the basic floorplan of the clock distribu-

tion system:

The clock generator drives the first stage of clock driver, located on the
center of the chip and known as the pre-clock driver. This network con-
sists of a six-level inverter tree and generates 24 outputs on the
PRE_CLK signal shown in the figure. That signal is fed to two final

16.5mm 18.1mm

clock generator

pre_clk

pr
e-

cl
oc

k
dr

iv
er

s

cl
oc

k
dr

iv
er

s

cl
oc

k
dr

iv
er

s

co
nd

iti
on

al
 c

lo
ck

...

...

...

...

co
nd

iti
on

al
 c

lo
ck

Modern VLSI Design: IP-Based Design, Fourth Edition Page 461 Return to Table of Contents

450 Chapter 7: Floorplanning

clock driver systems, one on each side of the chip. Each final clock
driver contains 44 drivers with four levels of inverters on each output.
The last clock driver inverter level has a total gate width of 58 cm. The
system also includes a set of 12 conditional clock drivers on each side.
The final clock drivers are connected to a regular clock grid, shown in
the figure as dotted lines. The clock grid is laid out in metal 3 and
metal 4.

The clock interconnect and gate load present a total capacitive load of
3.75 pF. The clocking network provides the clock to instruction and
execution units within 65 ps of skew.

7.4 Floorplan Design

In this section, we will discuss some general concepts in floorplanning.

7.4.1 Floorplanning Tips
Floorplanning a moderate-size chip is necessary but not overwhelming.
A few simple rules of thumb help you get to an easy-to-implement,
easy-to-change design more quickly.

• Develop a wiring plan. You should think about how to use layers to
make connections as part of planning your wiring. The horizontal
metal 1/vertical metal 2 scheme used by channel routers is an exam-
ple of a wiring plan. Sketch the plan to help you think about rational,
regular schemes for assigning layers to wires. Using different layers
for different directions or for different types of nets helps reduce
alternatives to a manageable number and make choices clearer.
Hand-crafted blocks, such as data paths, may have their own wiring
plans.

• Sweep small components into larger ones. Block diagrams often
have isolated gates or slightly larger components. While these small
components help describe system operation, they create lots of prob-
lems during floorplanning: they require extra effort for power/
ground routing and they disrupt the flow of wires across the chip.
Put these small components into an existing larger block or create a
glue logic block to contain all the miscellaneous elements.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 462 Return to Table of Contents

7.4 Floorplan Design 451

• Design wiring that looks simple. If your sketch of the block dia-
gram or floorplan looks like a plate of spaghetti, it will be hard to
route. More importantly, it will be harder to change the design when
you need to make logic changes or redesign to reduce delays. Move
blocks, then move pin locations to simplify routing topology.

• Design planar wiring. A set of nets is planar if all the nets can all be
routed in the plane without crossing. While most interesting chips
don’t have planar wiring, a subset of the wires may be planar. It may
help organize your thinking to first design a floorplan on which the
most important signals have a planar routing, then add the
less-critical signals later.

• Draw separate wiring plans for power and clock signals. You
may want to include these signals in your floorplan sketch, but they
may be hard to distinguish from the maze of signals on the chip. A
separate chart of power and clock routing will help you convince
yourself that your design is good for signals, power, and clock.

• Vias as thermal pipes. A simple step that can be taken to improve
the temperature characteristics of the chip is to add dummy vias in
higher-level metal layers. These vias help conduct heat away from
the lower layers.

• Floorplan for thermal balance. A more sophisticated measure is to
modify the floorplan to reduce hot spots. If some parts of the circuit
consume more current than others, then those modules will create
hot spots. Moving hot spots farther away from each other will help
to improve heat dissipation and reduce the risk of thermal runaway.

7.4.2 Design Validation
validation during
chip assembly

Chip assembly is when your earlier efforts at design verification are
judged—if you did a good job of checking the pieces, the chip should
work relatively quickly. As with subsystems, design validation breaks
down into checking the structure and performance.

In both cases, you should check each block in the floorplan individually,
then check the complete chip after assembly. Each block should be
extracted, then simulated and checked with a timing verifier. Checking
blocks before assembling the layout can save lots of work: the size,
shape, and pinout of the block may change after a bug fix, especially if
the layout was created by a synthesis tool. But the fact that each block
works doesn’t imply that the chip will work. Besides wiring errors, the
most common chip-level bugs are interface errors, such as one block
emitting an active-low signal and the receiving block expecting an

Modern VLSI Design: IP-Based Design, Fourth Edition Page 463 Return to Table of Contents

452 Chapter 7: Floorplanning

active-high signal. Delay problems may also explode at the chip level,
either due to unanticipated long wires or very long chains of logic that
were not recognized earlier.

The amount of design-rule checking required depends on the CAD tools
used to build the chip and your willingness to catch layout errors after
fabrication. Layouts designed using editing systems that don’t provide
design-rule checking should definitely be checked by a separate sys-
tem—the probability of a person designing a large layout with no errors
is close to zero. Running a final design-rule check on the complete lay-
out is still standard practice at many companies, even though correct-
by-construction CAD tools are in common use. The cost of an error in
both money and time is large enough that a final check is prudent.

Beyond checking for layout errors, you should check the assumptions
on which your delay calculations were made. Extract parasitics, check
their values for reasonableness, then rerun timing verifications and sim-
ulations to be sure the circuits are fast enough when driving the actual
parasitics.

7.5 Off-Chip Connections

packaging A chip isn’t very useful if you can’t connect it to the outside world. You
rarely see chips themselves because they are encased in packages. A
complete discussion of packaging and its engineering problems fills
several books [Bak90, Ser89]. The packaging problem most directly rel-
evant to the designer is the pads that connect the chip’s internals to the
package and surrounding circuitry—the chip designer is responsible for
designing the pad assembly. But first, we will briefly review packages
and some of the system and electrical problems they introduce.

7.5.1 Packages
Chips are much too fragile to be given to customers in the buff. The
package serves a variety of important needs: its pins provide manage-
able solder connections; it gives the chip mechanical support; it con-
ducts heat away from the chip to the environment; ceramic packages in
particular protect the chip from chemical damage.

package structure Figure 7-20 shows a schematic of a simple package (high-density
packaging technologies often have very different designs). The chip sits

Modern VLSI Design: IP-Based Design, Fourth Edition Page 464 Return to Table of Contents

7.5 Off-Chip Connections 453

in a cavity. The circuit board connects to the pins at the edge (or some-
times the bottom) of the package. Wiring built into the package (called
traces) goes from the pins to the edge of the cavity; very fine bonding
wires that connect to the package’s leads are connected by robot
machines to the chip’s pads. The pads are metal rectangles large enough

chip

cavity

pins

pad

bonding wire
and trace

Figure 7-20 Structure of a
typical package.

Figure 7-21 An empty
package showing the
substrate contact and
bonding areas.

substrate bias contact

bonding pads

Modern VLSI Design: IP-Based Design, Fourth Edition Page 465 Return to Table of Contents

454 Chapter 7: Floorplanning

to be soldered to the leads. Figure 7-21 shows a photograph of a pack-
age before a chip has been bonded to it. The cavity is gold-plated to pro-
vide a connection to the chip’s substrate for application of a bias
voltage. Bonding pads connected to the package’s pins surround the
four sides of the cavity. In a ceramic package, the cavity is sealed by a
lid; to make a plastic package, the chip is soldered to a bare wiring
frame, then the plastic is injection-molded around the chip-frame
assembly. Ceramic packages offer better heat conductivity and environ-
mental protection.

types of packages Figure 7-22 shows several varieties of packages. These packages vary in
cost and the number of available pins; as you would expect, packages
with more pins cost more money. The dual in-line package (DIP) is the
cheapest and has the fewest number of pads, usually no more than 40.
The plastic leadless chip carrier (PLCC) has pins around its four
edges; these leads are designed to be connected to printed circuit boards
without through-board holes. PLCCs typically have in the neighborhood
of 128 pins. The pin grid array (PGA) has pins all over its bottom. The
ball grid array (BGA) uses solder balls to connect to the package
across the entire bottom of the package. The plastic quad flat pack
(PQFP), which is not shown, resembles the PLCC in some respects, but
has a different pin geometry.

pinout limitations Modern high-end packages may have as many as 3000 pins. Even so,
off-chip bandwidth is still a major problem. When you have hundreds of
millions of transistors on the chip, 3000 pins is not so many pins to use
to communicate with the logic.

Rent’s Rule The best characterization of the relationship between logic and pins was
provided by E. F. Rent of IBM in 1960. He gathered data from several
designs and plotted the number of pins versus the number of compo-
nents. He showed that the data fit a straight line on a log-log plot. This
gives the relationship known as Rent’s Rule:

, (EQ 7-1)

where Np is the number of pins and Ng is the number of logic gates. The
formula includes two constants: is Rent’s constant while Kp is a pro-
portionality constant. These parameters must be determined empirically
by measuring sample designs. The parameters vary somewhat depend-
ing on the type of system being designed. For example, Rent measured
the parameters on early IBM mainframes as and ; oth-
ers have measured the parameters for modern microprocessors as

 and .

Np KpNg=

0.6= Kp 2.5=

0.45= Kp 0.82=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 466 Return to Table of Contents

7.5 Off-Chip Connections 455

electrical properties of
packages

Packages also introduce electrical problems, notably due to inductance
of the pins. Inductive power supply noise has been a problem at the
package level for much longer than it has been at the chip level.

Figure 7-22 Common package types.

PLCC

PGA DIP

BGA (courtesy IBM)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 467 Return to Table of Contents

456 Chapter 7: Floorplanning

Example 7-4
Power line
inductance

Inductance causes the most problems on the power line because the
largest current swings occur on that pin. (Inductance can also cause
problem for signals in very high-frequency parts.) Package inductance
caused headaches for early VLSI designers, who didn’t expect the pack-
age to introduce such serious problems. However, these problems can be
easily fixed once they are identified.

The system’s complete power circuit looks like this:

An off-chip power supply is connected to the chip. The inductance of
the package and the printed circuit board trace is in series with the chip.
(The chip also contributes capacitance to ground on the VDD and VSS
lines which we are ignoring here.) The voltage across the inductance is

.

In steady state there is no voltage drop across the inductance. But, if the
current supplied by the power supply changes suddenly, vL momentarily
increases, and since the inductance and chip are in series, the power sup-
ply voltage seen at the chip decreases by the same amount. How much
will the voltage supplied to the chip drop? Assume that the power sup-
ply current changes by 1 A in 1 ns, a large but not impossible value. A
typical value for the package and printed circuit board total inductance
is 0.5 nH [Ser89]. That gives a peak voltage drop of

, which may easily be large enough
to cause dynamic circuits to malfunction. We can avoid this problem by
introducing multiple power and ground pins. Running current through
several pins in parallel reduces di/dt in each pin, reducing the total volt-
age drop. A typical package today has half of its pins used for power
distribution.

chip5V

L

+

-

vL L td

diL=

vL 0.5 -910 H 1A 1 -910 s 0.5V= =

Modern VLSI Design: IP-Based Design, Fourth Edition Page 468 Return to Table of Contents

7.5 Off-Chip Connections 457

7.5.2 The I/O Architecture
Pads and their associated drivers are distributed around the edge of the
chip. (Advanced, high-density packaging schemes devote a layer of
metal to pads and distribute them across the entire chip face.) Each pad
must be large enough to have a wire (or a solder bump) soldered to it; it
must also include input or output circuitry, as appropriate.

pad frames A typical pad frame is shown in Figure 7-23. Each pad is built to a
standard width and height, for simplicity. Each pad has large VDD and
VSS lines running through it. A pad includes a large piece of metal to
which the external wire is soldered. If the pad requires external circuitry,
it is usually put on the side of the pad closest to the chip core. The chip
core fits in the middle of the pad ring. If the pad ring is not completely
filled with pads, spacers are added to keep the power lines connected.
The placement of pads around the ring is usually determined by the
required order of pins on the package—the wires to the package cannot
be crossed without danger of shorting, so if the package pins are
required in a certain order, the pads must be arranged in that order. The
order of pins on the package determines routability of the board and
electrical noise among other things; the order of pins on a package has
been known to determine which candidate design wins a design contest.

VDD and VSS pads are the easiest pads to design because they require no
circuitry—each is a blob of metal connected to the appropriate ring.

core

VSS
VDD

pad

Figure 7-23 Architecture of
a pad frame.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 469 Return to Table of Contents

458 Chapter 7: Floorplanning

How much current can be supplied by one of these pads? The pad is
much larger than any single wire connected to it, so the current in each
direction is limited by the outgoing wire. If we want to use multiple
power pins to limit inductive voltage drop, we can use several VDD and
VSS pads around the ring.

7.5.3 Pad Design
pads and pad circuitry Pads used for input and output signals require different supporting cir-

cuitry. A pad used for both input and output, sometimes known by its
trade name of Tri-state pin1, combines elements of both inputs and out-
put pads.

input pads The input pad may include circuitry to shift voltage levels or otherwise
condition the signal. The main job of an input pad is to protect the chip
core from static electricity. People or equipment can easily deliver a
large static voltage to a pin when handling a chip. MOS circuits are par-
ticularly sensitive to static discharge because they use thin oxides—the
transistor photomicrograph in Chapter 2 shows how small the gate oxide
is in comparison with the submicron-length channel. The gate oxide,
which may be a few hundred Angstroms thick, can be totally destroyed
by a single static jolt, shorting the transistor’s gate to its channel.

An input pad puts protective circuitry between the pad itself and the
transistor gates in the chip core. Electrostatic discharge (ESD) can cause
two types of problems: dielectric rupture and charge injection [Vin98].
When the dielectric ruptures, chip structures can short together. The
charge injected by an ESD event can be sufficient to damage the small
on-chip devices.

ESD protection A commonly used ESD protection circuit [Gla85] uses a resistor that is
usually made of a long diffusion run between the pad and the protection
circuitry to help limit the current caused by a voltage spike. Parasitic
bipolar transistors are used as diodes to draw excess current from the
output node. The npn transistor limits the negative-going voltage swing
to 0.7 V below VSS, while the pnp transistor limits the positive-going
swing to 0.7 V above VDD. The standard masks can be used to create
both the pnp and npn transistors, but the layout must be carefully
designed to minimize the chance of latch-up.

1. Tri-state is a trademark of National Semiconductor.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 470 Return to Table of Contents

7.5 Off-Chip Connections 459

output pads Electrostatic discharge protection is not needed for an output pad
because the pad is not connected to any transistor gate. The main job of
an output pad is to drive the large capacitances seen on the output pin.
Within the chip, scaling ensures that we can use smaller and smaller
transistors, but the real world doesn’t shrink along with our chip’s chan-
nel length. The output pad’s circuitry, shown in Figure 7-24, includes a
chain of inverters to drive the large off-chip load. Figure 7-26 shows the
layout of an SCMOS output pad from MOSIS. Because the final stages
use very large transistors, creative layout techniques are used to reduce
the pad’s size. Transistors are often folded to reduce the pad’s height;
the transistors may also be wrapped around the extra space surrounding
the pad.

three-state pads Three-state pads, used for both input and output, help solve the pin
count crunch—if we don’t need to use all combinations of inputs and
outputs simultaneously, we can switch some pins between input and
output. The pad cannot, of course, be used as an input and output simul-

+

wide output
drivers

Figure 7-24 An output pad
circuit.

+

wide output
drivers

data_out

input_mode

Figure 7-25 A three-state
pad circuit.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 471 Return to Table of Contents

460 Chapter 7: Floorplanning

taneously—the chip core is responsible for switching between modes.
The pad requires electrostatic discharge protection for when the pad is
used as an input, an output driver for when it is used as an output, plus
circuitry to switch the pad between input and output modes. The circuit
of Figure 7-25 can be used for mode switching. The n-type and p-type

pad

GND

MOSIS_copy_right1988_6_10_sllu

OUT

Vdd

{w}tiny2uN_B

{w}tiny2uN

{w}tiny2uN_P

{e}tiny2uN_B

{e}tiny2uN

{e}tiny2uN_T

ENABLEIN_unbufferedINBIN

Figure 7-26 Layout of a MOSIS-supplied SCMOS output pad.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 472 Return to Table of Contents

7.6 References 461

transistors are used to drive the pad when it is used as an output—the
logic gates are arranged so that the output signal turns on exactly one of
the two transistors when input_mode is 0. To use the pad as an input,
input_mode is set to 1: the NOR gate emits a 0, turning off the pull-
down, and the NAND gate emits a 1, turning off the pullup. Since both
driver transistors are disabled, the pad can be used as an input. (The
required ESD circuitry is not shown in the schematic.)

boundary scan for pads Pads may also include circuitry to support boundary scan [Par92],
which configures the chip’s pins as an LSSD chain. Chips that support
boundary scan can be chained to form a single scan path for all the chips
on a printed circuit board. Boundary scan makes the printed circuit
board much easier to test because it makes the chips separately observ-
able and controllable. Boundary scan support requires some circuitry on
the pins corresponding to the chip’s primary inputs and outputs, along
with a small controller and a few pins dedicated to boundary scan con-
figuration.

7.6 References

Sherwani’s book [She98] and Physical Design Automation of VLSI Sys-
tems [Pre88] includes chapters on placement and routing, which cover a
variety of algorithms. Glasser and Dobberpuhl [Gla85] describe pad
buffer design and electrostatic discharge protection. Friedman’s edited
volume of collected papers on clock distribution [Fri95] provides a
valuable overview of the electrical problems of clock distribution.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 473 Return to Table of Contents

462 Chapter 7: Floorplanning

7.7 Problems

Q7-1. Divide the routing area of each of these floorplans into channels:

a)

b)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 474 Return to Table of Contents

7.7 Problems 463

c)

Q7-2. Find a global route for each signal in these floorplans. Try to
equalize channel utilization and minimize wire lengths.

a)

a

a

b

c

b

b

c

Modern VLSI Design: IP-Based Design, Fourth Edition Page 475 Return to Table of Contents

464 Chapter 7: Floorplanning

b)

c)

d

a

b

a

c

d
c

c

a
d

ab c

d

d

b

a

e

c

c

b

b
clk

clk

clk clk

clk

clk

a

d

ae

e

c

Modern VLSI Design: IP-Based Design, Fourth Edition Page 476 Return to Table of Contents

7.7 Problems 465

Q7-3. Which of these floorplans is a slicing structure? Explain.

a)

b)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 477 Return to Table of Contents

466 Chapter 7: Floorplanning

c)

Q7-4. For each of these floorplans, draw a channel graph and give a fea-
sible order for routing the channels.

a)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 478 Return to Table of Contents

7.7 Problems 467

b)

c)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 479 Return to Table of Contents

468 Chapter 7: Floorplanning

Q7-5. For each floorplan below, determine whether it can be routed with
planar power and ground nets.

a)

b)

VDD

VSS
VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD VDD

VDD

VDD

VDD

VSS

VSS VSS VSS

VSS

Modern VLSI Design: IP-Based Design, Fourth Edition Page 480 Return to Table of Contents

7.7 Problems 469

c)

Q7-6. Draw a cross section of a chip with six layers of metal, with a buf-
fer inserted along a wire on metal 4. Show generally the relationship
between wires, vias, and transistors in the cross section.

Q7-7. Draw a transistor-level schematic of an inverter, power supply,
and decoupling capacitor.

Q7-8. Using the Rent’s Rule parameters for modern microprocessors (
= 0.45, Kp = 0.82), plot pins vs. gates for a range of 100,000 gates to
500,000,000 gates.

VDD
VSS

VDD

VSS

VDD

VSS

VDD
VDD

VDD

VDD

VSS

VSS

VSS

VSS
VDD

VSS
VDD

VSS

Modern VLSI Design: IP-Based Design, Fourth Edition Page 481 Return to Table of Contents

Modern VLSI Design: IP-Based Design, Fourth Edition Page 482 Return to Table of Contents

8

Architecture Design

Highlights:

Hardware description languages (HDLs).
Register-transfer design.

Pipelining.
High-level synthesis.

Low-power architectures.
Architecture testing.

Design methodologies.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 483 Return to Table of Contents

472 Chapter 8: Architecture Design

+ *

+ -

+

a b c

d

x1

x2

x3

y

z

cycle 1

cycle 2

cycle 3

Q
D

Q
D

Q
D

Q
D

Q
D

Q
D

A scheduled and bound data flow graph (Example 8-2).

Modern VLSI Design: IP-Based Design, Fourth Edition Page 484 Return to Table of Contents

8.1 Introduction 473

8.1 Introduction

A good digital system design is more than a jumble of components. You
must design an architecture that executes the desired function and that
meets area, performance, and testability constraints. Simply executing
the specified function is the easy part—there are many candidate archi-
tectures that will execute almost any function. What makes chip design
challenging is sorting through all the possible designs to find those few
that are small and fast enough.

We will start with a review of hardware description languages (HDLs).
HDLs allow us to capture designs at a variety of levels of abstraction.
Section 8.3 concentrates on register-transfer design, which is the foun-
dation of architecture design. A register-transfer is a complete specifica-
tion of what the chip will do on every cycle. Section 8.4 looks in detail
at pipelining, a specialized but very important means of improving sys-
tem performance. Section 8.5 considers high-level synthesis. By study-
ing scheduling and binding, we can understand how to optimize a
register-transfer design to improve area, speed, and testability.
Section 8.6 looks at architecture design for low-power systems.
Section 8.7 introduces globally asynchronous, locally synchronous
(GALS) design as an architectural solution to clock distribution prob-
lems. Section 8.8 considers architecture-level testing. Section 8.9 talks
about IP components in architecture design. Section 8.10 describes
design methodologies for chip design. Section 8.11 wraps up with a
description of multiprocessor systems-on-chips.

8.2 Hardware Description Languages

This section introduces some basic concepts of hardware description
languages. We briefly introduce two widely used languages, Verilog and
VHDL. This section is not intended as a comprehensive guide to either
of these languages; that has been the sole topic of many books. How-
ever, this section touches upon some aspects of these languages that will
be useful throughout the chapter.

8.2 Hardware Description Languages

Modern VLSI Design: IP-Based Design, Fourth Edition Page 485 Return to Table of Contents

474 Chapter 8: Architecture Design

8.2.1 Modeling with Hardware Description Languages
HDLs Hardware description languages (HDLs) are the most important mod-

ern tools used to describe hardware. HDLs become increasingly impor-
tant as we move to higher levels of abstraction. While schematics can
convey some information very clearly, they are generally less dense
than textual descriptions of languages. Furthermore, a textual HDL
description is much easier for a program to generate than is a schematic
with pictorial information such as placement of components and wires.

Verilog and VHDL In this section we will introduce the use of the two most widely used
hardware description languages, Verilog [Tho02,Smi00] and VHDL
[IEE93,Bha95], in architectural and logical modeling. Since both
these languages are built on the same basic framework of event-driven
simulation, we will start with a description of the fundamental con-
cepts underlying the two languages. We will then go on to describe the
details of using VHDL and Verilog to model hardware. We don’t have
room to discuss all the details of Verilog and VHDL modeling, but this
brief introduction should be enough to get you started with these lan-
guages. We will also briefly consider the use of C as a hardware mod-
eling language.

EDIF Both Verilog and VHDL started out as simulation languages—they were
designed originally to build efficient simulations of digital systems.
Some other hardware description languages, such as EDIF, were
designed to describe the structure of nets and components used to build
a system. Simulation languages, on the other hand, are designed to be
executed. Simulation languages bear some resemblance to standard pro-
gramming languages. But because they are designed to describe the par-
allel execution of hardware components, simulation languages have
some fundamental differences from sequential programming languages.

simulation vs.
programming

There are two important differences between simulation and sequential
programming languages. First, statements are not executed in sequential
order during simulation. When we read a sequential program, such as
one written in C, we are used to thinking about the lines of code being
executed in the order in which they were written. In contrast, a simula-
tion may describe a series of logic gates all of which may change their
outputs simultaneously. If you have experience with a parallel program-
ming language, you may be used to this way of thinking. Second, most
simulation languages must support some notion of real time in order to
provide useful results. Even parallel programming languages usually do
not explicitly support real time. Time may be measured in nanoseconds
for more realistic simulation or in some more abstract unit such as gate
delays or clock cycles in faster, more abstract simulators. One important

Modern VLSI Design: IP-Based Design, Fourth Edition Page 486 Return to Table of Contents

8.2 Hardware Description Languages 475

job of the simulator is to determine how long it takes to compute a given
value. Delay information determines not only clock speed but also
proper operation: glitches caused by unbalanced delays may, for exam-
ple, cause a latch to be improperly clocked. Simulating functional
behavior in the absence of time can be relatively easy; however, the sim-
ulator must go to a great deal of effort to compute the time at which val-
ues are computed by the simulated hardware.

event-driven simulation Simulation languages serve as specialized programming languages for
the simulation engines that execute simulations. Both VHDL and Ver-
ilog are built on top of event-driven simulators.

Event-driven simulation is a very efficient algorithm for hardware simu-
lation because it takes advantage of the activity levels within the hard-
ware simulation. In a typical hardware design, not all the nets change
their values on every clock cycle: having fewer than 50% of the nets in a
system keep their value on any given clock cycle is not unusual. The
most naive simulation algorithm for a clocked digital system would scan
through all the nets in the design for every clock cycle. Event-driven
simulation, in contrast, ignores nets that it knows are not active.

events as time/value pairs An event has two parts: a value and a time. The event records the time
at which a net takes on a new value. During simulation, a net’s value
does not change unless an event records the change. Therefore, the sim-
ulator can keep track of all the activity in the system simply by record-
ing the events that occur on the nets. This is a sparse representation of
the system’s activity that both saves memory and allows the system
activity to be computed more efficiently.

Figure 8-1 illustrates the event-driven simulation of gates; the same
principle can be applied to digital logic blocks at other levels of abstrac-
tion as well. The top part of the figure shows a NAND gate with two
inputs: one input stays at 0 while the other changes from a 0 to a 1. In
this case, the NAND gate’s output does not change—it remains 1. The
simulator determines that the output’s value does not change. Although
the gate’s input had an event, the gate itself does not generate a new
event on the net connected to its output. Now consider the case shown
on the bottom part of the figure: the top input is 1 and the bottom input
changes from 0 to 1. In this case, the NAND gate’s output changes from
1 to 0. The activity at the gate’s input in this case causes an event at its
output.

simulator control
by timewheel

The event-driven simulator uses a timewheel to manage the relation-
ships between components. As shown in Figure 8-2, the timewheel is a
list of all the events that have not yet been processed, sorted in time.
When an event is generated, it is put in the appropriate point in the time-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 487 Return to Table of Contents

476 Chapter 8: Architecture Design

wheel’s list. The simulator therefore processes events in the time order
in which they occur by pulling events in order from the head of the time-
wheel’s list. Because a component with a large internal delay can gener-
ate an event far in the future from the event that caused it, operations
during simulation may occur in a very different order than is apparent
from the order of statements in the HDL code.

t

0

1

t

0

1

t

0

1

no output event generated

t

0

1

t

0

1

t

0

1

output event generated

Figure 8-1 Event-driven
simulation of a gate.

t

0

1

t

0

1

t

0

1
a

b

c
a(1) = 1

b(2) = 0

1 2

1 2

timewheel

events

Figure 8-2 The event-driven timewheel.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 488 Return to Table of Contents

8.2 Hardware Description Languages 477

As shown in Figure 8-3, an event caused by the output of one compo-
nent causes events to appear at the inputs of the components being
driven by that net. As events are put into the timewheel, they are ordered
properly to ensure causality, so that the simulator events are processed
in the order in which they occur in the hardware. In the figure, the event
at the input causes a cascade of other events as activity flows through
the system.

structural vs. behavioral
modeling

There are two ways to describe a design for simulation: structural or
behavioral modeling. A structural model for a component is built from
smaller components. The structural model specifies the external connec-
tions, the internal components, and the nets that connect them. The
behavior of the model is determined by the behavior of the components
and their connections. A behavioral model is more like a program—it
uses functions, assignments, etc. to describe how to compute the com-
ponent’s outputs from its inputs. However, the behavioral model deals
with events, not with variables as in a sequential programming lan-
guage. Simulation languages define special constructs for recognizing
events and for generating them.

Whether a component is described structurally or behaviorally, we must
define it and use it. As in a programming language, a hardware descrip-
tion language has separate constructs for the type definition of a compo-
nent and for instantiations of that component in the design of some
larger system. In C, the statement struct { int a; char b; } mydef;
defines a data structure called mydef. However, that definition does not
allocate any instances of the data structure; memory is committed for an
instance of the data structure only by declaring a variable of type

t

0

1

t

0

1

t

0

1

t

0

1
t

0

1

a

b

c

d

e

b = 1

d = 1

e = 0

t

Figure 8-3 Order of evaluation in event-driven simulation.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 489 Return to Table of Contents

478 Chapter 8: Architecture Design

mydef. Similarly, in order to use a component, we must have a defini-
tion of that component available to us. The module that uses the compo-
nent does not care whether the component is modeled behaviorally or
structurally. In fact, we often want to simulate the system with both
behavioral and structural models for key components in order to verify
the correctness of the behavioral and structural models. Modern hard-
ware description languages provide mechanisms for defining compo-
nents and for choosing a particular implementation of a component
model.

using the simulator We can use the simulator to exercise a design as well as describe it. Test-
ing a design often requires complex sequences of inputs that must be
compared to expected outputs. If you were testing a physical piece of
hardware, you would probably wire up a test setup that would supply
the necessary input vectors and capture and compare the resulting out-
put vectors. We can do the equivalent during simulation. We build com-
ponents to generate the inputs and test the outputs; we then wire them
together with the component we want to test and simulate the entire
system. This sort of simulation setup is known as a testbench.

synthesis from HDLs Both VHDL and Verilog were originally designed as simulation lan-
guages. However, one of their principal uses today is as a synthesis lan-
guage. A VHDL or Verilog model can be used to define the
functionality of a component for logic synthesis (or for higher levels of
abstraction such as behavioral synthesis). The synthesis model can also
be simulated to check whether it is correct before going ahead with syn-
thesis. However, not all simulatable models can be synthesized. Synthe-
sis tools define a synthesis subset of the language that defines the
constructs they know how to handle. The synthesis subset defines a
modeling style that can be understood by the synthesis tool and also pro-
vides reasonable results during simulation. There may in fact be several
different synthesis subsets defined by different synthesis tools, so you
should understand the synthesis subset of the tool you plan to use.

The most common mode of synthesis is register-transfer synthesis. RT
synthesis uses logic synthesis on the combinational logic blocks to opti-
mize their implementations, but the registers are placed at the locations
specified by the designer. The result is a sequential machine with opti-
mized combinational logic. The signals in the combinational section of
the model may or may not appear in the synthesized implementation,
but all the registers appear in the implementation. (Some
register-transfer synthesis tools may use state assignment algorithms to
assign encodings to symbolic-valued symbols.) Although there are sev-
eral RT synthesis tools on the market, the most commonly used RT syn-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 490 Return to Table of Contents

8.2 Hardware Description Languages 479

thesis subset is the one defined for the Synopsys Design CompilerTM,

which is accepted by that tool and several others.

One item to look out for in RT synthesis is the inferred storage ele-
ment. A combinational logic block is defined by a set of assignments to
signals. If those signals form a cycle, many synthesis tools will insert a
storage element in the loop to break the cycle. While the inferred stor-
age element can be handy if you want it to appear, it can cause confu-
sion if the combinational cycle was caused by a bug in the synthesis
model. The synthesis tool will emit a warning message when an inferred
storage element is inserted into an implementation; that warning is gen-
erally used to warn of an unintended combinational cycle in the design.

8.2.2 VHDL
VHDL is a general-purpose programming language as well as a hard-
ware description language, so it is possible to create VHDL simulation
programs ranging in abstraction from gate-level to system. VHDL has a
rich and verbose syntax that makes its models appear to be long and ver-
bose. However, VHDL models are relatively easy to understand once
you are used to the syntax. We will concentrate here on register-transfer
simulation in VHDL, using the sequencer of the traffic light controller
of Section 5.6.2 as an example. The details of running the simulator will
vary substantially depending on which VHDL simulator you use and
your local system configuration. We will concentrate here on basic tech-
niques for coding VHDL simulation models.

types in VHDL VHDL provides extensive type-definition facilities: we can create an
abstract data type and create signals of that data type, rather than
directly write the simulation model in terms of ones and zeroes.
Abstract data types and constants serve the same purposes in hardware
modeling that they do in programming: they identify design decisions in
the source code and make changing the design easier. Figure 8-4 shows
a set of type definitions for the traffic light controller. These data types

Figure 8-4 Abstract types
in VHDL. package lights is

-- this package defines constants used by the
 -- traffic light controller light encoding

subtype light is bit_vector(0 to 1);
constant red : light := B"00";

 constant green : light := B"01";
 constant yellow : light := B"10";
end lights;

Modern VLSI Design: IP-Based Design, Fourth Edition Page 491 Return to Table of Contents

480 Chapter 8: Architecture Design

are defined in a package, which is a set of definitions that can be used
by other parts of the VHDL program. Since we encode traffic light val-
ues in two bits, we define a data type called light to hold those values.
We also define the constants red, green, and yellow and their encoding;
the syntax B"00" defines a constant bit vector whose value is 00. If we
write our program in terms of these constants, we can change the light
encoding simply by changing this package. (VHDL is case-insensitive:
yellow and YELLOW describe the same element.) When we want to
use this package in another section of VHDL code, the use statement
imports the definitions in the package to that VHDL code.

entity declaration VHDL requires an entity declaration for each model; Figure 8-5 shows
the entity declaration for the traffic light controller. The entity declara-
tion defines the model’s primary inputs and outputs. We can define one
or more bodies of code to go with the entity; that allows us to, for exam-
ple, simulate once with a functional model, then swap in a gate-level
model by changing only a few declarations.

process and sensitivity list The basic unit of modeling in VHDL is the process. A process defines
the actions that are taken whenever any input to the process is activated
by an event. As shown in Figure 8-6, a process starts with the name of
the process and a sensitivity list. The sensitivity list declares all the sig-
nals to which the process is sensitive: if any of these signals changes,
the process should be evaluated to update its outputs. In this case, the
process proc1 is sensitive to a, b, and c. Assignment to a signal are

Figure 8-5 A VHDL entity
declaration. -- define the traffic light controller's pins

entity tlc_fsm is
 port(CLOCK: in BIT; -- the machine clock
 reset : in BIT; -- global reset
 cars : in BIT; -- signals cars at farm road
 short, long : in BIT; -- short and long timeouts
 highway_light : out light := green; -- light values
 farm_light : out light := red ;
 start_timer : out BIT -- signal to restart timer
);
end;

Figure 8-6 A process in a
VHDL model. combin : process(state, hg)

begin
highway_light <= green;
end process combin;

Modern VLSI Design: IP-Based Design, Fourth Edition Page 492 Return to Table of Contents

8.2 Hardware Description Languages 481

defined by the <= symbol. The first assignment is straightforward,
assigning the output x to the or of inputs a and b.

assigning to signals The second statement in the example defines a conditional assignment
to the signal y. The value assigned to y depends on the value of the con-
ditional’s test. Figure 8-7 shows the combinational logic that could be
used to implement this statement.

What if a signal is not assigned to in some case of a conditional? Con-
sider, for example, the conditional of Figure 8-7. If (b or c) = ‘1’ then y
is assigned a value; if not, then z is assigned a value. This statement
illustrates some subtle differences between the semantics of simulation
and synthesis:

• During simulation, the simulator would test the condition and exe-
cute the statements in the selected branch of the conditional. The sig-
nal referred to in the branch not taken would retain its value since no
event is generated for that signal. This case is somewhat similar to
sequential software.

• Synthesis may interpret this statement as don’t-care conditions for
both y and z: y’s value is a don’t-care if (b or c) is not ‘1’, while z is
a don’t care if (b or c) is ‘1’. However, unlike in software, both y and
z are always evaluated. Although a C program with this sort of con-
ditional would assign to either y or z but not both, the logic shown in
the figure makes it clear that both y and z are combinational logic
signals.

These differences are minor, but they do highlight the differences
between simulation and logic synthesis. A simulation run results in a
single execution of the machine; with different inputs, the simulation
would have produced different outputs. Don’t-care values could be
used in simulation, but they can cause problems for later stages of
logic that may not know what value to produce. Logic synthesis, in
contrast, results in the structure of the machine that can be run to pro-
duce desired values. Don’t-care values are very useful to logic synthe-
sis during minimization.

Figure 8-7 Conditional
assignment in VHDL. if (b or c) = ‘1’ then

y <= ‘1’;
else

y <= ’0’;

if (b or c) = ’1’ then
y <= ’1’

else
z <= a or b;

assignment to y assignment to y or z

Modern VLSI Design: IP-Based Design, Fourth Edition Page 493 Return to Table of Contents

482 Chapter 8: Architecture Design

syntactic elements Table 8-1 shows the syntax of a few typical VHDL expressions. VHDL
modelers can build complex signals with arrays of signals and bundles
of different signals. Signals also need not carry binary values. By defin-
ing a series of VHDL functions, one can create a signal definition that
works on a variety of logical systems: three-valued logic (0, 1, x); or
symbolic logic such as the states of a state machine (s1, s2, s3). VHDL
defines a basic bit type that provides two values of logic, ‘0’ and ‘1’. The
library IEEE.std_logic_1164 defines a nine-valued signal type known
as std_ulogic.

traffic light controller in
VHDL

Here is a complete, simple VHDL model of the traffic light controller:

Library IEEE;
use IEEE.std_logic_1164.all;
use work.lights.all; -- use the traffic light controller data types

-- define the traffic light controller's pins
entity tlc_fsm is
 port(CLOCK: in BIT; -- the machine clock
 reset : in BIT; -- global reset
 cars : in BIT; -- signals cars at farm road
 short, long : in BIT; -- short and long timeouts
 highway_light : out light := green; -- light values
 farm_light : out light := red ;
 start_timer : out BIT -- signal to restart timer
);
end;

-- define the traffic light controller's behavior
architecture register_transfer of tlc_fsm is

Table 8-1 Some elements of
VHDL syntax. a and b Boolean AND

a or b Boolean OR

not a Boolean NOT

a <= b signal assignment, less than or equal to

a = b equality

a = b equality

after 5 ns time

Modern VLSI Design: IP-Based Design, Fourth Edition Page 494 Return to Table of Contents

8.2 Hardware Description Languages 483

 -- internal state of the machine
 -- first define a type for symbolic control states,
 -- then define the state signals
 type ctrl_state_type is (hg,hy,fg,fy);
 signal ctrl_state, ctrl_next : ctrl_state_type := hg;

begin

-- the controller for the traffic lights
ctrl_proc_combin : process(ctrl_state, short, long, cars)
begin
if reset = '1' then
 -- reset the machine
 ctrl_next <= hg;
 else
 case ctrl_state is
 when hg =>
 -- set lights
 highway_light <= green; farm_light <= red;
 -- decide what to do next
 if (cars and long) = '1' then
 ctrl_next <= hy; start_timer <= '1';
 else -- state doesn't change
 ctrl_next <= hg; start_timer <= '0';
 end if;
 when hy =>
 -- set lights
 highway_light <= yellow; farm_light <= red;
 -- decide what to do next
 if short = '1' then
 ctrl_next <= fg; start_timer <= '1';
 else
 ctrl_next <= hy; start_timer <= '0';
 end if;
 when fg =>
 -- set lights
 highway_light <= red; farm_light <= green;
 -- decide what to do next
 if (not cars or long) = '1' then

-- sequence to yellow
 ctrl_next <= fy; start_timer <= '1';
 else
 ctrl_next <= fg; start_timer <= '0';
 end if;
 when fy =>
 -- set lights
 highway_light <= red; farm_light <= yellow;
 -- decide what to do next
 if short = '1' then
 ctrl_next <= hg; start_timer <= '1';

 else

Modern VLSI Design: IP-Based Design, Fourth Edition Page 495 Return to Table of Contents

484 Chapter 8: Architecture Design

 ctrl_next <= fy; start_timer <= '0';
 end if;
 end case; -- main state machine
end if; -- not a reset
end process ctrl_proc_combin;

-- the sync process updates the present state of the controller
sync: process(CLOCK)
begin
 wait until CLOCK'event and CLOCK = '1';
 ctrl_state <= ctrl_next;
end process sync;

end register_transfer;
The description has several parts. The first statements declare the librar-
ies needed by this model. The VHDL simulator or synthesis tool gathers
the declarations and other information it needs from these libraries. The
next statement is the entity declaration. After the entity declaration, we
can have one or more architecture statements. An architecture statement
actually describes the component being modeled for simulation or syn-
thesis. We may want to have several architecture descriptions for a com-
ponent at different levels of abstraction or to have faster simulation
models for some purpose. The architecture of this model is named
register_transfer; this name has no intrinsic meaning in VHDL and is
used only to identify the model. After the architecture declaration
proper, we can define signals, required type definitions, etc.

This model has two processes, one for the combinational behavior and
another for the sequential behavior. Each process begins with its sensi-
tivity list—the signals that should cause this process to be reevaluated
when they change. The combinational process first uses an if to check
for reset, then uses a case statement to choose the right action based on
the machine’s current state. In each case, we may examine primary
inputs that help determine the proper action in this state, then set outputs
and the next state as appropriate. There may be several combinational
processes in a register-transfer model, which would correspond to a sys-
tem partitioned into several communicating machines.

The sequential process is written in a particular style that is recognized
by synthesis and works properly during simulation. The sequential pro-
cess is activated by activity on the clock or reset lines. A reset causes the
machine’s state to be reset. A clock edge is tested for by the condition
(CLOCK’event AND CLOCK = ’1’), which checks for an event on
CLOCK and a ‘1’ value for CLOCK after the event takes place. During
simulation, this statement ensures that the machine’s state changes only
on a positive clock edge. Logic synthesis looks for this statement to

Modern VLSI Design: IP-Based Design, Fourth Edition Page 496 Return to Table of Contents

8.2 Hardware Description Languages 485

identify the sequential process, which tells the synthesis tool what sig-
nals need flip-flops to hold the machine’s state.

VHDL constructs Figure 8-8 shows several useful constructs in VHDL. The output avec is
defined as a vector using the std_logic_vector type defined by the
std_logic library. This definition defines the bits of the vector from 11
down to 0, rather than from 0 up to 11; this makes a difference if two 12-
bit vectors with opposite endianness are connected together. The con-
stant zerovec is a constant value of a vector type; constants may also be
scalars. The last construct shows an adder; the + symbol is overloaded
by the library to provide the necessary functionality.

inferred latches Logic synthesizers will generally add inferred latches to break combi-
national cycles. Such inferred latches should be carefully inspected to
be sure that they are not the result of errors in the combinational logic
description.

exercising the
simulation model

We need to execute this process on simulation vectors to be sure it is
correct. Your simulator may have a graphical user interface which lets
you enter and see waveforms on your screen. It is also possible to write
a VHDL model that exercises the simulator. The virtue of this approach
is that it captures your simulation vector set, allowing you to run the
vectors many times on the design as it evolves and save the exerciser
program as documentation of your design.

Here is a testbench for the traffic light controller:

Library IEEE;
use IEEE.std_logic_1164.all;
use work.lights.all;
use work.tlc_fsm;

entity tlc_fsm_exerciser is
-- this entity declaration is purposely empty

end;

architecture stimulus of tlc_fsm_exerciser is

avec : out std_logic_vector(11 downto 0);
vector

constant zerovec:
 std_logic_vector(0 to 7) := "00000000";

constant vector
sum <= a + b;

adder

Figure 8-8 Several useful
VHDL constructs.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 497 Return to Table of Contents

486 Chapter 8: Architecture Design

 component tlc_fsm -- tlc_fsm is the circuit under test
-- this port declaration is a copy of the declaration
-- in the tlc_fsm register_transfer model

 port(CLOCK: in BIT; -- the machine clock
 reset : in BIT; -- global reset
 cars : in BIT; -- signals cars at farm road
 short, long : in BIT; -- short and long timeouts
 highway_light : out light := green; -- light values

farm_light : out light := red ;
 start_timer : out BIT -- signal to restart timer
);
 end component;

 -- the signals which connect to the
 -- circuit under test
 signal clock, reset, cars, short, long, start_timer : BIT;
 signal highway_light, farm_light : light;

begin

 -- connect the exerciser's signals to the
 -- circuit under test
 tlc_fsm_cut : tlc_fsm port
map(clock,reset,cars,short,long,
highway_light,farm_light,start_timer);

-- the tester process generates outputs and checks inputs
tester : process
begin

-- reset the circuit under test
reset <= '1';
clock <= '0'; wait for 5 ns; clock <= '1'; wait for 5 ns; -- tick
reset <= '0';
-- check that machine is in HG state
assert(highway_light = green);
assert(farm_light = red);
-- put a car at the farm road
-- should respond after long timeout
cars <= '1';
clock <= '0'; wait for 5 ns; clock <= '1'; wait for 5 ns; -- tick
assert(highway_light = green);
assert(farm_light = red);
long <= '1';
clock <= '0'; wait for 5 ns;
assert(start_timer = '1');
clock <= '1'; wait for 5 ns; -- tick
assert(highway_light = yellow);
assert(farm_light = red);

end process tester;

end stimulus;

Modern VLSI Design: IP-Based Design, Fourth Edition Page 498 Return to Table of Contents

8.2 Hardware Description Languages 487

-- tell VHDL which tlc_fsm to use
configuration stimulate of tlc_fsm_exerciser is
 for stimulus
 for all : tlc_fsm
 use entity work.tlc_fsm(register_transfer);
 end for;
 end for;
end stimulate;

This code isn’t meant to be a thorough test of the machine, but an exam-
ple of how to write such exerciser programs. We used the assert state-
ment to test the values emitted by the sequencer: if the condition
specified in the assertion isn’t true, the simulator stops and flags the
error. This testbench assumes that the traffic light controller model was
separately compiled and available to the compiler. The testbench
includes one architecture declaration that has no inputs or outputs. It
defines an instance of the traffic light controller component to be tested,
naming the component UUT. (UUT stands for unit under test, a testing
term for the component being tested.) The port declaration in this archi-
tecture provides the local names for the signals wired to tlc_fsm. The
testbench has two processes that apply signals to tlc_fsm: one applies a
reset signal; the other applies a simple sequence of inputs. Simulators
generally let you interactively examine signals so no explicit output is
necessary. The final declaration in the testbench is the configuration
statement, which binds the instantiated component UUT to a particular
entity, namely tlc_fsm, stored in a library.

8.2.3 Verilog
Verilog is in many respects a very different language from VHDL. Ver-
ilog has much simpler syntax and was designed for efficient simulation
(although it has a synthesis subset).

simple Verilog example Figure 8-9 gives a simple Verilog structural model of an adder. The
module statement and the succeeding input and output statement
declare the adder’s inputs and outputs. The following statements
define the gates in the adder and the connections between them and
the adder’s pins. The first gate is an XOR; the #2 modifier declares
that this gate has a delay of two time units. The XOR’s name is s and
its parameters follow. In this case, all the XOR’s pins are connected
directly to other pins. The next statements define the AND and OR
gates used to compute the carry out. Each of these gates is defined to
have a delay of one time unit. The carry out requires internal wires c1,
c2, and c3 to connect the AND gates to the OR gate. These names are
not declared in the module so Verilog assumes that they are wires;

Modern VLSI Design: IP-Based Design, Fourth Edition Page 499 Return to Table of Contents

488 Chapter 8: Architecture Design

wires may also be explicitly declared using the wire statement at the
beginning of the module.

Table 8-2 summarizes some basic syntax for Verilog expressions. We
can use the ‘define compiler directive (similar to the C #define prepro-
cessor directive) to define a constant:

‘define aconst 2’b00
four-valued logic Verilog uses a four-valued logic that includes the value x for unknown

and z for high-impedance. Table 8-4 and Table 8-3 show the truth tables

// this is a comment
module adder(a,b,cin,sum,cout);

input a, b, cin;
output sum, cout;

// sum
xor #2

s(sum,a,b,cin);
// carry out
and #1

c1(x1,a,b);
c2(x2,a,cin);
c3(x3,b,cin);

or #1
c4(cout,x1,x2,x3);

endmodule

Figure 8-9 A structural
Verilog model.

Table 8-2 Some elements
of Verilog syntax. a & b Boolean AND

a | b Boolean OR

~a Boolean NOT

a = b assignment

a <= b concurrent assignment, less than or equal to

a >= b greater than or equal to

== equality

2’b00 two-bit binary constant with value 00

#1 time

Modern VLSI Design: IP-Based Design, Fourth Edition Page 500 Return to Table of Contents

8.2 Hardware Description Languages 489

for four-valued AND and OR functions. These additional logic values
help us better simulate the analog behavior of digital circuits. The high-
impedance z captures the behavior of disabled three-valued gates. The
unknown value is a conservative, pessimistic method for dealing with

module testbench;
// this testbench has no inputs or outputs
wire awire, bwire, cinwire, sumwire, coutwire;

// declare the adder and its tester
adder a(awire,bwire,cinwire,sumwire,coutwire);
adder_teser at(awire,bwire,cinwire,sumwire,coutwire);

endmodule

module adder(a,b,cin,sum,cout);
input a, b, cin;
output sum, cout;

// sum
xor #2

s(sum,a,b,cin);
// carry out
and #1

c1(x1,a,b);
c2(x2,a,cin);
c3(x3,b,cin);

or #1
c4(cout,x1,x2,x3);

endmodule

module adder_tester(a,b,cin,sum,cout);
input sum, cout;
output a, b, cin;
reg a, b, cin;

initial
begin

$monitor($time,,
 ”a=%b, b=%b, cin=%cin, sum=%d, cout=%d”,

a,b,cin,sum,cout);
// waveform to test the adder
#1 a=0; b=0; cin=0;
#1 a=1; b=0; cin=0;
#2 a=1; b=1; cin=1;
#2 a=1; b=0; cin=1;

end
endmodule

Figure 8-10 A Verilog
testbench.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 501 Return to Table of Contents

490 Chapter 8: Architecture Design

unknown values and is particularly helpful in simulating initial condi-
tions. A circuit often needs a particular set of initial conditions to
behave properly, but nodes may come up in unknown states without ini-
tialization. If we assumed that certain nodes were 0 or 1 during simula-
tion, we may optimistically assume that the circuit works when, in fact,
it fails to operate in some initial conditions. The unknown x is an
absorbing node value, as illustrated by a comparison of the four-valued
AND and OR functions. The AND function’s output is unknown if
either of the inputs is x (or z). That is because the AND’s value is 1 only
when both inputs are 1; when we do not know one of the inputs, we can-
not know whether the output is 0 or 1. The OR function, in contrast, has
an x output only when one of the inputs is 0 and the other is x; if one
input is 1, the output is known to be 1 independent of the other input’s
value.

Table 8-3 Truth table for
OR in four-valued logic. 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

0 1 x z

0 0 0 x x

1 0 1 x x

x x x x x

z x x x x

Table 8-4 Truth table for
AND in four-valued logic.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 502 Return to Table of Contents

8.2 Hardware Description Languages 491

Verilog testbench Figure 8-10 shows a testbench for the adder. The testbench includes
three modules. The first is the testbench itself. The testbench wires
together the adder and the adder tester; it has no external inputs or out-
puts since none are needed. The second module is the adder, which is
unchanged from Figure 8-9. The third module is the adder’s tester.
adder_test generates a series of inputs for the adder and prints the
results. In order to hold the adder’s inputs for easier observation of its
behavior, adder_test’s outputs are declared as registers with the reg
statement. The initial statement allows us to define the initial behavior
of the module, which in this case is to apply a stimulus to the adder and
print the results. The $monitor statement is similar to a C printf state-
ment. The succeeding statements define the changes to signals at differ-
ent times. The first #1 line occurs one time unit after simulation starts;
the second statement occurs one time unit later; the last two each occur
two time units apart. At each time point, the $monitor statement is used
to print the desired information.

traffic light controller
in Verilog

Here is a synthesizable register-transfer Verilog model for the sequencer
of the traffic light controller of Section 5.6.2 as an example.

module tlc_fsm(clock,reset,cars,short,long,
highway_light,farm_light,start_timer);

input clock, reset, cars, short, long;
output [1:0] highway_light, farm_light;
output start_timer;

reg [1:0] highway_light, farm_light;
reg start_timer;

reg [1:0] current_state, next_state;

// light encoding: 11 = green, 00 = red, 10 = yellow
‘define GREEN ’2b11
‘define RED ’2b00
‘define YELLOW ’2b10

// state encoding: 00 = hwy-green, 01 = hwy-yellow,
// 10 = farm-green, 11 = farm-yellow
‘define HG ’2b00
‘define HY ’2b01
‘define FG ’2b10
‘define FY ’2b11

// combinational portion
always @(ctrl_state or short or long or cars) begin
case (ctrl_state)

when HG: begin // state hwy-green
// set lights
highway_light = GREEN;

Modern VLSI Design: IP-Based Design, Fourth Edition Page 503 Return to Table of Contents

492 Chapter 8: Architecture Design

farm_light = RED;
// decide what to do next

 if (cars & long) then
begin ctrl_next = HY; start_timer = 1; end

 else begin ctrl_next = HG; start_timer = 0; end
 end
when HY: begin // state highway-yellow

// set lights
highway_light = YELLOW;
farm_light = RED;
// decide what to do next

 if (short) then begin ctrl_next = FG; start_timer = 1; end
 else begin ctrl_next = HY; start_timer = 0; end
end
when FG: // state farm-green

// set lights
highway_light = RED;
farm_light = green;
// decide what to do next

 if (~cars | long) then
begin ctrl_next = FY; start_timer = 1; end

 else begin ctrl_next = FG; start_timer = 0; end
end
when FY: // state farm-yellow

// set lights
highway_light = RED;
farm_light = YELLOW;
// decide what to do next

 if (short) then begin ctrl_next = HG; start_timer = 1; end
else begin ctrl_next = FY; start_timer = 0; end
end

endcase
end

// sequential portion
always @(posedge clock or negedge reset) begin

if (~reset)
ctrl_state <= 0;

else
ctrl_state <= ctrl_next;

end
endmodule

The model defines internal multi-bit signals to hold the machine’s cur-
rent and next state; those signals are registered to maintain the
machine’s state. The model has two sections, one for the combinational
logic and another to hold the machine’s state. Each section is defined as
a process using the always statement. The synthesis tool relies on this
syntactic structure to determine the various components of the synthe-
sizable model.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 504 Return to Table of Contents

8.2 Hardware Description Languages 493

Each section is guarded by an always statement that defines when each
is evaluated. The combinational portion is executed when any of the
combinational logic’s inputs (including the machine’s current state)
changes as specified by the @() expression that guards the combina-
tional portion. All the combinational inputs need to be included in the
guard statement and each output should be assigned to in every case of
the combinational block. The combinational section uses a case state-
ment to extract out the various possible states, which in this case are
given a specific binary encoding.

The sequential portion is executed on either a positive clock edge or a
downgoing reset signal. The reset condition should be specified first,
with the clock edge behavior written in the final else clause. The
sequential portion uses a new form of assignment, the <= for non-block-
ing assignment. This form of assignment ensures that all the bits of the
FSM’s state are updated concurrently. The sequential portion changes
little from synthesizable model to synthesizable model, unlike the
combinational section, which defines the machine’s unique logic.

continuous assignment Figure 8-11 shows an alternative synthesizable description of the adder.
This model uses the assign statement, also known as the continuous
assign. A continuous assign always drives values onto the net, indepen-
dent of whether the assign’s inputs have changed. The function is not
implemented with logic gate models which would generate events only
when their outputs changed.

We can use for loops in synthesizable Verilog to perform similar func-
tions over arrays of signals. Figure 8-12 shows a for loop that is used to
assign the value to each member of the array x[].

Figure 8-11 A synthesizable
Verilog description written
with continuous assigns.

module adder2(a,b,cin,sum,cout);
input a, b, cin;
output sum, cout;

// use continuous assign
assign sum = a ^ b ^ cin; ^ is xor
assign cout = (a and b) or (a and cin) or (b and cin);

endmodule;

Figure 8-12 A loop in
synthesizable Verilog. for (i=0; i<N; i=i+1)

x[i] = a [i] & b[i];

Modern VLSI Design: IP-Based Design, Fourth Edition Page 505 Return to Table of Contents

494 Chapter 8: Architecture Design

We can use the x value to specify don’t-cares for logic synthesis.
Assigning an x to a signal specifies a don’t-care condition that can be
used during logic synthesis.

inferred storage elements Logic synthesis will create inferred storage elements when an output is
not assigned to in a combinational section. Inferred storage elements
should be carefully examined to ensure that they are wanted and not the
result of a mistake in the combinational logic description.

8.2.4 C as a Hardware Description Language
Even if you can’t use your program as the source for synthesis, the
experience of writing and executing a register-transfer simulator is
invaluable.

When implementing hardware in a general-purpose programming lan-
guage, you must add some simple mechanisms to keep the simulation
going. The C program you write will be a special-purpose simulator
designed to simulate one particular piece of hardware. In contrast,
VHDL and Verilog use simulation engines that take in a separate

Figure 8-13
Register-transfer
simulators in
VHDL and C. while (TRUE) {

switch (state) {
state S0:

x = a + b;
state = S1;
break;

state S1:
if (i1)

y = a - c;
if (i1)

state = S3;
 else

state = S2;
break;

...
}

}

C
VHDL

sync: process
begin

wait until CLOCK'event
 and CLOCK='1';

state <= state_next;
x <= x_next; y <= y_next;

end process sync;

combin: process
begin

case state is
when S0 =>

x_next <= a + b;
state_next <= S1;

when S1 =>
y_next <= a - c;
if i1 = '1' state_next <= S3;
else state_next <= S2;
end if;

...
end case;

end process combin;

Modern VLSI Design: IP-Based Design, Fourth Edition Page 506 Return to Table of Contents

8.3 Register-Transfer Design 495

description of the hardware to be simulated; as a result, these simulation
engines can be used to simulate any sort of hardware model.

Figure 8-13 shows register-transfer simulator fragments in VHDL and
C. In both languages, the simulation mechanism is based on a global
variable (named state here) that holds the machine’s current state; the
states are defined by the constants S0, S1, etc. In VHDL, the machine’s
state (as well as the state of each register) is held in a pair of signals: one
for the present value and another for the next value. When the CLOCK
signal is applied to the simulation, the next-state signal is copied into the
state signal. The machine’s next-state and output logic is contained in a
separate process. A case statement tests the current state. Each when
clause may set outputs either conditionally or unconditionally and sets
the next state variable. C uses a similar mechanism: the switch state-
ment acts as the next-state and output logic in the FSM—given a present
state, it selects a case. However, the C program must provide its own
clock by repeatedly executing the register-transfer code within a while
loop: one execution of the while corresponds to one clock cycle. Regis-
ters are held in global variables in this scheme.

C is widely used in chip design for initial design capture. Some synthe-
sis tools use a subset of C as a hardware description language. Other
tools use a more general form of C for simulation. The fact that C does
not capture the parallel nature of hardware description can be an advan-
tage when creating an initial functional description of a chip. C becomes
more important as levels of integration increase and chips implement
more complex functions. The SystemC language has been created as an
industry standard for system-level modeling. SystemC provides some
mechanisms for the simulation of parallel processes, but it has a much
simpler simulation engine than do VHDL or Verilog. The SpecC lan-
guage is another industrial system-level modeling language. SpecC has
more complex simulation semantics than does SystemC but is also
aimed at the system-level design problem.

8.3 Register-Transfer Design

register-transfer and
sequential logic

A register-transfer system is a pure sequential machine. It is specified as
a set of memory elements and combinational logic functions between
those elements, as shown in Figure 8-14. We don’t know the structure of
the logic inside the combinational functions—if we specify an adder, we
don’t know how the logic to compute the addition is implemented. As a

Modern VLSI Design: IP-Based Design, Fourth Edition Page 507 Return to Table of Contents

496 Chapter 8: Architecture Design

result, we don’t know how large or how fast the system will be. To make
the sequential part more abstract, we can specify the logic over sym-
bolic, rather than binary values—for example, specifying the output of a
function to range over { }. The registers are generic flip-
flops—we don’t worry about clocking disciplines at this stage of design.
Once the register-transfer has been completed, it can be mapped into a
sequential system with a clocking discipline appropriate to the memory
elements used.

QD QD

DQ combinational
logic

combinational
logic

combinational
logic

input

output

Figure 8-14 A register-transfer system.

frob 1 frob 2x

ctrl

a

b

z
5 5

Figure 8-15 A typical block diagram.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 508 Return to Table of Contents

8.3 Register-Transfer Design 497

block diagrams The most common register-transfer description is the block diagram. A
typical block diagram is shown in Figure 8-15. A block diagram is a
purely structural description—it shows the connections between boxes.
(The slash and 5 identify each of those wires as a bundle of five wires,
such as the five bits in a data word.) If we know the boxes’ functions,
we can figure out the function of the complete system. However, many
designers who sketch block diagrams are cavalier about defining their
primitive elements and drawing all the wires. Wires may go into boxes
with unclear functions, leaving the reader (for example, the person who
must implement those blocks or the person who must figure out why the
system doesn’t work) at a loss. The block diagram also may not show all
connections or may leave out some small bits of logic. While such omis-
sions may make the major elements of the system easier to identify in
the figure, it renders the diagram problematic as a specification of the
design.

Register-transfer designs are often described in terms of familiar com-
ponents: multiplexers, ALUs, etc. Standard components can help you
organize your specification and they also give good implementation
hints. But don’t spend too much time doing logic design when sketching
your block diagram. The purpose of register-transfer design is to cor-
rectly specify sequential behavior.

register-transfers We can also describe register transfers using a simple language. For
example, the statement

Z = A + B;

means that register Z is assigned the value A + B. This happens on every
clock cycle. We can also make conditional assignments:

cond: Z = A + B;

means that Z is assigned the value A+B only when the Boolean condi-
tion is true. (If we want to assign a different value to Z under different
conditions, we can use a separate conditional register transfer.)

8.3.1 Data Path-Controller Architectures
data paths and controllers One very common style of register-transfer machine is the data path-

controller architecture. We typically break architectures into data and
control sections for convenience—the data section includes loadable
registers and regular arithmetic and logical functions, while the control
section includes random logic and state machines. Since few machines
are either all data or all control, we often find it easiest to think about the
system in this style.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 509 Return to Table of Contents

498 Chapter 8: Architecture Design

data vs. control The distinction between data and control is useful—it helps organize
our thinking about the machine’s execution. But that distinction is not
rigid; data and control are equivalent. The two VHDL statements in Fig-
ure 8-16 correspond to the same combinational logic: the if statement in
the control version corresponds to an or in the data version that deter-
mines which value is assigned to the o1 signal. We can use Boolean data
operations to compute the control flow conditions, then add those condi-
tions to any assignments to eliminate all traces of the control statement.
The process can be reversed to turn data operations into control.

Operators such as adders are easily identifiable in the architectural
description. As shown in Figure 8-17, some hardware is implicit. The if
statement defines conditions under which a register is loaded and the
source of its new value. Those conditions imply, along with control
logic to determine when the register is loaded, a multiplexer to route the
desired value to the register. We generally think of such multiplexers as
data path elements in block diagrams, but there is no explicit mux oper-
ator in the architectural description.

Figure 8-16 Data and control
are equivalent. if i1 = '0' then

o1 <= a;
else

o1 <= b;
end if;

o1 <= ((i1 = '0') and a) or ((i1 = '1') and b);

control

data

x=0

QDmux

sel
 a

 b

if x = '0' then
 reg1 <= a;
else
 reg1 <= b;
end if;

program register-transfer

Figure 8-17 Multiplexers
are hidden in architectural
models.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 510 Return to Table of Contents

8.3 Register-Transfer Design 499

Very few architectures are either all control (simple communications
protocols, for example) or all data (digital filters). Most architectures
require some control and some data. Separating the design into a con-
troller and a data path helps us think about the system’s operation. Sepa-
rating control and data is also important in many cases to producing a
good implementation—we saw in Chapter 6 that data operators have
specialized implementations and that control structures require very dif-
ferent optimization methods from those used for data. Figure 8-18
shows how we can build a complex system from a single controller for a

controller status

out

resultscontrol

mode

data registers data path

one controller, one data path

controller
status

mode

data

controller
status

data

registers data path registers data path

communicating data path-controller

Figure 8-18 The data path-controller architecture.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 511 Return to Table of Contents

500 Chapter 8: Architecture Design

single data path, or by dividing the necessary functions between com-
municating data path-controller systems.

8.3.2 ASM Chart Design
ASM charts combine
control and data

The ASM chart [Cla73] is a very useful abstraction for register-transfer
design because it helps us to avoid over-specifying the partitioning of
logic and to concentrate on correctness. An ASM chart, such as the one
in Figure 8-19, looks like a flowchart, but unlike a flowchart, it has
precisely-defined hardware semantics. An ASM chart is a specification
of a register-transfer system because it defines what happens on every
cycle of operation. It is more of a functional specification than a block
diagram—the flow of control from state to state is clearly shown. And,
unlike a block diagram, it doesn’t imply any partitioning of the func-
tions to be executed.

An ASM chart specification is particularly well-suited to data path-con-
troller architectures. The operations in the boxes, which are generally

x = a + b

i1

a = i2 b = i2 a = i2
b = i3

a = i3

x > 5

o1 = 1

00 01 10 11

T

F

Figure 8-19 An ASM chart.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 512 Return to Table of Contents

8.3 Register-Transfer Design 501

regular data operations, are executed in the data path; the ASM chart’s
boxes and edges give the state transition graph for the controller.

ASM states The most basic element of the ASM chart is the state; an example is
shown in Figure 8-20. A state is represented in the ASM as a rectangle,
with an optional name for the state given in a nearby circle. The state is
decorated with a number of operations shown inside the box. All the
operations in a state are executed on the same cycle—a state in the ASM
chart corresponds to a state in the register-transfer system. (Actually, an
ASM state corresponds to a state in the system’s controller and to many
states in the complete system, since data operations such as x = a + b
can induce many states, depending on the values of a and b. The ASM
chart is a powerful notation because it simply and cleanly summarizes
the system’s state.)

You can put as many operations as you want into a state, though adding
more operations will require more hardware. The only proviso is that a
single variable can be the target of an assignment only once in a
state—this is known as the single assignment requirement. Consider
the two states of Figure 8-21. State s1 specifies a single operation. A
block diagram which implements this state would include the registers
for the three variables and a single adder. State s2 requires two addi-
tions. To implement this state, we must include two adders in the block
diagram, since both additions must be done in the same cycle.

What effect does assigning twice to the same variable in a state have? In
Figure 8-22, the variable x is assigned to twice, which requires loading
the x register twice in a single clock cycle. We obviously can’t load a
register twice per cycle in a strict sequential system.

It is, however, perfectly acceptable to assign a value to a variable in dis-
tinct states. In Figure 8-23, x is assigned to in both states s1 and s2. It is
perfectly fine to load a register in two successive cycles. Presumably,
some other part of the system or the outside world looks at x between
the two assignments. But even if this ASM chart is a poorly thought-out
specification, it is a valid register-transfer system.

x = a + b
y = c - d + e
o1 = 1

s1

Figure 8-20 An ASM state.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 513 Return to Table of Contents

502 Chapter 8: Architecture Design

x = a + b

s1

+

a

b

x

one operation

x = a + b
y = c + d

s2

+

a

b

x

+

c

d

y

two operations

Figure 8-21 How to
implement
operations in an
ASM state.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 514 Return to Table of Contents

8.3 Register-Transfer Design 503

The presence of multiple states makes it a little harder to design an effi-
cient block diagram. Let’s assume that our registers all have load signals
to allow us to set their values only when desired. All the operations
within a state require distinct hardware units, called function units, to
implement the operations such as +, since those operations must be done
simultaneously. The simplest way to implement operations in sequential
states is to assign a different function unit to each operation. That option
is extremely wasteful—the ASM of Figure 8-23 would require three
adders, even though at most two are used at one time. In practice, we
will want to share function units across states, as shown in Figure 8-24.
The minimum number of function units we need in the block diagram is
the number required in any one state. To reuse a function unit, we put
multiplexers on its inputs, as shown in the figure. The top adder can
have its second input selected to be either b or c. The second adder
doesn’t need multiplexed inputs because it is only used once.

We can now start to understand how an ASM chart can be implemented
as a data path plus controller. Figure 8-24 shows a system that imple-
ments the ASM chart fragment of Figure 8-23. The data path section
includes the registers and the logic for the regular operations specified
in the ASM states. The controller includes a controller that determines
the sequence of actions to be performed. The states of the controller
determine when we move from ASM state s1 to ASM state s2. In each
state, the controller sets control signals which tell the data path what to
do: in the first state, it sets the load signal for x and the multiplexer
select signals to send the right operands to the adder; in the second state,
it sets the load signals for x and y, along with a new set of mux select
signals. Strictly speaking, the data path can go into many states, depend-
ing on the values of its registers. But the structure of states and transi-

x = a + b
x = c + d

s1

Figure 8-22 Multiple
assignment in an ASM state.

x = a + b

s1

x = a + c
y = c + d

s2
Figure 8-23 Sequential
states in an ASM chart.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 515 Return to Table of Contents

504 Chapter 8: Architecture Design

tions in the controller component mirrors the structure of the ASM
chart.

ASM conditions An ASM chart with only unconditional transitions has limited charms.
Branches are represented as diamonds of any shape—typically the four-
sided diamond is used for two- or three-way branches, while the six-
sided diamond is used for more numerous branches. The condition for
the branch is given in the diamond, and each transition is labeled with
the values that cause that condition to be true. The branch condition may
be a direct test of a primary input, such as i1 = 0, where all the logic for
the test is in the controller; it may also be computed in the controller.
For example, to test x = y, we may subtract y from x in the data path,
test the result to check for 0, and send a single signal from the data path
to the controller giving the result of the test.

+

a

b

x

c

d

+ y

s1 s2
load x
sel=b

load x,
load y,
sel=c

load x load y sel

m
ux

Figure 8-24 How sequential
ASM states are implemented
as data path and controller.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 516 Return to Table of Contents

8.3 Register-Transfer Design 505

The condition is tested on the same cycle as the state preceding the
branch. With this definition, the ASM chart corresponds to a traditional
Moore machine. Figure 8-26 shows how the structure of a Moore
machine corresponds to the structure of a state plus branch in an ASM
chart. The Moore machine remembers its present state and accepts its
inputs; from that information, its next-state logic computes the
machine’s next state. Similarly, given an ASM state, a given value at a
branch selects an ASM transition that leads to the next ASM state.

ASM conditional outputs Specifying a Mealy machine in an ASM chart requires conditional out-
puts. As shown in Figure 8-27, conditional outputs in an ASM chart are
given in rounded boxes. A conditional output is not a state and does not
consume a clock cycle. If, in the figure, the branch leading to the condi-
tional output is taken, the y = c + d action occurs on the same cycle as
the x = a + b action. This corresponds to computing the output value of
the Mealy machine based on the FSM’s inputs, as well as its present
state. Compare the Mealy controller FSM of Figure 8-27 to the Moore
controller of Figure 8-26: the Moore controller, for example, executes y
= c + d in state s2, while the Mealy controller executes that action on
one transition out of state s1. The restrictions on conditional ASM out-
puts are the same as those on Mealy machines—if a Mealy machine or
ASM is connected to external logic which creates a combinational cycle
between its conditional outputs and its inputs, the resulting logic is not a
legal sequential system.

x

a = b

00 01 10

T

10

F

multi-way branch

two-way branch

Figure 8-25 Symbols for
branches in an ASM chart.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 517 Return to Table of Contents

506 Chapter 8: Architecture Design

ASMs and
register-transfer

Since a Mealy machine is a general sequential machine, ASM chart
notation lets us specify arbitrary register-transfer systems. The ASM
chart is particularly powerful when the system performs a mixture of
control and data operations. For a system that is mostly control, like the
01-string recognizer of Example 5-4, an ASM chart is no easier to use
than a state transition graph. If we specify a data-rich system, such as a
CPU, with a state transition graph, we must simultaneously design the
data path upon which those operations will be executed. The ASM chart
lets us write down the operations without worrying about whether a par-
ticular operation goes into the data path or controller, or the exact struc-
ture of the data path. Once we have made sure the ASM chart is correct,
we can refine the design to specify the data path structure and control
signals. Think of pulling the operations out of the ASM states to pro-
duce the data path, as shown in Figure 8-28. The data path operations
drag behind them the control signals required to select the appropriate
actions at each cycle; the signals that cross the data path-controller

i1x = a + b
0

1

y = c + d

y = c - d

s1 s2

s3

s1 s2

x = a + b

s3

y = c + d

y = c - d

i1=0

i1=1

ASM chart

state transition graph

Figure 8-26 Implementing
an ASM branch in a Moore
machine.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 518 Return to Table of Contents

8.3 Register-Transfer Design 507

boundary, along with the system inputs and outputs, form the control-
ler’s inputs and outputs. The skeleton of the ASM chart left when the
data path operations are extracted gives the structure of the controller’s
state transition graph.

i1x = a + b
0 y = c + d

s1

1

z = x - y

z = 0

s2

s3

y = c - d

ASM chart

s1 s2

s3

z = x - y

z = 0

i1=0 /
x = a + b, y = c + d

i1=1 /
x = a + b, y = c - d

state transition graph

Figure 8-27 A
conditional output in
an ASM chart.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 519 Return to Table of Contents

508 Chapter 8: Architecture Design

x = a + b

a = i2 b = i2 a = i2
b = i3

a = i3

o1 = 1x > 5

control signals
to data path,
result signals
to controller

Figure 8-28
Extracting a data
path and
controller from an
ASM chart.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 520 Return to Table of Contents

8.4 Pipelining 509

8.4 Pipelining

Pipelining is a well-known method for improving the performance of
digital systems. Pipelining exploits concurrency in combinational logic
in order to improve system throughput. Pipelining changes the sequen-
tial behavior of the system—it changes the number of cycles required to
perform the operation. Pipelined and non-pipelined versions of a func-
tion have different ASM charts and different register-transfers. This
change in sequential behavior requires us to ensure that other parts of
the system look for the outputs of the pipelined unit at the right times.
But pipelining can offer substantial performance advantages, given the
proper definition of performance.

adding registers to
increase throughput

Figure 8-29 illustrates the fundamentals of pipelining. We start with a
block of combinational logic that computes some function f(a). That
logic has some intrinsic delay. If we introduce a rank of registers into
the logic properly, we can split it into two separate blocks of combina-
tional logic. (We must be sure that the registers cut all the paths between
the two logic blocks.) Each resulting block has a smaller delay; if we
have done a good job, each block has about half the delay of the original
block. Because each block has its own registers, we can operate the two

combinational
logic

a QD f(a),
one
cycle
later

before

QDcombinational
logic

a QD
combinational

logic
f(a),
two
cycles
later

after

Figure 8-29 Adding pipelining.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 521 Return to Table of Contents

510 Chapter 8: Architecture Design

blocks independently, working on two values at the same time. The left-
hand block would start computing f(a) for a new input while the right-
hand block would complete the function for the value started at the last
cycle. Furthermore, we have reduced the cycle time of the machine
because we have cut the maximum delay through the combinational
logic.

throughput and latency It is important to keep in mind that pipelining does not reduce the
amount of time it takes to compute f(a). In fact, because the register in
the middle of the machine has its own setup and propagation times, the
time it takes for a value to go through the system goes up slightly with
pipelining. This time is known as latency. But we have increased the
machine’s throughput—the number of results that we can compute in a
given amount of time. Assume that the delay through a single combina-
tional logic block that computes f(a) is D. Call latency L and throughput
T. If we ignore register setup and hold times for the moment, we can
write these definitions for the unpipelined system:

, (EQ 8-1)

. (EQ 8-2)

If we pipeline the logic perfectly so that it is divided into two blocks
with equal delay, then L remains the same but T becomes . If we
perfectly pipeline the logic into n blocks, we have

, (EQ 8-3)

. (EQ 8-4)

The clock period is determined by the delay D and the number of pipe-
line stages:

(EQ 8-5)

Figure 8-30 shows how clock period and throughput change with the
number of pipeline stages. Throughput increases linearly with pipeline
depth. Clock period decreases dramatically with the first few pipeline
stages. But as we add more pipeline stages, we are subdividing a
smaller and smaller clock period and we obtain smaller gains from
pipelining. We could ultimately pipeline a machine so that there is a
register between every pair of gates, but this would add considerable
cost in registers.

L D=

T 1 D=

2 D

L D=

T n D=

P D
n
----=

Modern VLSI Design: IP-Based Design, Fourth Edition Page 522 Return to Table of Contents

8.4 Pipelining 511

adding pipeline registers If we want to pipeline a combinational system, we need to add registers
at the appropriate points. The register addition process resembles the
timing analysis we performed in Section 5.4. We can use a graph to rep-
resent the structure of the logic, with one node per logic element or gate
and an edge that represent electrical connections. In timing optimization
we must improve timing across a cutset of the timing graph. Similarly,
we must add a rank of registers across a cutset of the logic graph.
(Remember, a cutset of a graph is a set of edges that breaks all paths
between two sets of nodes. In this case, we want to add registers
between all possible paths from inputs to outputs.) Figure 8-31 shows
the logic of Figure 4-12 and two of the many possible cutsets through
the logic graph. Adding registers across any cutset is sufficient to ensure
that the logic’s functionality is not destroyed. However, the best cutsets
divide the logic into blocks of roughly equal delay. We can use retiming,
introduced in Section 5.4.4, to determine the best places to put the pipe-
lining registers. Retiming will duplicate and merge registers as neces-
sary to preserve functionality.

What happens if we do not add registers across an entire cutset? Con-
sider Figure 8-32, in which a cut through the logic is made that does not

clock period

throughput

pipeline depth

Figure 8-30 Clock period and
throughput as a function of
pipeline depth.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 523 Return to Table of Contents

512 Chapter 8: Architecture Design

i1
i2

i3

i4

o1

o2

A

B C
D

logic

i1
i2

i3

i4

o1

o2

A

B C

D

cutsets

logic graph and cutsets

Figure 8-31 Logic and cutsets for pipelining.

i1
i2

i3

i4

o1

o2

A

B C

D

QD

two cycles

one cycle

Figure 8-32 A bad cutset for pipelining.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 524 Return to Table of Contents

8.4 Pipelining 513

place registers along all the paths from inputs to outputs. There is no
register along the path from i4 to o2, but there is one register along the
i2- o2 path. As a result, when the inputs are presented to the logic, the D
gate will receive its two inputs from two different clock cycles. The
resulting output will be garbage.

A pipelined unit produces its outputs on a later clock cycle than does a
non-pipelined unit. This is fine in some cases, while other logic designs
are intolerant to the latency introduced by pipelining. We need to be
careful when we are adding pipelines to a more abstract design than the
logic gates since the abstraction may obscure some of the important
details.

In steady state, an ideal pipeline produces an output on every cycle.
However, when you start the pipe, it takes n cycles for an n-stage pipe-
line to produce a result. Similarly, when you stop putting data in the
pipe, it takes n stages for the last value to come out of the pipe. The ini-
tialization time reduces the average pipeline utilization when we have
short bursts of data. If we have D clock cycles’ worth of data in an n-
stage pipeline, then the utilization is

. (EQ 8-6)

As D approaches infinity—that is, as we move toward operating the
pipeline continuously—this utilization approaches 1. When D and n are
near equal, then the utilization goes down.

pipelines with control More complex pipelines, such as those in CPUs, have controllers that
cause the pipeline to do different things on different cycles. In the case
of the CPU, the pipeline must perform different operations for different
instructions. When designing non-ideal pipelines with control, we must
be sure that the pipeline always operates properly.

D
D n+

QD QD QD

QD

Figure 8-33 A pipeline with
a feedforward constraint.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 525 Return to Table of Contents

514 Chapter 8: Architecture Design

Some control operations are straightforward. Figure 8-33 shows a pipe-
line in which one stage computes the opcode for the ALU to be used in
the next stage. So long as we pipeline the opcode so that it arrives at the
right time, this works fine.

Figure 8-34 shows a more complex case. Here, the result of the ALU
operation causes us to change what we do in a previous stage. A good
example is a conditional jump in a CPU, where the result of one instruc-
tion causes us to change which instructions are to be executed next in
time (corresponding to earlier in the pipe). Here we must make sure that
the pipeline does not produce any erroneous results as a result of the
change in condition.

Figure 8-35 shows a still more complicated situation. In this case, a sin-
gle ALU is shared by two different stages. Small CPUs may share an
ALU or other logic in order to reduce the size of the logic. Here we must
be very careful that the two stages do not try to use the shared hardware
at the same time. The losing stage of the pipeline would probably not be
able to detect the error and would take a bad result.

QD QD QD

QD

mux

Figure 8-34 A pipeline with
a backward constraint.

QD QD QD

Figure 8-35 A pipeline with
hardware shared across
several stages.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 526 Return to Table of Contents

8.4 Pipelining 515

pipeline control How do we design controllers for pipelines? The most common form of
pipeline control is distributed control, illustrated in Figure 8-36.
Rather than design one large state machine that simultaneously controls
all the stages of the pipe, we typically design one controller for each
stage. As shown in the figure, the controllers communicate in order to
coordinate the actions across stages. Distributed control has some
advantages in both specification and implementation. It is often easier to
write the description of what a stage does than it is to write the entire
pipeline operation for a single cycle. But the main reason for distributed
control is that distributing the logic to be near the stage it controls helps
to reduce delays.

When we design a pipeline with control, we must also worry about veri-
fying that the pipeline operates correctly. Because they have a large
amount of state, pipelines can be hard to verify. Distributed control
makes some aspects of design and verification easier and some other
aspects harder. Distributed control is harder simply because we do not
have all the control information in one place. When we distribute the
control formulas, it is harder for a person to look at the control actions
and see that they always do what was intended.

When we write the control for a pipeline stage, we often use symbolic
FSM notation. The transitions in a symbolic FSM may contain not just
constants but also the names of registers in the pipeline data path. If we
look at the state of the entire machine, we would have to write states for
every different data path register value. But because we are interested in
the operations on these states, symbolic FSMs allow us to factor out the
control from the data path.

QDcombinational
logic

QD
combinational

logic

control control

Figure 8-36 A pipeline with distributed control.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 527 Return to Table of Contents

516 Chapter 8: Architecture Design

A simple case of a pipeline control machine is shown in Figure 8-37.
This machine describes the control for the ALU of the pipeline in Figure
8-33.The controller makes no decisions but needs a register to hold the
ALU opcode. On every clock cycle, the ALU opcode register may
receive a new value from the previous pipeline stage, causing the ALU
to perform a different operation, but this does not require an explicit
control decision.

Figure 8-38 shows a symbolic FSM with a condition. Here, some opera-
tion, probably from the previous stage, may cause the state machine to
issue an ALU opcode of either + or -. Because the pipeline stage is only
one cycle long, the conditions all return to the initial state.

s1

-/ALU=op
Figure 8-37 A simple
symbolic FSM for pipeline
control.

s1

0/ALU= +1/ALU= -

Figure 8-38 A condition in
pipeline control.

sa

normal/restart/flush

s1 s2

wait/

flush/

ready/normal/

flush

stage1

stage2

Figure 8-39 Distributed control for a pipeline flush.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 528 Return to Table of Contents

8.4 Pipelining 517

Figure 8-39 shows one possible description of distributed control for a
pipeline flush like that illustrated in Figure 8-34. Stage 2 receives a
restart signal from its own logic. This causes it to issue a flush command
to stage 1. Stage 1 then enters a separate state in which it waits for the
flush to end; this may be controlled by a timer or some other external
event. The stage then returns to normal operation.

Figure 8-40 shows control logic for shared hardware like that of Figure
8-35. This scheme is similar to arbitration on a bus. Arbitration logic
determines which stage gets the shared hardware (the ALU) on each
cycle. Each stage uses a request line to signal the arbiter; each stage
watches its own grant line to see when it has the shared logic. In this
setup, if each pipe stage is only one cycle long, the arbiter would have to
be combinational to ensure that the answer came within the same cycle.
The stages would have to hold request for the remainder of the cycle to
ensure that the arbiter output didn’t change.

pipeline verification Distributed control can be hard to verify because we do not have a sin-
gle description that tells us what all of the pipeline does in every stage.
However, we can form the product machine of the distributed control
stages to help us see the global results of control. Figure 8-41 shows the
product machine for the distributed pipeline flush of Figure 8-39. Form-
ing the product machine of a symbolic FSM takes some more work than

stage 1 stage 2

arbiter

grant1

request1 request2

grant2

Figure 8-40 Control for hardware sharing.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 529 Return to Table of Contents

518 Chapter 8: Architecture Design

forming the product of a pure FSM, but it is not difficult. The product
machine makes it easier to verify that:

• the control enters all the required states and performs all the required
operations in those states;

• the control does not enter any undesired states.

One technique used for pipeline verification is symbolic simulation. If
we tried to simulate the pipeline with all known data and control register
values, we would quickly find that the simulation was much too long.
Pipelines have large numbers of states that blow up simulation times.
However, by simulating the data register values symbolically, we can
collapse many of those states. A relatively small number of simulations
can then cover the various cases in the control logic.

8.5 High-Level Synthesis

behavior vs.
register-transfer

A register-transfer isn’t the most abstract, general description of your
system. The register-transfer assigns each operation to a clock cycle,
and those choices have a profound influence on the size, speed, and test-
ability of your design. If you think directly in terms of register-transfers,
without thinking first of a more abstract behavior of your system, you
will miss important opportunities. Consider this simple sequence of
operations:

x <= a + b;
y <= c + d;
if z > 0 then
 w <= e+ f;
end if;

How many clock cycles must it take to execute these operations? The
assignments to x and y and the test of z are all unrelated, so they could

s1a s2a

wait/

restart/

ready/normal/

Figure 8-41 Product
machine formed from
distributed control.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 530 Return to Table of Contents

8.5 High-Level Synthesis 519

be performed in the same clock cycle; though we must test z before we
perform the conditional assignment to w, we could design logic to per-
form both the test and the assignment on the same cycle. However, per-
forming all those operations simultaneously costs considerably more
hardware than doing them in successive clock cycles.

high-level synthesis High-level synthesis (also known as behavioral synthesis) constructs a
register-transfer from a behavior in which the times of operations are
not fully specified. The external world often imposes constraints on the
times at which our chip must execute actions—the specification may,
for example, require that an output be produced within two cycles of
receiving a given input. But the behavior model includes only necessary
constraints on the system’s temporal behavior.

scheduling and binding The primary jobs in translating a behavior specification into an architec-
ture are scheduling and binding (also called allocation). The specifica-
tion program describes a number of operations that must be performed,
but not the exact clock cycle on which each is to be done. Scheduling
assigns operations to clock cycles. Several different schedules may be
feasible, so we choose the schedule that minimizes our costs: delay and
area. The more hardware we allocate to the architecture, the more oper-
ations we can do in parallel (up to the maximum parallelism in the hard-
ware), but the more area we burn. As a result, we want to allocate our
computational resources to get maximum performance at minimal hard-
ware cost. Of course, exact costs are hard to measure because architec-
ture is a long way from the final layout: adding more hardware may
make wires between components longer, adding delay that actually
slows down the chip. However, in many cases we can make reasonable
cost estimates from the register-transfer design and check their validity
later, when we have a more complete implementation.

8.5.1 Functional Modeling Programs
functional models A program that models a chip’s desired function is given a variety of

names: functional model, behavior model, architectural simulator, to
name a few. A specification program mimics the behavior of the chip at
its pins. The internals of the specification need have nothing to do with
how the chip works, but the input/output behavior of the behavior model
should be the same as that of the chip. For the moment, we just need to
understand the relationship between program models and hardware.

Figure 8-42 shows a fragment of a simple VHDL functional model. This
code describes the values to be computed and the decisions to be made
based on inputs. What distinguishes it from a register-transfer

Modern VLSI Design: IP-Based Design, Fourth Edition Page 531 Return to Table of Contents

520 Chapter 8: Architecture Design

description is that the cycles on which these operations are to occur are
not specified. We could, for example, execute o1 <= '1' and o2 <= a +
b on the same cycle or on different cycles.

data dependencies Reading inputs and producing outputs for a functional model requires
more thought than for a register-transfer model. Since the
register-transfer’s operations are fully scheduled, we always know when
to ask for an input. The functional model’s inputs and outputs aren’t
assigned particular clock cycles yet. Since a general-purpose program-
ming language is executed sequentially, we must assign the input and
output statements a particular order of execution in the simulator.
Matching up the results of behavioral and register-transfer simulations
can be frustrating, too. The most important information given by the
functional model is the constraints on the order of execution: e.g., y = x
+ c must be executed after x = a + b. A data dependency exists
between the two statements because x is written by the first statement
and used by the second; if we use x’s value before it is written, we get
the wrong answer. Data flow constraints are critical pieces of informa-
tion for scheduling and binding.

8.5.2 Data
data flow models The most natural model for computation expressed entirely as data oper-

ations is the data flow graph. The data flow graph captures all data
dependencies in a behavior that is a basic block: only assignments, with
no control statements such as if. The following example introduces the
data flow graph by building one from a language description.

Figure 8-42 Fragment of a
VHDL functional model. o1 <= i1 or i2;

if i3 = '0' then
o1 <= '1';
o2 <= a + b;

else
o1 <= '0';

end if;

Modern VLSI Design: IP-Based Design, Fourth Edition Page 532 Return to Table of Contents

8.5 High-Level Synthesis 521

Example 8-1
Program code
into data flow
graph

The first step in using a data flow graph to analyze our basic block is to
convert it to single-assignment form:

Now construct a graph with one node for each data operator and
directed edges for the variables (each variable may have several sinks
but only one source):

The data flow graph is a directed acyclic graph (DAG), in which all
edges are directed and there is no cycle of edges that form a path from a
node back to that node. A data flow graph has primary inputs and pri-
mary outputs like those in a logic network. (We may want to save the
value of an intermediate variable for use outside the basic block while
still using it to compute another variable in the block.) We can execute
this data flow graph by placing values for the source variables on their
corresponding DAG edges. A node fires when all its incoming edges
have defined values; upon firing, a node computes the required value

x <= a + b;
y <= a * c;
z <= x + d;
x <= y - d;
x <= x + c;

x1 <= a + b;
y <= a * c;
z <= x1 + d;
x2 <= y - d;
x3 <= x2 + c;

original single-assignment

+ * +

-

+

a b c dx1

x2

x3

y z

Modern VLSI Design: IP-Based Design, Fourth Edition Page 533 Return to Table of Contents

522 Chapter 8: Architecture Design

and places it on its outgoing edge. Data flows from the top of the DAG
to its bottom during computation.

implementing data flow
models

How do we build hardware to execute a data flow graph? The sim-
plest—and far from best—method is shown in Figure 8-43. Each node
in the data flow graph of the example has been implemented by a sepa-
rate hardware unit that performs the required function; each variable
carrier has been implemented by a wire. This design works, but, as we
saw in Section 8.3.2, it wastes a lot of hardware. Our execution model
for data flow graphs tells us that not all of the hardware units will be
working at the same time—an operator fires only when all its inputs
become available, then it goes idle. This direct implementation of the
data flow graph can waste a lot of area—the deeper the data flow DAG,
the higher the percentage of idle hardware at any moment.

data vs. control cost We can save hardware for the data operators at the cost of adding hard-
ware for memory, sequencing, and multiplexing. The result is our
canonical data path-plus-controller design. The data path includes regis-
ters, function units, and multiplexers that select the inputs for those reg-
isters and function units. The controller sends control signals to the data
path on each cycle to select multiplexer inputs, set operations for multi-
function units, and to tell registers when to load. We have already seen
how to design the data path and controller for an ASM chart, which has
fixed scheduling. The next example shows how to schedule and bind a
data flow graph to construct a data path-controller machine.

a +

b

+

c

+

d

data flow graph

+a

b

+

b

+

c

+

d

register-transfer graph

Figure 8-43
An overgenerous
implementation of a data
flow graph.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 534 Return to Table of Contents

8.5 High-Level Synthesis 523

Example 8-2
From data flow to
data path-
controller

We will use the data flow graph of Example 8-1. Assume that we have
enough chip area to put one multiplier, one adder, and one subtractor in
the data path. We have been vague so far about where primary inputs
come from and where primary output values go. The simplest assump-
tion for purposes of this example is that primary inputs and outputs are
on pins and that their values are present at those pins whenever neces-
sary. In practice, we often need to temporarily store input and output
values in registers, but we can decide how to add that hardware after
completing the basic data path-controller design.

We can design a schedule of operations for the operations specified in
the data flow graph by drawing cut lines through the data flow—each
line cuts a set of edges that, when removed from the data flow graph,
completely separate the primary inputs and primary outputs. For the
schedule to be executable on our data path, no more than one multiplica-
tion and one addition or subtraction can be performed per clock cycle.

Here is one schedule that satisfies those criteria:

+ *

+-

+

a b c

d

x1

x2

x3

y

z

cycle 1

cycle 2

cycle 3

Modern VLSI Design: IP-Based Design, Fourth Edition Page 535 Return to Table of Contents

524 Chapter 8: Architecture Design

All the operations between two cut lines are performed on the same
clock cycle. The next step is to bind variables to registers. Values must
be stored in registers between clock cycles; we must add a register to
store each value whose data flow edge crosses a cut. The simplest bind-
ing is one register per cut edge:

But, as with data path operators, one-to-one binding wastes area because
not all values must be stored at the same time. In this graph, we can
overwrite x1’s register with x2’s value since both are not needed at the
same time. We can also share the three additions over one adder.

Now that we have scheduled operations, bound data operations to data
function units, and allocated values to registers, we can deduce the mul-
tiplexers required and complete the data path design. The subtractor and
multiplier each have their own unit, so their inputs won’t require multi-
plexers. The adder requires multiplexers on each of its inputs, as does
the register shared by x1 and x2. For each input to a shared function unit
or register, we enumerate all the signals that feed the corresponding

+ *

+ -

+

a b c

d

x1

x2

x3

y

z

cycle 1

cycle 2

cycle 3

Q
D

Q
D

Q
D

Q
D

Q
D

Q
D

Modern VLSI Design: IP-Based Design, Fourth Edition Page 536 Return to Table of Contents

8.5 High-Level Synthesis 525

input on the operator; all of those signals go into a multiplexer for that
input. For example, the left-hand inputs to the adder are a and the output
of the x1/x2 register. Imagine laying all the addition operators in the reg-
istered data flow graph on top of each other, with the input lines for the
addition stretched to follow the operator. All the input lines that flow to
the same point at the stacked-up additions require a multiplexer to make
sure that exactly one value gets to that input at any given time.

The final data path looks like this:

Note that when an input is used on two different cycles, we must add
registers to save the value until the last cycle on which it is needed.

Now that we have the data path, we can build a controller that repeaedly
executes the basic block. The state transition graph has a single cycle,
with each transition executing one cycle’s operation. The controller
requires no inputs, since it makes no data-dependent branches. Its out-
puts provide the proper control values to the data path’s multiplexers
and function units at each step.

a

b d

z, x1, x3

Q
D mult1

add1 sub1

sel

sel

Q
D

Q
D

Q
D

a

Q
D

c
x1

y

mux2 mux3

selmux1

x2

x2

R1

R2

R3 R4

R5

Modern VLSI Design: IP-Based Design, Fourth Edition Page 537 Return to Table of Contents

526 Chapter 8: Architecture Design

The controller looks like this:

Once we wire together the data path and controller, the implementation
is complete.

alternative
implementations

In the last example, we made a number of arbitrary choices about when
operations would occur and how much hardware was available. The
example was designed to show only how to construct a machine that
implements a data flow graph, but in fact, the choices for schedul-
ing—deciding when to execute an operation—and binding—deciding
which hardware unit should store a value or execute an operation—are
the critical steps in the design process. Now that we understand the rela-
tionship between a data flow graph and a data path-controller machine,
we need to study what makes one data path-controller implementation
better than another.

scheduling and binding
interact

Obviously, scheduling and binding decisions depend on each other. The
choice of a schedule limits our binding options; but we can determine
which schedule requires the least hardware only after binding. We need
to separate the two decisions as much as possible to make the design
task manageable, but we must keep in mind that scheduling and binding
depend on each other.

implementation costs To a first approximation, scheduling determines time cost, while bind-
ing determines area cost. Of course, the picture is more complex than
that: binding helps determine cycle time, while scheduling adds area for
multiplexers, registers, etc. But we always evaluate the quality of a
schedule by its ultimate hardware costs:

• Area. Area of the data path-controller machine depends on the
amount of data operators saved by sharing vs. the hardware required
for multiplexing, storage, and control.

cycle1 cycle2 cycle3

- / mux1 = 0,
mux2 = 1, mux3 = 1
load R1, load R2,
 load R4, load R5

- / mux1 = 1,
mux2 = 0, mux3 = 2
load R1, load R3,

- / mux2 = 0, mux3 = 0

Modern VLSI Design: IP-Based Design, Fourth Edition Page 538 Return to Table of Contents

8.5 High-Level Synthesis 527

• Delay. The time required to compute the basic block’s functions
depends on the cycle time and the number of cycles required. After
the easy victories are won by obvious data hardware sharing, we can
generally reduce area only by increasing delay—performing data
operations sequentially on fewer function units.

• Power. The power consumption of the system can be greatly
affected by scheduling and allocation, as we will see in Section 8.6.

scheduling There are many possible schedules that satisfy the constraints in a data
flow graph. Figure 8-44 shows how to find two simple schedules. In this
example we assume that we can perform as many additions as possible
in parallel but no more than one addition in series per cycle—chained
additions stretch the clock period. The as-soon-as-possible (ASAP)
schedule is generated by a breadth-first search from the data flow
sources to the sinks: assign the source nodes time 0; follow each edge
out to the next rank of nodes, assigning each node’s time as one greater
than the previous rank’s; if there is more than one path to a node, assign
its time as the latest time along any path. The simplest way to generate
the as-late-as-possible (ALAP) schedule is to work backward from the
sinks, assigning negative times (so that the nodes just before the sinks
have time -1, etc.), then after all nodes have been scheduled, adjust the
times of all nodes to be positive by subtracting the most negative time
for any node to the value of each node. The ASAP and ALAP schedules
often do not give the minimum hardware cost, but they do show the
extreme behaviors of the system.

critical paths in data flow The ASAP and ALAP schedules help us find the critical paths through
the data flow graph. Figure 8-45 shows the critical path through our data
flow graph—the long chain of additions determines the total time
required for the computation, independent of the number of clock cycles
used for the computation. As in logic timing, the critical path identifies
the operations that determine the minimum amount of time required for
the computation. In this case, time is measured in clock cycles.

cost estimation Before we consider more sophisticated scheduling methods, we should
reflect on what costs we will use to judge the quality of a schedule. We
are fundamentally concerned with area and delay; can we estimate area
and delay from the data path-controller machine implied by a schedule
without fleshing out the design to layout?

Modern VLSI Design: IP-Based Design, Fourth Edition Page 539 Return to Table of Contents

528 Chapter 8: Architecture Design

+ + + + +

+ +

data flow graph

+ + + + +

+

+

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

ASAP

+ + + + +

+ +

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

ALAP

Figure 8-44 ASAP and ALAP schedules.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 540 Return to Table of Contents

8.5 High-Level Synthesis 529

Consider area costs first. A binding of data path operators to function
units lets us estimate the costs of the data operations themselves. After
assigning values to registers, we can also estimate the area cost of data
storage. We also compute the amount of logic required for multiplexers.
Estimating the controller’s area cost is a little harder because area can’t
be accurately estimated from a state transition graph. But we can
roughly estimate the controller’s cost from the state transitions, and if
we need a more accurate estimate, we can synthesize the controller to
logic or, for a final measure, to layout.

Now consider delay costs: both the number of clock cycles required to
completely evaluate the data flow graph and the maximum clock rate.
We have seen how to measure the number of clock cycles directly from
the data flow graph. Estimating cycle time is harder because some of the
data path components are not directly represented in the data flow
graph.

One subtle but important problem is illustrated by Figure 8-46: the delay
through a chain of adders (or other arithmetic components) is not additive.
The simplest delay estimate from the data flow graph is to assign a delay
to each operator and sum all the delays along a path in each clock cycle.
But, as the figure shows, the critical path through a chain of two adders
does not flow through the complete carry chain of both adders—it goes
through all of the first adder but only the most significant bit of the second
adder. The simple additive model for delay in data flow graphs is wildly
pessimistic for adders of reasonable size. For accurate estimates, we need
to trace delays through the data path bit by bit.

If you are worried about delay, multiplexers added for resource sharing
should concern you. The delay through a multiplexer can be significant,
especially if the multiplexer has a large number of data inputs.

+ + + + +

+ +

Figure 8-45 Critical path of a data flow graph.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 541 Return to Table of Contents

530 Chapter 8: Architecture Design

8.5.3 Control
control optimization
techniques

One important reason to separate control from data is that arithmetic-
rich and control-rich machines must be optimized using very different
techniques to get good results—while optimization of arithmetic
machines concentrates on the carry chain, the optimization of control
requires identifying Boolean simplification opportunities within and
between transitions. We typically specify the controller as a state transi-
tion graph, though we may use specialized machines, such as counters,
to implement the control.

In Chapter 5 we studied how to design a logic implementation of an
FSM given a state transition graph. The high-level synthesis problem
for control is one step more abstract—we must design the state transi-
tion graph which executes the desired algorithm. Consider the simple
example of Figure 8-47. The two controllers are clearly not equivalent
in the automata-theoretic sense: we can easily find one input sequence
that gives different output sequences on the two machines, since the two
machines don’t even use the same number of cycles to compute the two
additions. But even though the two controllers are not sequentially
equivalent, they both satisfy the behavior specification.

evaluating controllers How do we judge the quality of a controller that implements the control
section of a program? That, of course, depends on our requirements. As
usual, we are concerned with the area and delay of the FSM. The behav-
ior specification may give us additional constraints on the number of

+

+

+

+

...

+

+

+

+

...critical path

Figure 8-46 Delay through
chained adders is not
additive.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 542 Return to Table of Contents

8.5 High-Level Synthesis 531

cycles between actions in the program. We may have to satisfy strict
sequencing requirements—when reading a random RAM, for example,
we supply the address on one clock cycle and read the data at that loca-
tion exactly one clock cycle later. We often want to minimize the num-
ber of cycles required to perform a sequence of operations—the number
of cycles between reading a value and writing the computed result, for
instance. To compute a result in the minimum number of cycles, we
must perform as many operations as possible on each clock cycle. That
requires both scheduling operations to take best advantage of the data
path, as we saw in the last section; it also requires finding parallelism
within the control operations themselves.

generating a controller For now we will assume that the data path is given; in the next section
we will look at how to choose the best trade-off between controller and
data path requirements. The construction of a controller to execute a
behavior specification proceeds as follows:

• Each statement in the behavior model is annotated with data path
signals: arithmetic operations may require operation codes; multi-
plexers require selection signals; registers require load signals.

• Data dependencies are identified within each basic block.
• In addition, control dependencies are identified across basic

blocks—a statement that is executed in only one branch of a control
statement must be executed between the first and last states of that
conditionally executed basic block. If the same statement appears in
every branch, it is not dependent on the control signal and can be
moved outside the control statement.

s1 -/x = a + b; y = c + d;

s1 s2
-/x = a + b

-/y = c + d

x <= a + b;
y <= c + d;

specification one-state implementation

two-state implementation

Figure 8-47 How the
controller changes with the
data path schedule.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 543 Return to Table of Contents

532 Chapter 8: Architecture Design

• External scheduling constraints, which reflect the requirements of
the other machines to which this one will be connected, are added.
External scheduling constraints are those that cannot be determined
by looking at the behavior specification itself but that are required
when the machine is connected to its intended working environment.

• Each program statement is scheduled—assigned an execution clock
cycle that satisfies all the data and control dependencies.

• The controller’s state transition graph can be constructed once the
schedule is known.

finding parallelism Figure 8-48 shows how some opportunities for parallelism may be hid-
den by the way the program is written. The statements o1 <= '1' and o5
<= '0' are executed outside the if statement and, since they do not have
any data dependencies, can be executed in any order. (If, however, one

begin if

w1

-/o1 = 1
i1 = 1/o1 = 0, o2=0

-/o2 = 0, o5 = 0

i1 = 0/o3 = 1, o2 = 0, o5 = 0

o1 = '1';
if i1 = '1' then
 o1 <= '0'; o2 <= '1'; o2 <= '0';
else
 o3 <= '1'; o2 <= '0';
end if;
o5 <= '0';

code

controller

Figure 8-48 Constructing a
controller from a program.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 544 Return to Table of Contents

8.5 High-Level Synthesis 533

of the if branches assigned to o5, the o5 <= '0' assignment could not be
performed until after the if was completed.) The assignment o2 <= '0'
occurs within both branches of the if statement and data dependencies
do not tie it down relative to other statements in the branches. We can
therefore pull out the assignment and execute a single o2 <= '0' before
or after the if. If a statement must be executed within a given branch to
maintain correct behavior, we say that statement is control-dependent on
the branch.

matching controller
to data path

If we want to design a controller for a particular data path, two compli-
cations are introduced. First, we must massage the behavior specifica-
tion to partition actions between the controller and data path. A
statement in the behavior may contain both data and control operations;
it can be rewritten in terms of controller inputs and outputs that imply
the required operations. Figure 8-49 gives a simple example. The first
assignment statement is replaced by all the signals required to perform
the operation in the data path: selecting the sources for the ALU’s oper-
ands, setting the operation code, and directing the result to the proper
register. The condition check in the if statement is implemented by an
ALU operation without a store. We must also add constraints to ensure
that these sets of operations are all executed in the same cycle. (Unfortu-
nately, such constraints are hard to write in VHDL and are usually cap-
tured outside the behavior model.) Those constraints are external
because they are imposed by the data path—the data path cannot, for
example, perform an ALU operation on one cycle and store the result in
a temporary register for permanent storage on a later cycle. We also
need constraints to ensure that the ALU operation for the assignment is

Figure 8-49
Rewriting a
behavior in
terms of
controller
operations.

x <= a - b;
if x < y then

o1 <= '0';
end if;

source_1 <= a_source; source2 <= b_source; op <= subtract; load_x <= '1';
source_1 <= x_source; source_2<= y-source; op <= gt;
if gt_result then

o1_mux <= zero_value;
end if;

behavior specification

controller operations

Modern VLSI Design: IP-Based Design, Fourth Edition Page 545 Return to Table of Contents

534 Chapter 8: Architecture Design

performed on the same cycle as the test of the result, or the comparison
result will be lost.

The second complication is ensuring that the controller properly uses
the data path’s resources. If we have one ALU at our disposal, the con-
troller can’t perform two ALU operations in one cycle. The resource
constraints are reflected in the controller’s pins—a one-ALU data path
will have only one set of ALU control signals. We may, however, have
to try different sequences of data path operations to find a legal imple-
mentation with both a good controller and the desired data path.

controller implementation Finally, a word about controller implementation styles. You may have
learned to implement a controller as either a hardwired machine or a
microcoded machine. As shown in Figure 8-51, a hardwired controller
is specified directly as a state transition graph, while a microcoded con-
troller is designed as a microcode memory with a microprogram coun-
ter. (The microcoded controller also requires control logic to load the

!a && !b

a && !b !a && b

a && b

a b

b a

before

after

!a a

a

!b
b

b

Figure 8-50 Breaking a pair
of tests into distributed
control.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 546 Return to Table of Contents

8.5 High-Level Synthesis 535

PC for branches.) It is important to remember that these are implemen-
tation styles, not different schedules. The hardwired and microcoded
controllers for a given design are equivalent in the automata-theoretic
sense—we can’t tell which is used to implement our system by watch-
ing only its I/O behavior. While one may be faster, smaller, or easier to
modify than another for a given application, changing from one style to
another doesn’t change the scheduling of control operations in the con-
troller. You should first use control scheduling methods to design the
controller’s I/O behavior, then choose an implementation style for the
machine.

8.5.4 Data and Control
data and control
interactions

So far, we have designed the data path and controller separately. Divid-
ing architecture design into sub-problems makes some issues clearer,

QD

combinational
logic

I O

hardwired

I O

ROM

μPC

microcoded

Figure 8-51 Controller
implementation styles.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 547 Return to Table of Contents

536 Chapter 8: Architecture Design

but it doesn’t always give the best designs. We must consider interac-
tions between the two to catch problems that can’t be seen in either
alone. Once we have completed an initial design of the data path and
controller individually, we need to plug them together and optimize the
complete design.

cleaning up the hardware The first, obvious step is to eliminate superfluous hardware from the
data path. A schedule may have been found for a controller that doesn’t
require all the hardware supplied by the data path. A more sophisticated
step is to add hardware to the data path to reduce the number of cycles
required by the controller. In the example of Figure 8-52, the data path
has been designed with one adder. The true branch of the if can be exe-
cuted in one cycle if another adder is put into the data path. Of course,
the second adder is unused when the false branch is executed. The sec-
ond adder also increases the system’s clock period; that delay penalty
must be paid on every cycle, even when the second adder is not used.
Whether the second adder should be used depends on the relative impor-

QD
mux

sel

+

mux

sel

a

b

c

fewer adders, more cycles

+ mux

sel

a

b
c

+

more adders, fewer cycles

Figure 8-52 Adding
hardware to reduce the
number of clock cycles
required for an operation.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 548 Return to Table of Contents

8.5 High-Level Synthesis 537

tance of speeding up the true branch and the cost in both area and delay
of the second adder.

cycle time optimization Another important optimization is adjusting the cycle time through the
combined system. Even though the delay through each subsystem is
acceptable, the critical path through the combination may make the
cycle time too long. Overly long critical paths are usually caused by
computations that use the result of a data path operation to make a
control decision, or by control decisions that activate a long data path
operation. In the example of Figure 8-53, the critical path goes
through the carry chain of the ALU and into the next-state logic of the
controller. We can speed up the clock by distributing this computation
over two cycles: one cycle to compute the data path value, at which
point the result is stored in a memory element; and a second cycle to
make the control decision and execute it in the data path. One way to
view the effect of this pipelining is that it moves the control decision
ahead one cycle, increasing the number of cycles required to compute
the behavior. However, it may not always be necessary to add
cycles—if the adder is free, rather than move the control decision for-
ward, we can move the addition back one cycle, so that the result is
ready when required by the controller.

+

Q D

combinational
logic

data path
control

critical path

Figure 8-53 Delay through a
data path controller system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 549 Return to Table of Contents

538 Chapter 8: Architecture Design

8.5.5 Design Methodology
High-level synthesis allows designers to concentrate on the architectural
design, rather than spend a great deal of time mapping the architecture
to logic or layout. High-level synthesis can produce useful productivity
gains when used to automate the transformation of the architecture to
register-transfer form, but high-level synthesis can aid productivity in
other ways, as described in the next example.

Example 8-3
The IBM High-
Level Synthesis
System

The IBM High-Level Synthesis System (HIS) [Ber95] was one of the
first industrial high-level synthesis systems. It accepts design descrip-
tions in VHDL or Verilog and produces register-transfer designs that
can be input to the IBM BooleDozer logic synthesis system.

The main steps followed by HIS during synthesis include:

• Data model generation. Control flow and data flow graphs are gen-
erated from the input high-level description.

• Data flow analysis. Variable lifetimes are determined, explicit
clocking constraints are analyzed, etc.

• Scheduling and allocation. The operations in the behavior are
scheduled, registers and multiplexers are allocated, control signals
are generated, etc.

• Data path optimizations. Data path optimizations try to efficiently
share resources.

• Control optimizations. Behavioral don’t-care conditions, state
assignment, etc.

One major use of HIS is as a front-end to logic synthesis which allows
designers to directly manipulate the architecture. Considerable time can
be saved when changes to an architecture are made (as is common),
since the designer need not translate the architectural changes to logic.
However, high-level synthesis has also seen several other uses: as a fast
synthesizer for designs input to logic emulation machines; as a fast syn-
thesizer for verification systems; as a fast mapper for cycle-based simu-
lation; and for early estimation and analysis. In all these cases, the
ability to generate a design from a higher-level description saves time
otherwise required by the designer to map the architecture into logic.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 550 Return to Table of Contents

8.6 Architectures for Low Power 539

8.6 Architectures for Low Power

A variety of architectural techniques can be used to reduce and manage
power consumption. Many of these techniques take advantage of the
varying nature of the data and workload being processed by temporarily
reducing clock frequency, putting gates on standby, etc. We can use par-
allelism to reduce the operating frequency and voltage of the system.

power, thermal, and
reliability

As we saw in Section 2.6.2, Section 3.3.4, Section 3.7.1, and
Section 7.3.1, high temperatures and thermal effects can cause severe
reliability problems. High temperatures and temperature gradients can
cause delays to change, which may cause transient failures. High tem-
peratures can also cause chips to permanently fail. Low-power design
therefore becomes a critical concern because of its dual implications:
the high cost of high energy and power consumption itself, and the ther-
mal barriers to reliability.

Power controllers are in charge of dynamic power management on a
chip or a section of the chip. Power controllers are common in modern
microprocessors and large ASICs. A chip may have more than one
power controller, each managing a different part of the chip. These
power controllers are generally controlled by software.

Figure 8-54 shows a generic model of a power controller. The controller
itself is an FSM. The power controller’s interface to the rest of the chip
accepts inputs, which may tell the power controller when it may power
down and for how long. It also includes outputs that tell the rest of the
system when the logic is useful. On the other side of the unit, the power

power
controller

load predictions state

QD clock
power
supply

Figure 8-54 A power
controller and its connections
to the rest of the system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 551 Return to Table of Contents

540 Chapter 8: Architecture Design

controller sends commands to a variety of units: the clock generator,
registers, power modes in combinational logic, or to the power supply. It
may also take inputs, either from the power-managed logic itself or from
units such as the power supply.

power minimization
through control

Implementing a power-down mode requires implementing three major
changes to the system architecture:

• conditioning the clock in the powered-down section by a power-
down control signal;

• adding a state to the affected section’s control that corresponds to the
power-down mode;

• further modifying the control logic to ensure that the power-down
and power-up operations do not corrupt the state of the powered-
down section or the state of any other section of the machine.

initialization The logic being powered down may need to be reinitialized before it can
be used again. Powered-down logic may lose state because it contains
dynamic latches; the logic’s state may become desynchronized with that
of the surrounding logic; or for many other reasons, the existing state of
the powered-down logic may not be immediately useful. In such cases,
the power controller must manage the initialization process. A hand-
shake protocol can be used to tell the rest of the system when the unit is
available. In complex machines, initialization may take several cycles.

In the rest of this section, we will look at several different power reduc-
tion techniques that can be controlled by a power controller: gate-level
methods, data latching, clock gating, and architecture-driven voltage
scaling.

8.6.1 Gate Power Control
gate and power supply Depending on the type of gate used, its power consumption may be con-

trolled in several ways, as we saw in Section 3.6. The gate’s power sup-
ply voltage may be controlled directly, in which case the power
controller would talk to the power supply module. (The design of
multiple-voltage power supplies is a subject beyond the scope of this
book.) A related technique is changing the substrate voltage in a region,
as is done for VTCMOS gates; this requires fabrication support, such as
triple wells. Some gates, such as MTCMOS, are controlled by a direct
input.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 552 Return to Table of Contents

8.6 Architectures for Low Power 541

8.6.2 Data Latching
We saw in Section 4.5 and Section 5.7 that glitch reduction reduces
power consumption by eliminating unnecessary circuit activity. If we
will not use the output of a unit, then we should not allow its inputs to
change, which would cause unnecessary transitions to flow through the
unit.

new and existing latches We can use conditional clocks on existing latches to hold data values
that are not used. We can also add latches to units with combinational
inputs; of course, that requires adjusting the overall clocking to ensure
that values arrive at the proper times.

8.6.3 Clock Gating
conditional clocks The conditional clock for the power-down mode must be designed with

all the caveats applied to any conditional clock—the conditioning must
meet skew and edge slope requirements for the clocking system. Static
or quasi-static memory elements must be used in the powered-down
section for any state that must be preserved during power-down (it may
be possible to regenerate some state after power-up in some situations).

mode changes The power-down and power-up control operations must be devised with
particular care. Not only must they put the powered-down section in the
proper state, they must not generate any signals that cause the improper
operation of other sections of the chip, for example by erroneously
sending a clear signal to another unit. Power-down and power-up
sequences must also be designed to keep transient current requirements
to acceptable levels—in many cases, the system state must be modified
over several cycles to avoid generating a large current spike.

8.6.4 Architecture-Driven Voltage Scaling
power and supply voltage As was noted in Section 3.3.5, the power consumption of static CMOS

gates varies with the square of the power supply voltage. The delay of a
gate does not decrease as quickly as power consumption. Architecture-
driven voltage scaling [Cha92] takes advantage of this fact by adding
parallelism to the architecture to make up for the slower gates produced
by voltage scaling. Even though the parallel logic adds power, the trans-
formation still results in net power savings.

trading parallelism
for clock rate

This effect can be understood using the generic register-transfer design
of Figure 8-55. A basic architecture would evaluate its inputs (clocked
into registers in this case) every clock cycle using its function unit. If we

Modern VLSI Design: IP-Based Design, Fourth Edition Page 553 Return to Table of Contents

542 Chapter 8: Architecture Design

slow down the operating frequency of the function unit by half, we can
still generate outputs at the same rate by introducing a second function
unit in parallel. Each unit gets alternate inputs and is responsible for
generating alternate outputs. Note that the effective operation rate of the
system is different in different components: the outputs are still gener-
ated at the original clock rate while the individual function units running
at half that rate. Parallelism does incur overhead, namely the extra
capacitance caused by the routing to/from the function units and the
multiplexer. This overhead is, however, usually small compared to the
savings accrued by voltage scaling.

Parallelism can also be introduced by pipelining. If the logic has rela-
tively little feedback and so is amenable to pipelining, this technique

function
unit

φ

in

before

function
unit

φ/2

function
unit

φ/2

m
ux

runs at rate φ

sel

in

after

Figure 8-55 Increasing
parallelism to counteract
scaled power supply
voltage.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 554 Return to Table of Contents

8.6 Architectures for Low Power 543

will generally result in less overhead capacitance than parallel-multi-
plexed function units.

power improvement The power improvement over a reference power supply voltage Vref can
be written as [Cha92]:

, (EQ 8-7)

where n is the number of parallel function units, V is the new power
supply voltage, Cref is the reference capacitance of the original function
unit, Ci is the capacitance due to interprocessor communication logic,
and Cx is the capacitance due to the input/output multiplexing system.
Both Ci and Cx are functions of the number of parallel function units.

8.6.5 Dynamic Voltage and Frequency Scaling
Dynamic voltage and frequency scaling (DVFS) [Wei94] was devel-
oped to control the power consumption of microprocessors. Like archi-
tecture-driven voltage scaling, DVFS relies on the fact that performance
varies as while power consumption varies as . However, unlike
architecture-driven voltage scaling, DVFS is a dynamic tech-
nique—both the clock frequency and power consumption vary during
operation.

dynamic workloads DVFS relies on the fact that microprocessors do not always have to run
at full speed in order to finish all their tasks. If the microprocessor’s
workload does not require all available CPU performance, then we can
slow down the microprocessor to the lowest available performance level
that meets the current demand.

DVFS controller The power controller for DVFS controls the microprocessor power con-
sumption through a combination of clock frequency and power supply
changes. The power controller needs a simple algorithm to determine
the proper clock frequency and power supply settings from a load esti-
mate. A software interface allows the operating system or other pro-
grams to tell the power controller the required performance. This
software interface updates a register that is visible to the power control-
ler; that register is the interface between the system-level load estimate
and the commands to the clock generator and power supply.

Pn n 1
Ci n
nCref

Cx n
Cref

--------------+ +
V

Vref
---------=

V V2

Modern VLSI Design: IP-Based Design, Fourth Edition Page 555 Return to Table of Contents

544 Chapter 8: Architecture Design

8.7 GALS Systems

As chips grow larger, it becomes harder to distribute the clock reliably
to all parts of the chip. One architectural solution to this problem is
globally asynchronous, locally synchronous (GALS) design, which
relaxes the strict synchronous assumptions at several boundaries within
the chip.

clock domains As illustrated in Figure 8-56, a GALS system is divided into several dif-
ferent clock domains. Each clock domain operates synchronously.
However, the different clock domains are not synchronized relative to
each other. As a result, communication between domains must be medi-
ated by an interface that adjusts for the differences in timing.

GALS styles There are several different ways to organize the timing in a GALS sys-
tem, each with its own interface. Teehan et al. [Tee07] identified three
major styles of GALS systems:

• Pausable clocks use special clock generators in each domain that
can be paused. When one module wants to communicate with
another, the receiver pauses its clock until after the data arrives.
Because the data has settled by the time the clock is restarted, the
transfer has been synchronized.

clock
domain

1

clock
domain

3

clock
domain

4

clock
domain

2in
te

rf
ac

e
in

te
rf

ac
e

interface interface

Figure 8-56 Clock domains
and interfaces in a GALS
system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 556 Return to Table of Contents

8.8 Architecture Testing 545

• Asynchronous interfaces assume no relationship between the
clocks and the clocks do not stop. Specially-designed synchronizer
circuits capture the data at the transmitter/receiver interface. These
asynchronous circuits are very tricky to design; Teehan et al. caution
that Spice simulations may not be accurate enough to verify the
proper operation of a synchronizer; they suggest that these circuits
are best acquired as verified IP blocks.

• Loosely synchronous interfaces couple blocks with some bounds
on their relative frequencies. These loose timing relationships keep
us from needing to design fully asynchronous interfaces. Messer-
schmitt [Mes90] defined three types of loosely synchronous sys-
tems: mesochronous blocks operate at exactly the same frequency
with an unknown but stable phase difference; pleisochronous send-
ers and receivers operate at the same average frequencies but with
some small allowable drift; heterochronous blocks operate at differ-
ent average frequencies.

GALS systems have two advantages as means of avoiding global clock
distribution problems. First, they allow us to use standard synchronous
IP in each clock domain. Second, they reduce the interface problem to
relatively small blocks that can usually be treated as IP. In contrast,
clock distribution networks must be designed for each chip, though
tools can help with this task.

8.8 Architecture Testing

Making sure an architecture is testable is a balancing act, just as is mak-
ing sure that it runs fast enough. The simplest way to make a system run
fast usually requires too much hardware, so we look for judicious ways
to reuse hardware without compromising performance. Similarly, brute
force application of extra testing hardware usually makes the system
both too big and too slow. Luckily, we can usually make the system
more easily testable with relatively simple fixes.

partial scan We studied LSSD design in Section 5.9. Scan latches add both area and
delay. We can reduce the cost of scan design by using partial
scan—making only some of the memory elements in the system scanna-
ble. Figure 8-57 shows why scan latches are more useful in some loca-
tions than others. The value of a latch that is in the middle of the
pipeline is guaranteed to be available at the primary outputs after n
clock cycles. The value at the pins will be determined by the combina-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 557 Return to Table of Contents

546 Chapter 8: Architecture Design

tional logic between the latch and the pin, but we can reverse-engineer
the latch’s value (perhaps with some ambiguity caused by the combina-
tional functions performed). The situation in a general sequential
machine, like the FSM shown, is more complex. Some latch values may
be immediately accessible, while others may not show their effects at
the pins for many cycles. A scan latch for a value that can be directly
viewed is much less useful than a scan latch for the value that recircu-
lates before becoming visible.

sequential depth and
testability

Registers become harder to test as their distance from primary inputs or
outputs increases [Fri76]. We can identify high-payoff locations for scan
latches by building a register graph [Che89], as shown in Figure 8-58.
Nodes in the graph represent memory elements; an edge is drawn
between two nodes if there is any combinational path between the two

QD
combinational

logic
a QD

combinational
logic

f(a),
two
cycles
later

pipeline

Q D

QD
combinational

logica

combinational
logic

feedback structure

Figure 8-57 Some scan latches are more useful than others.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 558 Return to Table of Contents

8.8 Architecture Testing 547

memory elements. The shortest distance to a given node from any node
that is a primary input is called the sequential depth of that node; the
graph’s sequential depth is the largest sequential depth of any of its
nodes. Cycles in the graph show feedback paths for state—memory ele-
ments in a cycle compute their value at least partially from other internal
information, rather than from the primary inputs. Self-loops—edges that

Q D
FF1

f3

f2

f1

Q D
FF2

Q D
FF3

register-transfer design

FF1 FF2 FF3
f3

f2

f2

f1

register graph

Figure 8-58 The register
graph.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 559 Return to Table of Contents

548 Chapter 8: Architecture Design

connect a node to itself— identify latches whose inputs are computed
from their own outputs. Memory elements that participate in cycles,
such as the FF2-FF3 cycle, tend to be harder to test (though self-loops
are relatively easy to test). Furthermore, memory elements that are far
away from the primary inputs are also hard to test. If we allow FF1 to
be directly loaded or read (either by normal operation or by scanning),
then FF3 can be loaded in one cycle, but loading FF2 requires two
cycles. We can add partial scan registers to reduce the distance from a
primary input/output to a memory element.

We can bind variables to registers to improve testability [Lee92]. Two
binding rules help improve testability. First, make sure that as many reg-
isters as possible are assigned at least one variable that is a primary
input or output of the behavior. Making even one variable assigned to a
register a primary input or output ensures that the register will be
directly connected to the pins. Second, minimize the sequential depth of
your register graph. Draw the register graph for each binding and
choose the one with the smallest sequential depth for any register. In
many cases, a binding can be found that has about the same hardware
cost but a much smaller sequential depth.

built-in self-test An alternative to applying test vectors from an external tester is built-in
self-test (BIST). BIST is especially attractive for large chips that require
long test sequences: because the internal testing circuitry runs at on-chip
speeds, it can apply test vectors much more quickly than can an external
tester. However, because we don’t want to devote an extraordinarily
large amount of chip area to the test circuitry, BIST doesn’t apply cus-
tom test sequences created by an ATPG program. Instead, most BIST
strategies use pseudo-random sequences as the test sequence.

QD ...

possible connections

QD QD

Figure 8-59 Structure of a linear feedback shift register.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 560 Return to Table of Contents

8.8 Architecture Testing 549

A linear feedback shift register (LFSR) can be used to generate a
pseudo-random sequence. One possible structure of an LFSR is shown
in Figure 8-59. The memory elements hold the current pseudo-random
value; XORs between stages compute the next value. Not all of the dot-
ted connections are actually made—by making different feedback con-
nections, we can generate different pseudo-random sequences. (If a
feedback connection is not made, the corresponding XOR is not neces-
sary.) An LFSR can also be used to store and compress a sequence of
binary words, a technique commonly known as signature analysis.
(Signature analysis was originally developed by Hewlett-Packard for
printed circuit board testing.) If we want to record a sequence of values,
we can add those values as additional inputs to the XORs, causing them
to be added into the pseudo-random sequence. This scheme loses infor-
mation—there may be several sequences of inputs that produce the
same value in the LFSR. However, a relatively small LFSR can give a
very low probability of aliasing, making the LFSR a very good com-
pression scheme.

The testing configuration of a built-in self-test system is shown in Fig-
ure 8-60. One LFSR is used to generate inputs for the logic to be tested
while another LFSR is used as a signature register. A multiplexer is used
to switch between normal and test modes by switching the circuit under
test’s inputs between the primary inputs and the LFSR. A fault simulator
is used to simulate the circuit under test’s response to the sequence gen-
erated by the input LFSR. The signature register’s value can either be
compared against a single signature that indicates correct operation or
the register can be made available at the chip’s pins.

circuit
under

testLF
SR

LF
SR

Figure 8-60 A logic block
configured for built-in
self-test.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 561 Return to Table of Contents

550 Chapter 8: Architecture Design

8.9 IP Components

sources of IP A wide range of IP components are useful when designing an SoC
architecture. These components may be come from within your com-
pany, from the foundry, or from outside sources. How you acquire the IP
will depend on where it comes from.

One useful source of IP is opencores.org (http://www.opencores.org).
This site is a forum that allows developers of IP modules to post and
share their designs. Components range from debug interfaces up
through CPUs. The licensing agreement required to use a module is up
to the contributor of the module, but most contributors use an open
source agreement such as GNU or BSD.

selecting IP With luck, you will be able to choose between several different IP mod-
ules that meet your basic requirements. The final selection of an IP
module can be made on some combination of several grounds:

• Area or performance. These characteristics must be determined
through synthesis; the module’s documentation may give sample
values.

• Testability and debugging. Scan registers or other features may
make it easier to test and debug the cell; if your chip uses a particular
methodology for testability, you should prefer an IP module whose
own testability features are compatible with yours.

• Cost. If the module must be paid for, at least different licensing
models are used by IP vendors. Fixed-price licenses require an up-
front fee that allows you to use the module in a chip design with no
further fees. Royalty-based licenses require payments for each chip
sold.

• Software support. In the case of complex modules, software sup-
port, either on the debugging host or on one of the on-chip cores,
may make the difference between a usable and an unusable cell.

integrating IP into designs The IP module has been verified by its designers, but you must verify
that it is used properly in your chip. The test vectors for the module may
help you generate a set of tests for the module in situ. However, your
tests should concentrate on debugging the interactions between the
module and your logic that connects to the module. These tests will
include two types of sequences: values generated by your logic that
cause the IP module to generate some output; and values generated by
the IP module that cause a reaction in your logic.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 562 Return to Table of Contents

8.10 Design Methodologies 551

8.10 Design Methodologies

The exact sequence of steps you follow to design a chip will vary with
your circumstances: what type of chip you are designing; size and per-
formance constraints; the design time allowed; the CAD tools available
to you; and many other factors.

requirements

high-level
design

floorplanning logic design

placement/
routing

ATPG

timing
analysis

fabricated
die

post-silicon
validation

power
analysis

design
checks

simulation

Figure 8-61 A generic
integrated circuit design
flow.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 563 Return to Table of Contents

552 Chapter 8: Architecture Design

methodologies and flows A design methodology is frequently called a design flow since the flow
of data through the steps in the methodology may be represented in a
block diagram. Figure 8-61 shows a generic design flow for VLSI sys-
tems. While all design methodologies will vary from this in practice,
this flow shows some basic steps that must be considered in almost any
design.

requirements The initial requirements for a system are often specified in English and
may be vague; while many designs are follow-ons to previous designs,
any new features must be described in some way that may lead to mis-
understandings. Problems in translating the requirements into architec-
tures can and should be caught early to avoid the embarrassment of
implementing the wrong chip.

high-level, logical,
physical design

High-level design may be performed manually or using high-level syn-
thesis tools, but somehow an initial set of functions must be translated
into a register-transfer design. Similarly, logic and physical design may
be performed by CAD tools, manually, or in some combination.

testing and verification Automatic test pattern generation (ATPG) generates test vectors for
manufacturing test. ATPG is, of course, no substitute for the creation of
functional test vectors that will be used by simulators to validate the
design at all levels of abstraction. Several sorts of design checks, includ-
ing design-rule checking, electrical checking, and timing analysis are all
important at the end of the design process to be sure that no fundamental
errors have been inadvertently introduced. Once die are returned from
manufacturing, they must be evaluated to be sure that the design not
only runs at the proper speed, but runs at a range of power supply volt-
ages and other checks that ensure adequate yields. The importance of
post-silicon electrical testing will be discussed in Example 8-5.

Figure 8-61 shows several analysis steps connected to
synthesis-oriented design steps by dotted lines. Simulation, floorplan-
ning, timing analysis, and power analysis (among other analysis steps)
are all important and must be performed at several different levels of
abstraction. Early design stages rely on estimates that may be supplied
by tools; those estimates must be verified as the design is refined and, if
necessary, used to drive the redesign to meet requirements that have
been missed.

the design process Let’s consider this process in more detail:

• Architecture. If a chip is a rework of an existing design—a design
shrink, a few added features, etc.—then the architectural design is
simple. But when designing something new, a great deal of work is
required to transform the requirements into a detailed microarchitec-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 564 Return to Table of Contents

8.10 Design Methodologies 553

ture ready for logic design. Architectural design requires construc-
tion of a microarchitectural simulator that is sufficiently detailed to
describe the number of clock cycles required for various operations
yet fast enough to run a large number of test vectors. A test suite
must also be constructed that adequately covers the design space; if
the design is a rework of a previous architecture, then the vectors for
that system are a starting point that can be augmented with new tests.
Architectural design requires extensive debugging for both function-
ality and performance; errors that are allowed to slip through this
phase are much more expensive to fix later in the design process.

• Logic design and verification. Logic design may be performed
manually or using logic synthesis tools. In either case, the design
will probably go through several refinement steps before comple-
tion. Initial design verification steps will concentrate on logical cor-
rectness and basic timing properties. Once the basic structure of the
logic has taken shape, scan registers can be inserted and power con-
sumption can be analyzed. A more detailed set of timing checks can
also be performed, including delay, clock skew, and setup/hold
times. In extreme cases, perhaps because of a limited number of
choices in the gate and register libraries, it may be necessary to make
more drastic changes to the logic to correct problems found late in
the logic design process.

• Physical design. Physical design starts with floorplanning to deter-
mine the overall structure of the layout. If the logic was designed in
large blocks, it may be necessary to partition those large blocks into
smaller pieces at this point. Placement and routing will generate lay-
outs of blocks, or layouts can be designed by hand. Once the layout
is complete, the wiring parasitics must be extracted and
back-annotated to the logic design. The back-annotated design can
then be simulated to verify that layout did not violate any timing
constraints. Hopefully, problems can be fixed with minor modifica-
tions to the layout but changes to the logic design may be required.

• Back-end checks. ATPG must be performed late to ensure that
minor design changes did not inadvertently cause testability prob-
lems. Similarly, design-rule and electrical checks of the complete
layout are an important sanity check to ensure that shorts or opens
were not introduced late in design.

using hard IP Making use of hard IP blocks for modules requires some adjustment of
the design process. A hard IP block will generally be represented as a
blank space by tools during the early physical design stages. The tools
have a description of the pins on the IP block so they can route to the

Modern VLSI Design: IP-Based Design, Fourth Edition Page 565 Return to Table of Contents

554 Chapter 8: Architecture Design

module. The boundary between the hard IP block and the rest of the lay-
out will have to be carefully checked for design rule violations.

debugging Integrated circuits are notoriously hard to debug after fabrication. The
few hundred pins on a large chip cover only a tiny fraction of the state
contained in the multiple millions of electrical nodes in a large VLSI IC.
While it may be possible to deduce the internal behavior of the chip,
some errors may be difficult to detect and may also mask other flaws.
Voltage contrast [Ben95] is a technique for observing the chip’s inter-
nal behavior using a scanning electron microscope (SEM). The electron
beam of the SEM is reflected differently off electrical nodes at high and
low voltages; a raster scan of the chip by the SEM results in a picture of
the voltages across the chip. Voltage contrast also requires expensive
equipment but practitioners have found it very valuable in tracking
down certain types of bugs.

documentation One constant through all circumstances is the importance of good
design documentation. You should write down your intent, your pro-
cess, and the result of that process at each step. Documentation is impor-
tant for both you and the others with whom you work:

• Written descriptions and pictures help you remember what you have
done and understand complex relationships in the design. A paper
trail also makes the design understandable by others. If you leave the
organization while designing a complex chip, leaving only a few
scribbled notes on the backs of envelopes and napkins, your col-
leagues may not be able to reconstruct your work.

• Design reviews are very valuable tools for finding bugs early. A
design review is a meeting in which the designer presents the design
to another group of designers who comment on it. In preparation for
review, the designer prepares documentation that describes the com-
ponent or system being designed: purpose of the unit, high-level
design descriptions, detailed designs, procedures used to test the
design, etc. During the design review, the audience, led by a review
leader, listens to the designer describe this information and comment
on it (politely, of course). Many bugs will simply be found by the
designer during the course of preparing for the meeting; many others
will be identified by the audience. Design reviews also help the vari-
ous members of a team synchronize—at more than one design
review, two members of the same design team have realized that
they had very different understandings of the interface between their
components.

Even after the chip is done, documentation helps fix problems, answer
questions about its behavior, and serves as a starting point for the next-

Modern VLSI Design: IP-Based Design, Fourth Edition Page 566 Return to Table of Contents

8.10 Design Methodologies 555

generation design. You will find that a little time spent on documenta-
tion as you go more than pays for itself in the long run.

minimize design errors One thing to keep in mind is that methodology helps ensure that things
aren’t overlooked. A large chip is complex with many opportunities for
error. Unfortunately, even some small errors can completely disable a
chip, causing expensive and frustrating delays. Methodologies are put in
place to minimize the chance of error. Each company generally devel-
ops its own design methodology based on its experience, including its
earlier mistakes. Different methodologies can work equally well so long
as they are followed carefully and with an understanding of their intent.

The next three examples give much more specific examples of design
flows for three different categories of chip design: ASICs, CPUs, and
SoCs.

Example 8-4
Design
methodology
for IBM ASICs

ASICs are in general designed in a partnership of the ASIC’s customer
and its manufacturer—the manufacturer handles most design tasks
closely tied to manufacturing, while the customer takes care of elements
of the design unique to the customer’s needs.

The first steps in the IBM ASIC design flow [Eng96] require coopera-
tion between the customer and the manufacturer’s design house:

• Design entry. Designs are entered in a hardware description lan-
guage such as VHDL or Verilog. Schematic entry is also supported.

• Logic synthesis. IBM logic synthesis tools are used to map the
design into a gate-level design in the IBM cell library. Logic synthe-
sis also ensures that the design is appropriate for LSSD.

• Simulation. The design can be supported either at the functional or
gate level. Gate-level netlists can be back-annotated with timing
information for delay simulation.

• Floorplanning. Floorplanning can be used to estimate wiring capac-
itance, area, and wiring congestion. Floorplanning also allows the
user to create bit-slice designs.

• Test structure verification. This step ensures that the design satis-
fies a set of IBM-defined rules that ensure the design—including
RAM, etc.—is in compliance with the requirements for LSSD.

• Static timing analysis. This step analyzes the worst-case clock
speed for the implementation.

• Formal verification. The design is checked for equivalence with a
Boolean specification using efficient algorithms for solving the
Boolean equivalence problem.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 567 Return to Table of Contents

556 Chapter 8: Architecture Design

• CMOS checks. This step checks fan-out, I/O, boundary scan, and
other low-level circuit checks.

• Design hand-off. When the design is ready for physical design, a
netlist, timing assertion data, pad placement, and floorplanning
information are given to the IBM design center.

At this point, physical design is handled by the manufacturing center:

• Front-end processing. Clock trees and test logic are generated at
this step and static timing analysis is used to check performance.

• Pre-layout sign-off. This step allows the customer to ensure that no
errors have been introduced by front-end processing.

• Layout. Detailed layout is performed by automatic tools guided by
professional designers. Layout can be performed either on a flat or
hierarchical design.

• Post-layout sign-off. Verifying the logic and timing at this step
ensures that no errors were introduced during layout.

• Tape-out to manufacturing. Automatic test pattern generation is
used to generate test vectors and the mask data is generated and sent
to the manufacturing line.

Die are delivered to the customer after fabrication and manufacturing
testing.

The next example illustrates the design of a CPU. CPU design projects
take advantage of previous CPU designs, but also break new ground to
meet more aggressive requirements.

Example 8-5
Design
methodology for
the HP 7100LC

The HP 7100LC CPU contains approximately 905,000 transistors. The
design methodology for the 7100LC [Bas95] was designed to support
the design decisions on the microprocessor.

The control logic for the 7100LC was designed using commercial tools
for logic synthesis (from Synopsys) and for placement-and-routing
(from Cadence). The previous-generation CPU, the 7100, had used a
PLA-based methodology. The control logic equations from the PLA-
based design could be reused, but timing budgets had to be more care-
fully allocated and enforced in the synthesis-based methodology. While
PLAs have easy-to-estimate delays that are roughly equal for all out-
puts, synthesized logic can show widely varying changes both from out-
put to output and design iteration to design iteration. The designers
judged the overall results of this technique to be good. The 7100LC

Modern VLSI Design: IP-Based Design, Fourth Edition Page 568 Return to Table of Contents

8.10 Design Methodologies 557

added integer superscalar execution and memory and I/O control, yet it
occupies about half the area of the 7100 PLA-based control.

The CPU went through several levels of verification before fabrication
of the first samples. Behavioral modeling was used extensively to verify
the design. The behavioral models were created in Verilog. The Verilog
model was no faster than one created in a proprietary HP simulation
environment, but allowed the design team to use industry-standard tools
for timing verification, synthesis, etc. The CPU, memory controller, and
I/O controller were verified separately for reasons of efficiency. Func-
tional models were created in C or other high-level languages to stimu-
late these blocks during stimulation. Watchdog code was also inserted to
flag errors during simulation. In addition to behavioral simulation,
switch-level models of the implementation were also created to verify
the transistor-level circuit extracted from the implementation.

Considerable effort goes into the post-silicon validation of any part as
complex as a CPU. The 7100LC design team found electrical verifica-
tion—including timing, shorts, etc.—to be very important. Only the
most obvious electrical problems cause total system failure. Many elec-
trical problems are reflected in lowered yields—chips do not run at cer-
tain frequencies, supply voltages, etc. The design team also put a great
deal of effort into making sure that the chips could be quickly tested
with high coverage during manufacture to ensure that systems could be
reliably constructed from the chip.

The next example describes the design methodology for a system-on-
chip.

Example 8-6
Design of the
Viper digital
video chip

The Viper [Dut01] is a system-on-chip designed by Philips for digital
television and set-top boxes. This system-on-chip includes 35 million
transistors and was fabricated in a 0.18 m process. The Viper includes
two CPUs: a TriMedia VLIW processor and a MIPS CPU. The chip also
contains a number of I/O devices and a synchronous DRAM memory
controller.

The Viper was designed to meet the Philips DVP standard. This stan-
dard defines architectures and interfaces that make it easier to design
scalable digital video systems-on-chips. Early in the design, a number of
standardized blocks such as interrupts and debug interfaces were
designed so that they could be used at several places in the chip.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 569 Return to Table of Contents

558 Chapter 8: Architecture Design

A number of register-transfer design rules were followed during RT
design:

• All high-bandwidth peripherals used the Philips DVP standard for
DMA.

• All low-bandwidth peripherals and MMIO used the Philips PI-bus
standard specified by DVP.

• Miscellaneous interface signals (reset, interrupts, etc.) were imple-
mented according to the DVP standard.

• Signals such as resets and interrupts were implemented using stan-
dard modules.

The design was verified at both the register-transfer and gate levels. A
regression set of tests was executed every week. This test took about 72
hours to execute using 60 CPUs. Emulators were also used to verify the
design.

The chip was designed to be fully scan testable. Both structural stuck-at
tests and functional tests were used. Some large memories and caches
were created with built-in self-test logic. The tests were developed mod-
ule by module, with each designer responsible for achieving 99% or bet-
ter fault coverage on his or her component. Buses and interconnect were
tested with interconnect tests.

The entire Viper could be synthesized with logic synthesis in about eight
hours running on multiple CPUs. After logic synthesis, the scan chains
were inserted. The netlist was then partitioned and laid out. The physical
hierarchy used for layout was not the same as the logical hierarchy used
for register-transfer design. The design was partitioned into chiplets of
200K cells or fewer, with a total of nine chiplets in Viper. Three hard IP
blocks were used: the TriMedia CPU, the MIPS CPU, and a custom ana-
log block. Signals between chiplets were connected via abutment.

Timing closure was achieved in two stages. First, each chiplet was ana-
lyzed for timing and budgets for input and output timing were set up.
Next, the entire chip was analyzed and optimized. Clock connections
between chiplets were carefully designed and verified to be sure that the
clocks were phase-aligned and met their required timing. A great deal of
work went into design-for-manufacturability, including design rule
checking, removing antennas, and doubling vias where possible.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 570 Return to Table of Contents

8.11 Multiprocessor System-on-Chip Design 559

8.11 Multiprocessor System-on-Chip Design

A multiprocessor system-on-chip (MPSoC) [Wol06,Wol07] is a
system-on-chip with multiple processing elements. These processing
elements may be general-purpose CPUs or DSPs that are referred to as
embedded CPUs or embedded DSPs; they may also be specialized units.
An MPSoC, because it is programmable, provides flexibility to add fea-
tures and create several different systems out of the same chip. And
because the architecture of the MPSoC is designed for a family of appli-
cations, it is more efficient than a general-purpose architecture.

MPSoC architectures While some MPSoCs have regular architectures, many MPSoCs are het-
erogeneous. Heterogeneity comes in several different forms:

• Several different types of processing elements, either different
instruction sets or specialized accelerators.

• A non-uniform memory system in which not all processing elements
have access to all of memory.

• An irregular interconnect system in which not all paths between pro-
cessing elements and memory have the same bandwidth, etc.

why MPSoCs? An irregular architecture is hard to program but it provides substantial
benefits in real-time responsiveness and power consumption. Matching
the processing element to the task can lead to lower power per operation
on the types of algorithms for which the processing element is designed.
Non-uniform memory systems can guard against irrelevant memory
accesses from one processor delaying the time-critical accesses of
another. Specialized interconnect can give lower power per bit transmit-
ted, much as specialized processing elements provide better computa-
tional efficiency.

MPSoCs and IP MPSoCs contain large amounts of IP components. A large multiproces-
sor is much too complex to be designed entirely by hand. Even if all of
the components of the MPSoC are IP components that were acquired
from other sources, the configuration of the multiprocessor and the pro-
grams that run on the multiprocessor make for a unique system.

The next example describes a system-on-chip for multimedia applica-
tions that makes use of a sophisticated embedded CPU.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 571 Return to Table of Contents

560 Chapter 8: Architecture Design

Example 8-7
The TriMedia
TM-1300
Programmable
Media Processor

The TriMedia TM-1300 is a system-on-chip for multimedia applications
built around a VLIW embedded processor. A VLIW (very-long instruc-
tion word) processor allows multiple functions to be specified in each
instruction. VLIW processors are widely used in multimedia systems
because they allow compilers and programmers to take advantage of the
data parallelism built into many multimedia algorithms. The TM-1300’s
VLIW CPU has a 128-bit register file that holds 32-bit operands. It has
27 functional units, with room in each instruction to schedule operations
on five of those function units per instruction. The VLIW processor can
be programmed in C or C++ using a programming environment hosted
on a PC.

The chip has 5.6 million transistors in a six-metal layer 0.25 m pro-
cess. It operates at 2.5 V at the core and 3.3V at the pins. It runs at 143,
166, 180, and 200 MHz at minimum voltage. The chip is 58 mm2 and its
package is a 292-pin ball grid array.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 572 Return to Table of Contents

8.11 Multiprocessor System-on-Chip Design 561

Here is the TM-1300 system block diagram:

video in

audio in

timers

I2C interface

variable-length
decoder

VLIW
CPU

video out

audio out

SPOB out

synchronous
serial interface

DVD
descrambler

image
coprocessor

PCI/XIO
interface

I
cache

D
cache

memory
interface

to main memory

Modern VLSI Design: IP-Based Design, Fourth Edition Page 573 Return to Table of Contents

562 Chapter 8: Architecture Design

And here is a photomicrograph of the chip:

instruction
cache

data
cache

ICP

data
cache

control

PCI
XIO

VIC

VLIW
CPU

instruction
cache

control

VO
hwy

DVDD VLD VI

SSI BTI MMI audio

courtesy Philips

RF

Modern VLSI Design: IP-Based Design, Fourth Edition Page 574 Return to Table of Contents

8.11 Multiprocessor System-on-Chip Design 563

The system-on-chip includes a variety of I/O devices and accelerators as
well as the VLIW CPU. The I/O devices are chosen to satisfy a variety
of needs for multimedia systems. Audio and video input and output are
clearly important; the I2C interface talks to an industry standard bus that
is often used for chip-to-chip communication of low-rate control infor-
mation. Accelerators are chosen to augment the VLIW CPU’s capabili-
ties and speed up critical operations, such as variable-length (Huffman)
coding and descrambling of encrypted DVD bit streams.

The next example describes another MPSoC for digital media.

Example 8-8
The DaVinci
media processor

DaVinci [Tal07] is a family of digital media processors designed to pro-
vide core functions for portable (i.e., battery-operated) and non-portable
media systems.

The Texas Instruments DaVinci uses two programmable cores. One is
an ARM processor, designed to run scalar code, the host operating sys-
tem, etc. The other is a VLIW processor that runs most of the signal and
image processing code. DaVinci also includes a number of I/O inter-
faces (USB, I2C, etc.) and bulk memory interfaces.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 575 Return to Table of Contents

564 Chapter 8: Architecture Design

Here is a die photo of the chip:

Image
Co-processor

USB
PHY

Video
D/As

Video Engine

Peripherals,
SCR

Buses, etc.

DSP

SRAM
ARM

PL
L

PL
L

D
D

R
I/O

s
D

D
R

PH
Y

Courtesy Texas Instruments

Modern VLSI Design: IP-Based Design, Fourth Edition Page 576 Return to Table of Contents

8.12 References 565

This photo shows the main components: the ARM and DSP are the main
programmable processors; the video engine and image co-processor
perform specialized operations; some SRAM is provided; SCR stands
for switched central resource, an interconnection network; a num-
ber of I/O devices are provided, including USB (PHY stands for physi-
cal, meaning the physical layer of the USB system); phase-locked loops
generate clocks; the pins on the right-hand side support double-data rate
(DDR) RAM.

8.12 References

Landman et al. [Lan96] describe a CAD system for architectural power
optimization. Lee et al. [Lee92] discuss how to automatically allocate
registers to improve system testability; Papachristou and Chiu [Pap90]
discuss related techniques for built-in self-test. The built-in self-test
techniques used in the Intel 80386 have been described by Gelsinger
[Gel86, Gel87]. General principles of built-in self-test are described by
McCluskey [McC86] and Abramovici et al. [Abr90]. Lyon et al.
describe design-for-testability of the Motorola 68HC16Z1 embedded
controller [Lyo91]; Bishop et al. describe testability considerations in
the design of the Motorola MC68340 peripheral [Bis90].

8.13 Problems

Q8-1. Describe each of these functions in functional VHDL:

a) a NAND b NAND c.
b) a + b.
c) y = MUX(a,b,c,d,ctrl).

Q8-2. Describe each of these functions in functional Verilog:

a) a NAND b NAND c.
b) a + b.
c) y = MUX(a,b,c,d,ctrl).

n m

8.13 Problems

Modern VLSI Design: IP-Based Design, Fourth Edition Page 577 Return to Table of Contents

566 Chapter 8: Architecture Design

Q8-3. Describe these operations in register-transfer form:

a) z = a + b.
b) if (c) then z = a + b else z = c + d.
c) z = a + b, y = a - c.

Q8-4. Design an ASM chart for a machine that recognizes the sequence
11010 from a serial input and asserts the FOUND output when the
sequence has been found.

Q8-5. Draw a gate-level block diagram for a four-bit adder that has been
pipelined to operate over two clock cycles. Design the adder using
XOR, AND, OR, NAND, NOR, and inverters.

Q8-6. Add registers to the multiplier block diagram of Figure 6-12 to
pipeline the multiplier over two clock cycles. Show the critical delay
path through each stage of the pipeline.

Q8-7. Draw a data flow graph for each of these program fragments:

a) w = a + b; y = a - c + d.
b) w = a - b + c; x = d + e; y = w + x.
c) w = a - b; x = w + c; y = x + d; z = y - e.

Q8-8. Put each of these program fragments into single assignment form:

a) w = a + b; y = a - c + d; w = y + e.
b) w = a - b + c; w = d + e; w = w + x.
c) w = a - b; x = w + c; w = x + d; x = y - e.

Q8-9. You are given this code fragment:

x <= a + b;
y <= c + d;

Design a data path and controller for this code fragment that executes in:

a) 1 clock cycle.
b) 2 clock cycles.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 578 Return to Table of Contents

8.13 Problems 567

Q8-10. You are given this code fragment:

if (c) then
x <= a + b;

else
y <= c + d;

Design a data path and controller for this code fragment that executes in:

a) 1 clock cycle.
b) 2 clock cycles.

Q8-11. For each of these program fragments, show the ASAP and
ALAP schedules and identify which operations are on the critical path.

a) w = a + b; y = a - c + d; z = w + y.
b) w = a - b + c; x = d + e; y = w + x; z = a - b.
c) w = a - b; x = w + c; y = x + d; z = y - e.

Q8-12. You are designing a system with a Cref of 100 minimum-size

inverters. assume that Ci is 1.5n and Cx is 1.1n relative to Cref. Plot
power improvement as given by (EQ 8-7) for a Vref of 1.2 V, V ranging
from 0.8 to 1.2 V, and with n ranging from 1 to 4.

Q8-13. Assuming that each of the left-hand side variables in this code is
a register, draw the register graph for each code fragment.

a) w = a + b; y = a - c + d; z = i1 + y.
b) w = a + x; x = d + w; y = w + x; z = a - b.
c) w = a - z; x = w + y; y = x + w; z = y - e.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 579 Return to Table of Contents

Modern VLSI Design: IP-Based Design, Fourth Edition Page 580 Return to Table of Contents

Appendices

Modern VLSI Design: IP-Based Design, Fourth Edition Page 581 Return to Table of Contents

Modern VLSI Design: IP-Based Design, Fourth Edition Page 582 Return to Table of Contents

A A Chip
Designer’s

Lexicon

Thanks to John Redford and Derek Beatty for many colorful terms.

3-D integration Any of several methods for building VLSI systems with transistors and
interconnections spread over three dimensions. (See Chapter 2.)

ALU Arithmetic logic unit, which can perform several different arithmetic
and logic operations as determined by control signals. (See Chapter 6.)

AOI An and-or-invert gate. (See Chapter 3.)

ALAP As-late-as-possible, a schedule that performs operations at the last pos-
sible time. (See Chapter 8.)

ASAP As-soon-as-possible, a schedule that performs operations at the earliest
possible time. (See Chapter 8.)

ASIC Application-specific integrated circuit. (See Chapter 1.).

ASM chart A technique for register-transfer design. Elements of the chart corre-
spond to states and transitions in the register-transfer machine. Data
path operations can be specified as annotations to those states and tran-
sitions. (See Chapter 8.)

ATPG See automatic test pattern generation.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 583 Return to Table of Contents

572 Appendix A: A Chip Designer’s Lexicon

abutment A connection between two layout blocks formed without additional wir-
ing. (See Chapter 7.)

allocation The assignment of operations to function units. (See Chapter 8.)

aggressor net In crosstalk, the net that generates the noise. (See Chapter 4.)

AND plane The block of logic in a PLA that computes the AND part of the required
sum-of-products. (See Chapter 6.)

area router A router that can operate in non-rectangular, arbitrary-shaped regions.
(See Chapter 7.)

architecture-driven
voltage scaling

A technique for reducing power consumption in which the power supply
voltage is reduced and logic operating in parallel is increased to make
up for the performance deficiency. (See Chapter 8.)

array multiplier A multiplier built from a two-dimensional array of adders and additional
logic. (See Chapter 6.)

arrival time The time at which a signal transition arrives at a given point in a logic
network. (See Chapter 5.)

aspect ratio The width/height ratio of a layout block. (See Chapter 7.)

automatic test pattern
generation

Use of a program to generate a set of manufacturing tests. (See Chapter
5.)

balanced tree In clock distribution, a wiring tree synthesized with RC loads that are
balanced across each set of branches of the tree. (See Chapter 7.)

Baugh-Wooley multiplier A multiplication algorithm for two’s-complement signed numbers. (See
Chapter 6.)

bed of nails A set of probes used to test a printed circuit board.

behavioral synthesis See high-level synthesis.

belt buckle An extremely large chip. See lots per die.

BGA Ball-grid array, a type of package. (See Chapter 7.)

binding In high-level synthesis, synonym for allocation.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 584 Return to Table of Contents

Appendix A: A Chip Designer’s Lexicon 573

BIST See built-in self-test.

bit-slice One bit of a regular, n-bit design. Refers to design styles in both logic
and layout. (See Chapter 4.)

body effect Variation of threshold voltage with source/drain voltage. (See Chapter 2
for the definition of body effect and Chapter 3 for its effect on logic gate
design.)

Booth encoding A technique for reducing the number of stages in array multipliers. (See
Chapter 6.)

bottle CRT in a terminal or workstation (West Coast USA).

bottomwall capacitance Junction capacitance from the bottom of a diffusion region to the
substrate. (See Chapter 2.)

buffer An amplifier inserted in a wiring network to improve performance. (See
Chapter 3.)

built-in self-test A testing scheme that uses logic built into the chip to test the remainder
of the chip. (See Chapter 8.)

burn-in The initial operation of a part before it leaves the factory. See infant
mortality.

bus A common connection.

CPU Central processing unit.

carry-lookahead adder An adder that evaluates propagate and generate signals in a
carry-lookahead network that directly computes the carry out of a group
of bits. (See Chapter 6.)

carry-select adder An adder that first generates alternate results for different possible
carry-ins, then selects the proper result based on the actual carry-in. (See
Chapter 6.)

carry-skip adder An adder that recognizes certain conditions for which the carry into a
group of bits may be propagated directly to the next group of bits. (See
Chapter 6.)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 585 Return to Table of Contents

574 Appendix A: A Chip Designer’s Lexicon

ceramic package A package for an integrated circuit made from ceramics, which offers
better thermal conductivity and isolation from the elements than a plas-
tic package. (See Chapter 7.)

chaining Performing two data operations, such as two additions, in the same
clock cycle. (See Chapter 8.)

channel A rectangular routing region. (See Chapter 4.)

channel graph A graph that describes the connections between channels in a floorplan.
(See Chapter 7.)

channel router A routing program designed to route within a rectangular routing
region. (See Chapter 4.)

channel utilization The number of wires that flow through a channel. (See Chapter 7.)

charge sharing Storing charge in parasitic capacitances such that the circuit produces
erroneous results. (See Chapter 4.)

circuit under test, CUT Testing terminology for the logic undergoing testing.

clock A signal used to load data into a memory element.

clocked inverter An inverter with additional transistors that cause its output to be in a
high-impedance state when the clock is not active. (See Chapter 4.)

color plan A sketch of wiring over a chip or a large section of the chip that has
been drawn in color to emphasize relationships between the layers and
that emphasizes the decisions on how layers are to be used in the layout
design. (See Chapter 7.)

control dependency An operation that depends on a control decision. (See Chapter 8.)

controllability The ability to set (directly or indirectly) the value of a node on chip. See
also observability. (See Chapter 4.)

controller A state machine designed primarily to generate control signals. (See
Chapter 8.)

core-limited A chip whose size is determined by its core logic, not its pad frame.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 586 Return to Table of Contents

Appendix A: A Chip Designer’s Lexicon 575

clock distribution The problem of distributing a clock signal to all points within a chip
with acceptable delay, skew, and signal integrity. (See Chapter 7.)

clocked inverter An inverter with extra transistors that cause the inverter’s output to be
an open circuit when the clock input is disabled. (See Chapter 5.)

clocking discipline A set of rules that, when followed, ensure that a sequential system will
operate correctly across a broad range of clock frequencies. (See Chap-
ter 5.)

crosstalk Noise generated by one line interfering with another. (See Chapter 4.)

DCSL A low-power variant of DCVSL. (See Chapter 3.)

DCVSL A logic family that uses a latched pullup stage. (See Chapter 3.)

DIP Dual in-line package, a type of package. (See Chapter 7.)

DRAM Dynamic random-access memory. A three-transistor cell was an early
form; the one-transistor cell is universal in commodity DRAM and
increasingly used in logic chips. See also embedded RAM. (See Chapter
6.)

data dependency A relationship between two data computations in which the result of one
is needed to compute the other. (See Chapter 8.)

data path A unit designed primarily for data-oriented operations. Often designed
in bit-slice style. (See Chapter 6.)

data path-controller
architecture

A sequential machine built from a data path plus a controller that
responds to the data path’s outputs and provides the data path’s control
inputs. (See Chapter 8.)

database A program that provides access to and maintains the consistency of
data.

decoupling capacitors Capacitors added either on-chip or off-chip to reduce power/ground
noise. (See Chapter 7.)

delay In logic gate design, input/output timing, particularly measured between
50% points in the waveform. (See Chapter 3.)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 587 Return to Table of Contents

576 Appendix A: A Chip Designer’s Lexicon

departure time The time at which a signal transition leaves a given point in a logic net-
work. (See Chapter 5.)

design flow A series of steps used to design a chip. (See Chapter 8.)

design-for-
manufacturing

A methodology that improves manufacturing yield. (See Chapter 1.)

design-for-yield A methodology that improves chip yield for an advanced process. (See
Chapter 2.)

design methodology Generally similar to a design flow, though this is perhaps a more general
term. (See Chapter 8.)

design rule In general, a rule that governs design procedures. Most frequently
applied to layout rules. (See Chapter 2.)

detailed routing The determination of the exact layout of a set of wires; compare to
global routing. (See Chapter 7.)

dice 1. (verb) To cut a wafer into die. 2. (noun) Singular form of die.

diffusion Generic term for any n-type or p-type region that is used to form transis-
tors or wires. (See Chapter 2.)

die Chips after slicing from the wafer but before packaging.

direct write Exposing photoresist by writing directly on the wafer without masks
using an electron beam or x-ray lithography system.

distributed control A controller built from several communicating machines. (See Chapter
8.)

dog and pony show A presentation to management.

dogleg A style of channel routing that allows multiple horizontal segments.
(See Chapter 4.)

domino A common form of dynamic logic gate. (See Chapter 3.)

dot-com An extinct form of company to which many CAD engineers went to
seek their fortunes, only to return empty-handed.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 588 Return to Table of Contents

Appendix A: A Chip Designer’s Lexicon 577

drain One of the transistor terminals connected to the channel. (See Chapter
2.)

drawn length The length of the transistor channel as drawn in the layout sent to manu-
facturing. The masks are often post-processed after tapeout and before
manufacturing, making the fabricated and drawn lengths of the gate dif-
ferent. (See Chapter 2.)

drop-in See test structure.

dynamic latch A latch that uses gate capacitance as a storage element and is volatile.
(See Chapter 5.)

dynamic logic Logic that relies on charge stored on a transistor’s gate capacitance. (See
Chapter 4.)

e-beam An electron beam lithography machine. See also direct write.

effective capacitance A capacitance value chosen to estimate the gate delay induced by a wir-
ing load. (See Chapter 4.)

Elmore delay A wiring delay model for RC transmission lines. (See Chapter 3.)

embedded CPU A CPU used in a larger system design. (See Chapter 8.)

embedded RAM Memory fabricated on the same die as logic components. (See Chapter
6.)

emulator An FPGA-based machine into which a logic design can be compiled to
be executed at relatively high speeds for prototyping and debugging.

FPGA Field-programmable gate array. (See Chapter 6.)

fanin All the gates that drive a given input of a logic gate.

fanout All the gates driven by a given gate.

flash memory An EEPROM memory that can be erased and reprogrammed using typi-
cal digital voltages and whose erasure circuitry works in large blocks.
(See Chapter 6.)

flip-flop A type of memory element not normally transparent during clocking.
(See Chapter 4.)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 589 Return to Table of Contents

578 Appendix A: A Chip Designer’s Lexicon

floorplan A sketch used to plan a layout design. (See Chapter 7.)

framework A style of CAD database that provides utilities used by a variety of
CAD tools.

functional testing Testing of a component at low speed.

fringe capacitance Capacitance around the edges of a pair of parallel plates. (See Chapter
2.)

full adder An adder that generates both a sum and a carry. (See Chapter 6.)

GDS2 A common data format used to deliver mask information.

gate 1. The transistor terminal that controls the source-drain current. (See
Chapter 2.) 2. Short for logic gate. (See Chapter 3.)

global routing Determining the paths of wires through channels or other routing areas
without determining the exact layout of those wires; compare to detailed
routing. (See Chapter 7.)

ground bounce, ground
noise

Variations in ground voltage due to impedance on the ground wires.
(See Chapter 7.)

ground plane A large section of metallization used to provide coupling to ground and
reduce the effect of other signal coupling. (See Chapter 7.)

hard failure A failure from which the system cannot recover. (See Chapter 2.)

H tree A style of clock distribution network in which wires are organized as a
hierarchy of Hs. (See Chapter 7.)

half adder An adder that puts out only a sum. (See Chapter 6.)

hard IP Intellectual property that is delivered as a layout. (See Chapter 1.)

hardware/software
co-design

The simultaneous design of an embedded CPU system and the software
that will execute on it.

hardwired controller A controller that is designed using random logic; compare to micro-
coded controller. (See Chapter 8.)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 590 Return to Table of Contents

Appendix A: A Chip Designer’s Lexicon 579

high-level synthesis CAD techniques for allocation, scheduling, and related tasks. (See
Chapter 8.)

Hightower routing A common algorithm for area routing.

hit by a truck The canonical means of losing a key technical person at a critical point
in a project.

hold time The interval for which a memory element data input must remain stable
after the clock transition. (See Chapter 5.)

ITRS See International Technology Roadmap for Semiconductors.

infant mortality The failure of chips during their first few hours of operation.
See burn-in.

intellectual property Generally, any intangible good that is a product of the mind. Specifi-
cally, design elements that are acquired and integrated into a system.
(See Chapter 1.)

International
Technology Roadmap for

Semiconductors

A document produced by the semiconductor industry that maps out
goals for future generations of semiconductor manufacturing. (See
Chapter 2.)

LFSR Linear feedback shift register, a sequential machine used to generate
pseudo-random sequences. (See Chapter 8.)

LSSD Level-sensitive scan design, a method by which registers are operated in
a shift mode during testing to observe and set state internal to the chip.
(See Chapter 5.)

latch A type of memory element that is transparent when the clock is active.
(See Chapter 5.)

linear region The region of transistor operation in which the drain current is a strong
function of the source/drain voltage. (See Chapter 2.)

logic synthesis The automatic design of a logic network implementation.

lot A set of wafers run through fabrication simultaneously; the basic unit of
production.

lots per die A yield measure for extremely large chips. See belt buckle.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 591 Return to Table of Contents

580 Appendix A: A Chip Designer’s Lexicon

MTCMOS Multiple threshold CMOS, a low-power logic family. (See Chapter 3.)

MTTF See mean-time-to-failure.

Manchester carry chain A form of precharged carry chain that uses pass transistors. (See Chap-
ter 6.)

Manhattan geometry Masks that use only 90-degree angles.

mean-time-to-failure The mean time between successive system failures. (See Chapter 2.)

memory element A generic term for any storage element: flip-flop, latch, RAM, etc. (See
Chapter 5.)

metal migration A failure mode of metal wires caused by excessive current relative to
the size of the wire. (See Chapter 2.)

microcoded controller A controller that is designed using a microsequencer; compare to hard-
wired controller. (See Chapter 8.)

MPSoC See multiprocessor system-on-chip.

multiplexer A combinational logic unit that selects one out of n inputs based on a
control signal.

multiprocessor
system-on-chip

A system-on-chip that contains more than one CPU, DSP, and/or spe-
cialized processor. (See Chapter 8.)

NORA A style of precharged logic.

nanometer technology Generally speaking, a technology with feature sizes less than 100 nm.
(See Chapter 2.)

n-type diffusion An n-doped region. (See Chapter 2.)

no-op 1. A CPU instruction that performs no operation. 2. A useless person.

OAI An or-and-invert gate. (See Chapter 3.)

observability The ability to determine (directly or indirectly) the value of a node on a
chip. See also controllability.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 592 Return to Table of Contents

Appendix A: A Chip Designer’s Lexicon 581

one-hot code A unary code used for state assignment or other codes in which each
symbol is represented by a single true bit. (See Chapter 5.)

one-transistor DRAM A dynamic RAM circuit that uses one capacitor to store the value and
one transistor to access the value. Also called one-T DRAM. (See Chap-
ter 6.)

OR plane The block of logic in a PLA that computes the OR part of the required
sum-of-products. (See Chapter 6.)

overdamped An RLC circuit that does not oscillate.

 model A model for the load on a gate that uses two capacitors bridged by a
resistor. (See Chapter 4.)

p-type diffusion A p-doped region. (See Chapter 2.)

PCB Printed circuit board.

PGA Pin grid array, a type of package. (See Chapter 7.)

PLA Programmable logic array. (See Chapter 6.)

PLCC Plastic leadless chip carrier, a type of package. (See Chapter 7.)

PLL See phase-locked loop.

PODEM A test generation algorithm.

PG See pattern generator.

PVT Acronym for process, supply voltage, and temperature, three critical
sources of variations. (See Chapter 2.)

package Any carrier for an integrated circuit. (See Chapter 7.)

pad A large metal region used to make off-chip connections.
(See Chapter 7.)

pad frame A set of pads and associated circuitry arranged around the edges of a
rectangle, with room for logic in the middle. (See Chapter 7.)

pad-limited A chip whose size is limited by its pad frame, not its core logic.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 593 Return to Table of Contents

582 Appendix A: A Chip Designer’s Lexicon

parametric testing Testing for process-determined parameters: k’, VT, etc.

pass transistor A single transistor (usually n-type) used for switch logic.
(See Chapter 4.)

pattern generator A machine that makes masks for fabrication. Pattern generator
machines are replaced by electron beam machines for fine-line
masks—see e-beam.

performance testing Testing the speed at which a component runs.

phase A clock signal that has a specified relationship to other clock phases.
(See Chapter 5.)

phase-locked loop A circuit that is often used to generate an internal clock from a slower
external clock source. (See Chapter 7.)

pin The connection between a package and a board. (See Chapter 7.)

pipelining A logic design technique that adds ranks of memory elements to reduce
clock cycle time at the cost of added latency. (See Chapter 8.)

placement The physical arrangement of elements. (See Chapter 4 for gate place-
ment and Chapter 7 for more global placement considerations.)

plastic package A package made from plastic with metal leads for electrical connec-
tions. Is cheaper than a ceramic package but provides lower thermal
conductivity. (See Chapter 7.)

plate capacitance A capacitance between two parallel plates. The capacitance mechanism
for transistor gates and metal capacitance. (See Chapter 2.)

polysilicon Material used for transistor gates and wires. (See Chapter 2.)

power-down mode An operating mode of a digital system in which large sections are turned
off.

precharging Charging a storage node for possible later discharge. (See Chapter 3.)

primary input An input to the complete system, as opposed to an input to a logic gate
in the system.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 594 Return to Table of Contents

Appendix A: A Chip Designer’s Lexicon 583

primary output An output of the complete system, as opposed to an output of a logic
gate in the system.

probe card Used to connect a tester to an unpackaged integrated circuit.

propagation time The time required for a signal to travel through combinational logic.
(See Chapter 5.)

pseudo-nMOS A circuit family that uses a p-type resistive load. (See Chapter 3.)

pulldown Any transistor used to pull a gate output toward VSS. (See Chapter 3.)

pulldown network The network of transistors in a logic gate responsible for pulling the gate
output toward VSS. (See Chapter 3.)

pullup Any transistor used to pull a gate output toward VDD. (See Chapter 3.)

pullup network The network of transistors in a logic gate responsible for pulling the gate
output toward VDD. (See Chapter 3.)

QIP metric A metric used to improve the quality of IP modules (See Chapter 6.)

RAM Random-access memory. May be dynamic or static. (See Chapter 6.)

ROM Read-only memory. (See Chapter 6.)

real estate Chip area.

recirculating latch A latch with cross-coupled inverters to provide non-volatile storage.
(See Chapter 5.)

redundant In combinational logic, an expression that is not minimal.
(See Chapter 3.)

refresh Restoring the dynamically-stored value in a memory. (See Chapter 6.)

register Generally used as synonymous with memory element. (See Chapter 5.)

register graph A graph used in test generation that describes the connections between
registers. (See Chapter 8.)

reliability The rate of failures of a system, as measured by metrics such as mean-
time-to-failure. (See Chapter 2.)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 595 Return to Table of Contents

584 Appendix A: A Chip Designer’s Lexicon

reticle An alternate form of mask that covers only a small part of the wafer and
is repeated across the wafer surface.

retiming Moving memory elements through combinational logic to change the
clock period. (See Chapter 5.)

river routing Routing in which wires form meandering paths but do not cross one
another.

routing The physical design of wiring. (See Chapters 4 and 7.)

rubylith Early material for generating masks—a red sheet of plastic over a clear
plastic base sheet that could be cut and peeled away to produce artwork
for photographic reduction.

SCR See silicon-controlled rectifier.

SRAM Static read-only memory. (See Chapter 6.)

saturation region The region of transistor operation that is roughly independent of the
source/drain voltage. (See Chapter 2.)

scan chain, scan path A set of registers that can be operated as a shift register for reading and
writing during testing. See also LSSD. (See Chapter 5.)

scheduling The assignment of operations to clock cycles. (See Chapter 8.)

sense amplifier A differential amplifier used to sense the state of bit lines in memories.
(See Chapter 6.)

sequential depth The number of intervening registers between a selected register and a
primary input. (See Chapter 8.)

setup time The time by which a memory element’s data input must arrive for it to
be properly stored by the memory element. (See Chapter 5.)

shifter A logic unit designed for shift operations. (See Chapter 6.)

short circuit power The power consumed by a logic gate or network when both pullup and
pulldown transistors are on. (See Chapter 3.)

sidewall capacitance Junction capacitance from the side of a diffusion region to the substrate.
(See Chapter 2.)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 596 Return to Table of Contents

Appendix A: A Chip Designer’s Lexicon 585

signal probability The probability that a signal will switch, used in power analysis.
(See Chapter 5.)

silicide An improved gate material.

silicon-controlled
rectifier

In digital VLSI circuits, a parasitic device that can cause the chip to
latch up. (See Chapter 2.)

sign-off The approval of a design for manufacturing (or possibly some interme-
diate point in the design).

signature analysis A built-in self-test technique. (See Chapter 8.)

skin effect The result of electromagnetic fields in low-resistance conductors that
causes current to be carried primarily along the conductor’s skin. (see
Chapter 2.)

slicing structure A floorplan that can be sliced into two sections without cutting any
block, making it easier to route. (See Chapter 7.)

soft IP Intellectual property that is not delivered as a layout, rather as gates,
HDL, etc. (See Chapter 1.)

solder bump A technique for making connections to a chip across its entire surface,
not just at the periphery.

source One of the transistor terminals connected to the gate. (See Chapter 2.)

spin A workaholic’s term for a turn.

state The current values of the memory elements. (See Chapter 5.)

state assignment The selection of binary codes for symbolic states. (See Chapter 5.)

state transition graph A specification of a sequential machine, equivalent to a state transition
table. (See Chapter 5.)

state transition table A specification of a sequential machine, equivalent to a state transition
graph. (See Chapter 5.)

static logic Logic that does not rely on dynamically-stored charge.

step-and-repeat The process of patterning a wafer with a reticle.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 597 Return to Table of Contents

586 Appendix A: A Chip Designer’s Lexicon

stuck-at-0/1 A fault model that assumes that a faulty gate’s output is always either 0
or 1. (See Chapter 4.)

stuck-at-open A fault model that assumes that a faulty gate’s output is always either
electrically open or electrically closed. (See Chapter 4.)

subthreshold current A current through a transistor that flows when the gate voltage is below
the device’s threshold voltage. (See Chapter 2.)

suit A manager. See no-op.

switchbox A rectangular routing region with pins on all four sides. (See Chapter 7.)

synthesis subset A subset of a hardware description language that can be synthesized into
hardware. (See Chapter 8.)

tape out Generate a tape for pattern generation. When working for a munificent
employer, the precondition for a major party.

tapered wire A wire whose width varies along its width, usually to reduce the wire
delay. (See Chapter 3.)

test structure Features added to the wafer for measuring processing parameters.

test synthesis The creation of test vectors from a state transition diagram or other non-
gate description of the logic.

testbench An HDL module (particularly in VHDL) that is used to execute a test of
another HDL module. (See Chapter 8.)

tester A machine that applies test vectors to chips on the manufacturing line.

threshold voltage The gate voltage at which a transistor’s drain current is deemed to be
significant. (See Chapter 2.)

toaster 1) An extremely cost-sensitive application. 2) A chip that greatly
exceeds its power budget.

transistor sizing The determination of the appropriate W/Ls for transistors for perfor-
mance or other design goals. (See Chapter 3.)

transmission gate A pair of n-type and p-type transistors connected in parallel and used to
build switch logic. (See Chapter 3.)

Modern VLSI Design: IP-Based Design, Fourth Edition Page 598 Return to Table of Contents

Appendix A: A Chip Designer’s Lexicon 587

transient failure A failure from which the system can recover. (See Chapter 2.)

transition time The time it takes a gate to rise or fall, often measured from 10% to 90%
for rise time and vise versa for fall time. (See Chapter 3.)

tube CRT in a terminal or workstation (East Coast USA).

turn One iteration of the complete design cycle.

underdamped An RLC circuit that oscillates.

unknown voltage A voltage that represents neither logic 0 nor logic 1. (See Chapter 3.)

VHDL Acronym for VHSIC Hardware Description Language. (See Chapter 8
and Appendix B.)

VTCMOS Variable threshold CMOS, a low-power logic family. (See Chapter 3.)

vector Inputs applied to a chip.

Verilog A hardware description language. (See Chapter 8 and Appendix B.)

via A hole in the chip’s insulating layer that allows connections between
different layers of interconnect. (See Chapter 2.)

victim net In crosstalk, the net that receives the noise. (See Chapter 3.)

voltage contrast A technique for reading voltages on an operating chip by scanning the
chip with an electron beam and measuring the deflected current. (See
Chapter 8.)

voltage scaling Any one of several techniques for reducing the power supply voltage of
a chip to lower its power consumption. (See Chapter 8.)

wafer start A unit of production—the start of one wafer through the fabrication
line. Both fab line capacity and chip production are measured in units of
wafer starts.

Wallace tree A design for high-speed multiplication. (See Chapter 6.)

wave pipelining An advanced logic design methodology in which more than one signal
is traveling through the logic between successive ranks of memory ele-
ments.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 599 Return to Table of Contents

588 Appendix A: A Chip Designer’s Lexicon

win the lottery To get a much higher salary from a competitor.

windmill A configuration of routing channels for which there is no unique routing
order of the channels. (See Chapter 7.)

xter, xstr Synonyms for transistor.

zipper A logic design family similar to domino logic but without the output-
stage inverter.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 600 Return to Table of Contents

B Hardware
Description
Languages

B.1 Introduction

This section briefly reviews the Verilog and VHDL hardware descrip-
tion languages. These are both complex languages and this section is not
intended to be a complete guide by any means. Hopefully, these sections
can help remind you of some basic syntactic elements of the languages.

B.2 Verilog

The IEEE standard defines Verilog. Books by Thomas and Moorby
[Tho98], Smith and Franzon [Smi00], and Ciletti [Cil03] are useful
guides to the language.

B.2.1 Syntactic Elements
Verilog has two forms of comments:

/* this is a
 multiline comment */
// this is a comment

Verilog defines the value set [0 1 x z] of signal values. The value x is
the unknown value, while z is a high impedance.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 601 Return to Table of Contents

590 Appendix B: Hardware Description Languages

B.2.2 Data Types and Declarations
The type wire is used to carry signal values. If the wire is not driven, it
is assigned the default value z.

A hardware register is of type reg. A register is assigned the default
value x.

An integer can be written in a variety of bases; the general form for an
integer is

size’base number

The timescale statement can be used to specify the units of time in
printouts, etc:

‘timescale 10 ns / 1 ns

The first number is the units used and the second number is the least-
significant digit.

A wire or reg may be declared as an array:

wire [expr1 : expr2] wire_name ;
reg [expr1 : expr2] reg_name ;

A parameter declaration defines a constant in a module:

parameter param_name = value ;

A preprocessor directive can be used to define constants that can be
used in a variety of ways:

‘define const_name value

B.2.3 Operators
Boolean logical operators include:

&& (and) || (or) ~ (not)

Verilog provides bitwise Boolean operators that can be applied to wire
arrays:

& (and) ~& (nand) ^ (xor) ~^ (xnor) | (or) ~| (nor)

If these operators are used as binary operators, then they perform bit-
wise operations. If they are used as unary operators, then they combine
the bits in the wire array using the operator, such as ANDing together all
the bits in a wire array.

Shift operators include

Modern VLSI Design: IP-Based Design, Fourth Edition Page 602 Return to Table of Contents

B.2 Verilog 591

<< (left shift) >> (right shift)

Relational operators include

< (less than) <= (less than or equal to) >= (greater than or
equal to) > (greater than) == (equal) != (not equal)

Arithmetic operators include

+ - * (multiply) / (divide) % (modulus)

Synthesis of multiply, divide, and modulus require access to hardware
modules for these operators. They are, of course, large blocks of logic.

Curly braces can be used to concatenate signals:

{a,b}

forms a vector from a and b.

B.2.4 Statements
An assignment statement has the form

assign net_name = expression ;

The concatenation operator can be used to put together signals into a
bundle, for example

assign {asig, bsig} = w1 & w2;

Blocking assignments are performed in order:

v1 = val1;
v2 = val2;

Non-blocking assignments are performed concurrently:

sig1 <= a;
sig2 <= b;

A statement block is a set of statements in between begin and end.

The always block repeats a block of code until the simulation termi-
nates:

always @(event_expression)
statement_block ;

The event controlling the always may be one of several types: a level
type triggers the block whenever a named set of signals changes; an

Modern VLSI Design: IP-Based Design, Fourth Edition Page 603 Return to Table of Contents

592 Appendix B: Hardware Description Languages

edge type, such as posedge sig or negedge sig looks for an edge in a
particular direction.

The if statement has the form

if (expression) block
{ elsif (expression) block }
[else block] ;

The case statement has the form

case (expression)
{ value : block; }
[default: block;]

endcase

The case statement has two important variants: casez treats z or ? val-
ues as don’t-cares; casex treates z, x, or ? values as don’t-cares.

The for loop has the form

for (initial_index; terminal_index; step) block;

The for statement can be synthesized if it is used to iterate in space over
an array of signals, using an integer for the index.

B.2.5 Modules and Program Units
A module is the basic unit of hardware specification. A module
description has the form

module module_name(port_list);
parameter_list
port_declarations
wire wire_declarations
reg reg_declarations
submodule_instantiations
body
endmodule

A port may be declared to be in, out, or inout:

module foo(a, b, c, d)
input a;
output b, c;
inout d;
endmodule;

Modern VLSI Design: IP-Based Design, Fourth Edition Page 604 Return to Table of Contents

B.2 Verilog 593

Submodule instantiations include functions and tasks. A function is a
single-output, executes in zero time, and cannot contain timing control
statements. A function has the form

function [range] function_name;
parameters
input input_declarations
reg reg_declarations
body

endfunction

A task is more general, though its outputs must be registered:

task task_name;
parameters
input input_declarations
output output_declarations
reg reg_declarations
body

endtask

B.2.6 Simulation Control
The $monitor statement prints a formatted string every time one of the
signals in its list changes. The $monitor statement is similar to the C
printf statement.:

$monitor(format_string,signal,...);

The formatting string is enclosed by quotes (“ and ”). Formatting direc-
tives in the monitor statement include %d (decimal), %b (binary), %x
(hex), and %o (octal). A newline is denoted by \n and a tab by \t.

The pound sign can be used to advance the simulation clock:

#10

This statement advances the simulation clock by 10 time units.

The initial block defines a set of code that is executed once at the start of
simulation:

initial begin
end

The $stop command suspends simulation. The $finish command termi-
nates the simulation run. Both are terminated by a semicolon.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 605 Return to Table of Contents

594 Appendix B: Hardware Description Languages

B.3 VHDL

The IEEE standard defines VHDL [IEE93]. Bhasker’s book [Bha95] is
a useful introduction to the language.

B.3.1 Syntactic Elements
A comment in VHDL looks like this:

-- This is a comment until the end of the line.

VHDL is case-insensitive and generally provides free-form syntax.

A library is used in a module with this declaration:

library library_name [, library_name_list];

B.3.2 Data Types and Declarations
VHDL allows the declaration of enumeration types, for example:

type enum_1 is (a, w, xxx);

The language defines several enumeration types: character, bit (with
values ‘0’ and ‘1’), boolean (with values true and false),
severity_level, file_open_kind, and file_open_status.

VHDL also allows the declaration of integer subranges:

type subrange1 is range 1 to 32;

An array declaration may make use of any base type:

type array1 is array (0 to 15) of bit;

A record in VHDL is similar to the structures or records of other modern
programming languages:

type rec1 is
field1 : integer;
field2 : bit;
field3 : array (0 to 31) of bit;

A constant declaration looks like this:

constant const_name := value ;

A variable declaration has the form:

Modern VLSI Design: IP-Based Design, Fourth Edition Page 606 Return to Table of Contents

B.3 VHDL 595

variable variable_name : type_name ;

A signal declaration has a similar form:

signal signal_name : type_name ;

B.3.3 Operators
Logical operators include:

and or nand nor xor xnor not

Relational operators include:

= /= <= < > >=

The /= operator is the not equals operator.

Shift operators include:

sll srl sla sra rol ror

Addition operators include:

+ - &

The & operator is the concatenation operator.

Multiplication operators include:

* / mod rem

Other operators include:

abs **

The ** operator is the exponentiation operator.

B.3.4 Sequential Statements
A signal assignment looks like this:

signal <= expression [after delay_value];

The wait statement has several forms:

wait on sensitivity_list;
wait until boolean_expression;
wait for time_expression;

The wait on statement waits for an event on one of the signals on the
sensitivity list. The wait until statement waits until the expression

Modern VLSI Design: IP-Based Design, Fourth Edition Page 607 Return to Table of Contents

596 Appendix B: Hardware Description Languages

becomes true. The wait for statement waits for the specified amount of
time.

The if statement has the form

if boolean_expression then
sequential_statements

{elsif boolean_expression then
sequential_statements}

[else
sequential_statements]

end if;

The case statement has the form

case expression is
when choices => sequential_statements
[when others => sequential_statements]

end case;

The for statement has the form

for identifier in range loop
sequential_statements

end loop;

The while statement has the form

while boolean_expression loop
sequential_statements

end loop;

The general loop statement has the form

label: loop
sequential_statements

exit when boolean_expression;
end loop label;

The assertion statement has the form

assert boolean_expression
[report string_expression]
[severity expression];

If the assertion’s condition fails, the run time system puts out a warning
message.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 608 Return to Table of Contents

B.3 VHDL 597

B.3.5 Structural Statements
A declaration of a component instance looks like this:

instance_name: type_name port map (pin1, pin2);

The instance_name is the name of this instantiation of the component
while type_name is the name of the type of component to be instanti-
ated. The list of pins shows how signals are to be connected to the
instance’s pins.

B.3.6 Design Units
VHDL defines five types of design units:

• Entity declaration.

• Architecture body.

• Configuration declaration.

• Package declaration.

• Package body.

An entity declaration is a form of type declaration for a hardware unit. It
defines the name of the entity and its ports. An entity declaration looks
like this:

entity entity_name is
port (a, b : in bit; c : inout bit; d, e : out bit);

end entity_name;

The port list following the port keyword gives all the ports for the
entity. in, out, and inout are directions for the ports. The name bit is a
type of a signal; other types of signals are also possible.

An architecture body describes the internal organization of an entity and
looks like this:

architecture arch_name of entity_name is
{ component_list }

begin
{ structural_statements | sequential_statements }

end arch_name;

The arch_name parameter is the name of this architecture; an entity
may have several different architectures defined for it. If the architecture
uses structural statements to connect components, the components
needed are declared like this:

Modern VLSI Design: IP-Based Design, Fourth Edition Page 609 Return to Table of Contents

598 Appendix B: Hardware Description Languages

component component_name
port (port_list);

end component;

A configuration declaration declares which architecture to use for an
entity and to bind components:

configuration config_name of entity_name is
for arch_name

for comp1:type1
use entity lib1.entity1(arch);

end for;
end for;

A variety of statements can be used in the configuration declaration to
determine the binding of components.

A package is a language unit that facilitates code reuse. A package dec-
laration looks like this:

package package_name is
type_declaration;
component_declaration;
constant_declaration;
function_declaration;

end package_name;

A package body fills in the information behind the package declarations:

package_body package_name is
package_contents;

end package_name;

B.3.7 Processes
Processes are used to model behavior. A typical process looks like this:

process (a, b) is
begin
x <= a or b;
wait for 2 ns;
y <= not b;
end process;

The signal list following the process keyword is the sensitivity list of
signals to be observed by the process. The process is activated when any
signal on the sensitivity list changes. The process body may include any
sequential statement.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 610 Return to Table of Contents

References

[Abr90] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman, Digital System Testing and
Testable Design, Computer Science Press, Rockville, MD, 1990.

[Aga07] Kanak Agarwal and Sani Nassif, “Characterizing process variation in nanometer CMOS,” in
Proceedings, DAC 2007, ACM Press, 2007, pp. 396-399.

[Ake67] S. B. Akers, “A modification of Lee’s path connection algorithm,” IEEE Transactions on
Electronic Computers, February, 1967, pp. 97-98.

[ARM08] ARM, “Standard cell libraries overview,” http://www.arm.com/products/physicalip/stan-
dardcell.html, accessed May 26, 2008.

[Alt06] Josep Altet, Wilfrid Clayes, Stefan Dilhaire, and Antonio Rubio, “Dynamic surface tempera-
ture measurements in ICs,” Proceedings of the IEEE, 94(8), August 2006, pp. 1519-1533.

[Bak90] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley,
1990.

[Bak05] R. Jacob Baker, CMOS: Circuit Design, Layout, and Simulation, second edition, IEEE Press,
2005.

[Bas95] Mick Bass, Terry W. Blanchard, D. Douglas Josephson, Duncan Weir, and Daniel L. Halp-
erin, “Design methodologies for the PA 7100LC microprocessor,” Hewlett-Packard Journal, 46(2),
April, 1995, pp. 23-35.

[Bau73] Charles R. Baugh and Bruce A. Wooley, “A two’s complement parallel array multiplication
algorithm,” IEEE Transactions on Computers, C-22(12), December, 1973, pp. 1045-1047.

[Ben95] Jack D. Benzel, “Bugs in black and white: imaging IC logic levels with voltage contrast,”
Hewlett-Packard Journal, 46(2), April, 1995, pp. 102-106.

[Ber95] R. A. Bergamaschi, R. A. O’Connor, L. Stok, M. Z. Moricz, S. Prakash, A. Kuehlmann, and
D. S. Rao, “High-level synthesis in an industrial environment,” IBM Journal of Research and Devel-
opment, 39(1/2), January/March, 1995, pp. 131-148.

[Bha95] J. Bhasker, A VHDL Primer, revised edition, Englewood Cliffs NJ: Prentice Hall, 1995.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 611 Return to Table of Contents

600 References

[Bis90] Philip E. Bishop, Grady L. Giles, Sudarshan N. Iyengar, C. Thomas Glover, and Wai-on
Law, “Testability considerations in the design of the MC68340 integrated processor unit,” Proceedings,
1990 International Test Conference, IEEE Computer Society Press, 1990, pp. 337-346.

[Boe93] K. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins, “Fidelity and near-optimality of
Elmore-based routing constructions,” in Proceedings, ICCD ’93, IEEE Computer Society Press, 1993,
pp. 81-84.

[Boo51] Andrew D. Booth, “A signed binary multiplication technique,” Quart. Journal of Mech.
and Appl. Math., Vol. IV, Pt. 2, 1951, pp. 236-240.

[Bor03] Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Keshavarzi, and Vivik De,
“Parameter variations and impact on circuits and microarchitecture,” in Proceedings, 2003 Design
Automation Conference, ACM, 2003, pp. 338-342.

[Bow95] William J. Bowhill, Shane L. Bell, Bradley J. Benschneider, Andrew J. Black, Sharon M.
Britton, Ruben W. Castelino, Dale R. Donchin, John H. Edmondson, Harry R. Fair III, Paul E.
Gronowski, Anil K. Jain, Patricia L. Kroesen, Marc E. Lamere, Bruce J. Loughlin, Shekhar Mehta,
Robert O. Mueller, Robert P. Preston, Sribalan Santhanam, Timothy A. Shedd, Michael J. Smith, and
Stephen C. Thierauf, “Circuit implementation of a 300-MHz 64-bit second-generation CMOS Alpha
CPU,” Digital Technical Journal, 7(1), 1995, pp. 100-118.

[Boy70] W. S. Boyle and G. E. Smith, “Charge coupled semiconductor devices,” Bell System Techni-
cal Journal, 49, 1970, p. 587.

[Bre77] Melvin A. Breuer, “A class of min-cut placement algorithms,” Proceedings, 14th Design
Automation Conference, ACM/IEEE, 1977, pp. 284-290.

[Bro93] T. Brodnax, M. Schiffli, and F. Watson, “The PowerPC 601 design methodology,” in Pro-
ceedings, ICCD ’93, IEEE Computer Society Press, 1993, pp. 248-252.

[Bry87B] Randal E. Bryant, “Algorithmic aspects of symbolic switch network analysis,” IEEE Trans-
actions on CAD/ICAS, CAD-6(4), July, 1987, pp. 618-633.

[Cal90] Richard E. Calcagni and Will Sherwood, “VAX 6000 Model 400 CPU chip set functional
design verification,” Digital Technical Journal, 2(2), Spring 1990, pp. 64-72.

[Cal96] Thomas K. Callaway and Earl E. Schwartzlander, Jr., “Arithmetic Components,” Chapter 7
in Jan M. Rabaey and Massoud Pedram, eds., Design Methodologies, Norwell MA: Kluwer Academic
Publishers, 1996.

[Cha72] T. J. Chaney and C. E. Molnar, “Anomalous behavior of synchronizer and arbiter circuits,”
IEEE Transactions on Computers, C-22(4), April 1973, pp. 421-422.

[Cha92] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen, “Low-power CMOS
digital design,” IEEE Journal of Solid-State Circuits, 27(4), April, 1992, pp. 473-484.

[Cha01] Anantha Chandrakasan, William J. Bowhill, and Frank Fox, eds., Design of High-Perfor-
mance Microprocessor Circuits, New York: IEEE Press, 2001.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 612 Return to Table of Contents

References 601

[Cha93] K. Chaudhary, A. Onozawa, and E. S. Kuh, “A spacing algorithm for performance enhance-
ment and cross-talk reduction,” in ICCAD-93 Digest of Technical Papers, IEEE Computer Society
Press, 1993, pp. 697-702.

[Che84] C. F. Chen and P. Subramaniam, “The Second Generation MOTIS Timing Simulator—An
Efficient and Accurate Approach for General MOS Circuits,” Proceedings of the IEEE International
Symposium on Circuits and Systems, 1984, pp. 538-542.

[Che89] K.-T. Cheng and V. D. Agrawal, “An economical scan design for sequential logic test gener-
ation,,” Digest of Papers, 19th International Symposium on Fault-Tolerant Computing, IEEE Com-
puter Society Press, Los Alamitos, CA, 1989, pp. 28-35.

[Che00] Chung-Kuan Cheng, John Lillis, Shen Lin, and Norman Chang, Interconnect Analysis and
Synthesis, New York: Wiley Interscience, 2000.

[Cho89] Paul Chow, ed., The MIPS-X Microprocessor, Norwell MA: Kluwer Academic Publishers,
1989.

[Cho92] K. Choi and W. S. Adams, “VLSI implementation of a 256 x 256 crossbar interconnection
network,” in Proceedings, International Parallel Processing Symposium, IEEE, March 1992, pp. 289-
293.

[Cil03] Michael D. Siletti, Advanced Digital Design with the Verilog HDL, Prentice Hall, 2003.

[Cla73] Christopher R. Clare, Designing Logic Using State Machines, McGraw-Hill, 1973.

[Con93] Jason Cong and Kwok-Shing Leung, “Optimal wiresizing under the distributed Elmore
delay model,” in Proceedings, ICCAD-93, IEEE Computer Society Press, 1993, pp. 634-939.

[Cor90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to Algo-
rithms, McGraw-Hill/MIT Press, 1990.

[Dav05] W. Rhett Davis, John Wilson, Stephen Mick, Jian Xu, Hao Hua, Christopher Mineo, Ambar-
ish M. Sule, Michael Steer, and Paul D. Franzon, “Demystifying 3D ICs: the pros and cons of going ver-
tical,” IEEE Design & Test of Computers, 22(6), November-December 2005, pp. 498-510.

[De01] Vivek De, Yibin Ye, Ali Keshavarzi, Siva Narendra, James Kao, Dinesh Somasekhar, Raj
Nair, Shekhar Borkar, “Techniques for leakage power reduction,” Chapter 3 in Anantha Chanddrakasan,
William J. Bowhill, and Frank Fox, eds., Design of High-Performance Microprocessor Circuits, New
York: IEEE Press, 2000.

[DeM94] Giovanni De Micheli, Synthesis of Digital Circuits, McGraw-Hill, 1994.

[DeM96] G. De Micheli and M. Sami, eds., Hardware/Software Co-Design, Norwell MA: Kluwer
Academic Publishers, NATO ASI Series, 1996.

[DeM01] Giovanni De Micheli, Rolf Ernst, and Wayne Wolf, Readings in Hardware/Software Co-
Design, San Francisco: Morgan Kaufman, 2001.

[DeM06] Giovanni De Micheli and Luca Benini, Networks on Chips, San Francisco: Morgan Kauf-
man, 2006.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 613 Return to Table of Contents

602 References

[Den74] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bassous, and
Andre R. LeBlanc, “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, SC-9(5), October, 1974, pp. 256-268.

[Den85] Peter Denyer and David Renshaw, VLSI Signal Processing: A Bit-Serial Approach, Addi-
son-Wesley, 1985.

[Deu76] David N. Deutsch, “A ‘dogleg’ channel router,” Proceedings, 13th Design Automation
Conference, ACM/IEEE , 1976 , pp. 425-433.

[Die78] Donald L. Dietmeyer, Logic Design of Digital Systems, second edition, Allyn and Bacon,
1978.

[Dob92] D. W. Dobberpuhl, R. T. Witek, R. Allmon , R. Anglin, D. Bertucci, S. Brittoni, L. Chao,
R. A. Conrad, D. E. Dever, B. Gieseke, S. M. N. Hassoun, G. W. Hoeppner, K. Kuchler, M. Ladd,
B. M. Leary, L. Madden, E. J. McLellan, D. R. Meyer, J. Montanaro, D. A. Priore, V. Rajagopalan,
S. Samudral , and S. Santhanam, “A 200-MHz 64-b Dual-Issue CMOS Microprocessor,” IEEE Trans-
actions on Solid-State Circuits, 27(11), November, 1992, pp. 1555-1568.

[Dua02] Jose Duato, Sudkahar Yalamanchili, and Lionel Ni, Interconnection Networks, Morgan
Kaufman, 2002.

[Dun85] Alfred E. Dunlop and Brian W. Kernighan, “A procedure for placement of standard-cell
VLSI circuits,” IEEE Transactions on CAD/ICAS, CAD-4(1), January, 1985, pp. 92-98.

[Dut98] Santanu Dutta, Kevin J. O’Connor, Wayne Wolf, and Andrew Wolfe, “A design study of a
0.25 m video signal processor,” IEEE Transactions on Circuits and Systems for Video Technology,
8(4), August, 1998, pp. 501-519.

[Dut01] Santanu Dutta, Rune Jensen, and Alf Rieckmann, “Architecture and implementation of
VIPER: a multiprocessor SOC for ASTB and DTV systems,” IEEE Design & Test of Computers, July-
August 2001.

[Elm48] W. C. Elmore, “The transient response of damped linear networks with particular regard to
wideband amplifiers,” Journal of Applied Physics, 19, January, 1948, pp. 55-63.

[Eng96] J. J. Engel, T. S. Guzowski, A. Hunt, D. E. Lackey, L. D. Pickup, R. A. Proctor, K. Reynolds,
A. M. Rincon, and D. R. Stauffer, “Design methodology for IBM ASIC products,” IBM Journal of
Research and Development, 40(4), July, 1996, pp. 387-406.

[Ern03] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad
Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, and Trevor Mudge, “Razor: a low-power pipe-
line based on circuit-level timing speculation,” in Proceedings of the 36th Annual Symposium on Micro-
architecture, MICRO-36, IEEE Computer Society Press, 2003.

[Fil08] Jonathan Fildes, “Chips pass two billion transistor milestone,” BBC News, February 4 2008,
http://news.bbc.co.uk/1/hi/technology/7223145.stm, read May 25, 2008.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 614 Return to Table of Contents

References 603

[Fis95] J. P. Fishburn and C. A. Schevon, “Shaping a distributed-RC line to minimize Elmore
delay,” IEEE Transactions on CAS-I, 42, December, 1995, pp. 1020-1022.

[Fos95] Eric R. Fossum, “CMOS image sensors: electronic camera on a chip,” in International Elec-
tron Devices Meeting, 1995, IEEE, 1995, pp. 17-25.

[Fri75] A. D. Friedman and P. R. Menon, Theory and Design of Switching Circuits, Rockville,
MD: Computer Science Press, 1975.

[Fri86] Eby G. Friedman and Scott Powell, “Design and analysis of a hierarchical clock distribution
system for synchronous standard cell/macrocell VLSI,” IEEE Journal of Solid-State Circuits, SC-
21(2), April, 1986, pp. 240-246.

[Fri95] Eby G. Friedman, ed., Clock Distribution Networks in VLSI Circuits and Systems, IEEE
Press, 1995.

[For87] Mark Forsyth, William S. Jaffe, Darius Tanksalvala, John Wheeler, and Jeff Yetter, “A 32-bit
VLSI CPU with 15-MIPS peak performance,” IEEE Journal of Solid-State Circuits, SC-22(5), Octo-
ber, 1987, pp. 768-775.

[Gal80] J. Gality, Y. Crouze, and M. Verginault, “Physical vs. logical fault models for MOS LSI cir-
cuits: impact on their testability,” IEEE Transactions on Computers, C-29(6), June, 1980, pp. 527-531.

[Gaj92] Daniel Gajski, Nikil Dutt, Allen Wu, and Steve Lin, High-Level Synthesis: Introduction to
Chip and System Design, Kluwer Academic Publishers, 1992.

[Gao94] T. Gao and C. L. Liu, “Minimum crosstalk switchbox routing,” in ICCAD-94 Digest of
Technical Papers, IEEE Computer Society Press, 1994, pp. 610-615.

[Gar79] Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[Gei90] Randall L. Geiger, Phillip E. Allen, and Noel R. Strader, VLSI: Design Techniques for Ana-
log and Digital Circuits, McGraw-Hill, 1990.

[Gel86] Patrick P. Gelsinger, “Built in self test of the 80386,” Proceedings, ICCD-86, IEEE Com-
puter Society, 1986, pp. 169-173.

[Gel87] Patrick P. Gelsinger, “Design and test of the 80386,” IEEE Design & Test of Computers,
June, 1987, pp. 42-50.

[Gha94] Sorab K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, second
edition, John Wiley and Sons, 1994.

[Gie97] Bruce A. Gieseke, Randy L. Allmon, Daniel W. Bailey, Bradley J. Benschneider, Sharon M.
Birtton, John D. Clouser, Harry R. Fair III, James A. Farrell, Michael K. Gowan, Christopher L. Hough-
ton, James B. Keller, Thomas H. Lee, Daniel L. Liebholz, Susan C. Lowell, Mark D. Matson, Richard J.
Matthew, Victor Peng, Michael D. Quinn, Donald A. Priore, Michael J. Smith, and Kathryn E. Wilcox,
“A 600 MHz superscalar RISC microprocessor with out-of-order execution,” in Digest of Technical
Papers, 1997 IEEE International Solid-State Circuits Conference, Castine ME: John H. Wuorinen,
1997, pp. 176-177.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 615 Return to Table of Contents

604 References

[Gla85] Lancer A. Glasser and Daniel W. Dobberpuhl, The Design and Analysis of VLSI Circuits,
Addison-Wesley, 1985.

[Has71] Akihiro Hashimoto and James Stevens, “Wire routing by optimizing channel assignment
within large apertures,” Proceedings, 8th Design Automation Workshop, SHARE Committee, 1971,
pp. 155-169.

[Hat87] M. Hatamian and G. Cash, “Parallel bit-level pipelined VLSI designs for high-speed signal
processing,” Proceedings of the IEEE, 75(9), September, 1987, pp. 1192-1202.

[Hig69] D. W. Hightower, “A solution to line-routing problems on the continuous plane,” Proceed-
ings, 6th Design Automation Workshop, SHARE Committee, 1969, pp. 1-24.

[Hod83] David A. Hodges and Horace G. Jackson, Analysis and Design of Digital Integrated Cir-
cuits, McGraw-Hill, 1983.

[Hoo90] Donald F. Hooper and John C. Eck, “Synthesis in the CAD system used to design the VAX
9000 system,” Digital Technical Journal, 2(4), Fall, 1009, pp. 118-129.

[Hor83A] Mark Horowitz, Timing Models for MOS Circuits, Ph.D. Thesis, Stanford University,
December, 1983.

[Hor83B] M. Horowitz and R. W. Dutton, “Resistance Extraction from Mask Layout Data,” IEEE
Transactions on CAD/ICAS, CAD-2(3), 1983, pp. 145-150.

[Hwa91] C.-T. Hwang , J.-H. Lee, and Y.-C. Hsu, “A formal approach to the scheduling problem in
high-level synthesis,” IEEE Transactions on CAD/ICAS, 10(4), April, 1991, pp. 464-475.

[IEE93] IEEE, IEEE Standard VHDL Language Reference Manual, Std 1076-1993, New York:
IEEE, 1993.

[Ism00] Yehea I. Ismail and Eby G. Friedman, “Effects of inductance on the propagation delay and
repeater insertion in VLSI circuits,” IEEE Transactions on VLSI Systems, 8(2), April 2000, pp. 195-
206.

[Jae75] Richard C. Jaeger, “Comments on ‘An optimized output stage for MOS integrated circuit’,”
IEEE Journal of Solid-State Circuits, SC10(3), June, 1975, pp. 185-186.

[Jai83] S. K. Jain and V. D. Agrawal, “Test generation for MOS circuits using the D algorithm,”
Proceedings, 20th Design Automation Conference, IEEE Computer Society, 1983, pp. 64-70.

[Jan03] Axel Jantsch and Hannu Tenhunen, eds., Networks on Chip, Boston MA: Kluwer Academic
Publishers, 2003.

[Jha90] Niraj K. Jha and Sandip Kundu, Testing and Reliable Design of CMOS Circuits, Kluwer
Academic Publishers, 1990.

[Jou84] Norman P. Jouppi, Timing Verification and Performance Improvement of MOS VLSI
Designs, Ph.D. Thesis, Stanford University, October, 1984.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 616 Return to Table of Contents

References 605

[Kah97] Andrew B. Kahng and Sudhakar Muddu, “An analytical delay model for RLC intercon-
nects,” IEEE Transactions on VLSI Systems, 16(12), December 1997, pp. 1507-1514.

[Kei01] Doris Keitel-Schulz and Norbert Wehn, “Embedded DRAM development: technology, phys-
ical design, and application issues,” IEEE Design & Test of Computers, May-June 2001, pp. 7-15.

[Ker78] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall,
1978.

[Keu91] Kurt Keutzer, Sharad Malik, and Alexander Saldanha, “Is redundancy necessary to reduce
delay?,” IEEE Transactions on CAD/ICAS, 10(4), April, 1991, pp. 427-435.

[Kir94] D. Kirkpatrick and A. Sangiovanni-Vincentelli, “Techniques for crosstalk avoidance in the
physical design of high-performance digital systems,” in ICCAD-94 Digest of Technical Papers, IEEE
Computer Society Press, 1994, pp. 616-619.

[Kog95] Peter M. Kogge, Toshio Sunaga, Hisatada Miyataka, Koji Kitamura, and Eric Retter, "Com-
bined DRAM and logic chip for massively parallel systems,” in W. J. Dally, J. W. Poulton, and A. T.
Ishii, eds., 16th Conference on Advanced Research in VLSI, IEEE Computer Society Press, 1995, pp.
4-16.

[Kor93] Israel Koren, Computer Arithmetic Algorithms, Prentice Hall, 1993.

[Kra82] R. H. Krambeck, C. M. Lee, H. F. S. Law, “High-Speed Compact Circuits with CMOS,”
IEEE Journal of Solid-State Circuits, SC-17(3), June, 1982, pp. 614-619.

[Kur96] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano, M. Norishima,
M. Murota, M. Kato, M. Kinugawa, M. Kakumu, and T. Sakurai, “A 0.9V, 150 MHz, 10-mW, 4mm2, 2-
D discrete cosine transform core processor with variable threshold-voltage (VT) scheme,” IEEE Jour-
nal of Solid-State Circuits, 31(11), November 1996, pp. 1770-1779.

[Kur06] Volkan Sursun and Eby G. Friedman, Multi-Voltage CMOS Circuit Design, New York: John
Wiley and Sons, 2006.

[Lan96] Paul Landman, Renu Mehra, and Jan M. Rabaey, “An integrated CAD environment for low-
power design,” IEEE Design & Test of Computers, Summer, 1996, pp. 72-82.

[Lan91] Dirk Lanneer, Stefaan Note, Francis Depuydt, Marc Pauwels, Francky Catthoor, Gert Goos-
sens, and Hugo De Man, “Architectural synthesis for medium and high throughput signal processing
with the new CATHEDRAL environment,” in Raul Camposano and Wayne Wolf, eds., High-Level
VLSI Synthesis, Norwell MA: Kluwer Academic Publishers, 1991.

[Lee92] Tien-Chien Lee, Wayne H. Wolf, Niraj K. Jha, and John M. Acken, “Behavioral synthesis
for easy testability in data path allocation,” Proceedings, ICCD-92, IEEE Computer Society Press,
1992, pp. 29-32.

[Leh61] M. Lehman and N. Burla, “Skip techniques for high-speed carry-propagation in binary
arithmetic units,” IRE Transactions on Electronic Computers, December, 1961, pp. 691-698.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 617 Return to Table of Contents

606 References

[Lei83] Charles E. Leiserson, Flavio M. Rose, and James B. Saxe, “Optimizing synchronous cir-
cuitry by retiming,” Proceedings, Third Caltech Conference on VLSI , Randal Bryant, ed., Rockville,
MD: Computer Science Press, 1983, pp. 87-116.

[Lig88] Michael Lightner and Wayne Wolf, “Experiments in logic optimization,” Proceedings,
ICCAD-88, ACM/IEEE, 1988, pp. 286-289.

[Lin87] Chin Jen Lin and Sudhakar M. Reddy, “On delay fault testing in logic circuits,” IEEE
Transactions on CAD/ICAS, CAD-6(5), September, 1987, pp. 694-703.

[Lip90A] R. J. Lipton, D. N. Serpanos, and W. H. Wolf, “PDL++: an optimizing generator language
for register-transfer design,” Proceedings, ISCAS-90, IEEE Circuits and Systems Society, May, 1990,
pp. 1135-1138.

[Lip90B] Roger Lipsett, Carl Schaefer, and Cary Ussery, VHDL: Hardware Description and Design,
Kluwer Academic Publishers, Norwell, MA, 1990.

[Liu93] Dake Liu and Christer Svensson, “Trading speed for by choice of supply and threshold volt-
ages,” IEEE Journal of Solid-State Circuits, January 1993, pp. 10-17.

[Loh07] Gabriel H. Loh, Yuan Xie, and Bryan Black, “Processor design in 3D die-stacking technolo-
gies,” IEEE Design & Test of Computers, 27(3), May-June 2007, pp. 31-48.

[Lyo91] Jose A. Lyon, Mike Gladden, Eytan Hartung, Eric Hoang, and K. Raghunathan, “Testability
features of the 68HC16Z1,” Proceedings, 1991 International Test Conference, IEEE Computer Soci-
ety Press, 1991, pp. 122-130.

[Mai91] Frederic Mailhot and Giovanni De Micheli, “Algorithms for technology mapping based on
binary decision diagrams and on Boolean operations,” Stanford University Computer Systems Labora-
tory Technical Report No. CSL-TR-91-486, August, 1991.

[Mal87] W. Maly, Atlas of IC Technologies: An Introduction to VLSI Processes, Benjamin-
Cummings, 1987.

[Mal90] Sharad Malik, Combinational Logic Optimization Techniques in Sequential Logic Syn-
thesis, Ph.D. Thesis, University of California, Berkeley, November, 1990.

[Man96] John G. Maneatis, “Low-jitter and process-independent DLL and PLL based on self-biased
techniques,” in Digest of Technical Papers, 1996 IEEE International Solid-State Circuits Confer-
ence, Castine ME: John Wuorinen, 1996.

[Mar92] John Markoff, “Rethinking the national chip policy,” New York Times, July 14, 1992.

[Mau88] Peter M. Maurer, “Design verification of the WE 32106 math accelerator unit,” IEEE
Design & Test of Computers, June, 1988, pp. 11-21.

[Maz92] Stanley Mazor and Patricia Langstraat, A Guide to VHDL, Kluwer Academic Publishers,
1992.

[Mes90] D. G. Messerschmitt, cSynchronization in digital system design,” IEEE Journal on Selected
Areas in Communications, 8(8), October 1990, pp. 1404-1419.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 618 Return to Table of Contents

References 607

[Mic92] Petra Michel, Ulrich Lauther, and Peter Duzy, eds., The Synthesis Approach to Digital Sys-
tem Design, Kluwer Academic Publishers, 1992.

[Min95] Mindshare, Inc., PCI System Architecture, third edition, Addison-Wesley, Inc., 1995.

[McC86] Edward J. McCluskey, Logic Design Principles with Emphasis on Testable Semicustom
Circuits, Prentice-Hall, 1986.

[McW80] T. M. McWilliams, Verification of Timing Constraints on Large Digital Systems, Ph.D.
Thesis, Stanford University, May , 1980.

[Mea80] Carver Mead and Lynn Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

[Mik68] K. Mikami and K. Tabuchi, “A computer program for optimal routing of printed circuit con-
nectors,” IFIPS Proceedings, H47, 1968, pp. 1745-1478.

[MSU89] Center for Integrated Systems, Mississippi State University, SCMOS Standard Cell Library,
1989.

[Mon93] José Montiero, Srinivas Devadas, and Abhijit Ghosh, “Retiming sequential circuits for low
power,” in Proceedings, ICCAD-93, IEEE Computer Society Press, 1993, pp. 398-402.

[Mul77] Richard S. Muller and Theodore I. Kamins, Device Electronics for Integrated Circuits,
New York: John Wiley and Sons, 1977.

[Mur93] Shyam P. Murarka, Metallization: Theory and Practice for VLSI and ULSI, Butterworth-
Heinemann, 1993.

[Mut95] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “1-V power sup-
ply high-speed digital circuitry with multithreshold CMOS,” IEEE Journal of Solid-State Circuits,
30(8), August 1995, pp. 147-854.

[Nag75] L. W. Nagel, “SPICE 2: A Computer Program to Simulate Semiconductor Circuits,” UCB/
ERL M520, University of California, Berkeley, May 1975.

[Nak06] Junichi Nakamura, ed., Image Sensors and Signal Processing for Digital Still Cameras,
Boca Raton, FL: CRC Press, 2006.

[Nie91] Thomas Niermann and Janak H. Patel, “HITEC: a test generation package for sequential cir-
cuits,” Proceedings of the European Conference on Design Automation, 1991, IEEE Computer Soci-
ety Press, Los Alamitos, CA, pp. 214-218.

[Noi82] David Noice, Rob Mathews, and John Newkirk, “A Clocking Discipline for Two-Phase Dig-
ital Systems,” Proceedings, International Conference on Circuits and Computers,” IEEE Computer
Society, 1982, pp. 108-111.

[Ope02] Opencores Organization, Specification for the WISHBONE System-on-Chip (SoC) Intercon-
nection Architecture for Portable IP Cores, Revision: B.3, September 7, 2002.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 619 Return to Table of Contents

608 References

[Ost83] John K. Osterhout, “Crystal: A Timing Analyzer for nMOS VLSI Circuits,” Proceedings,
Third Caltech Conference on VLSI, Randal Bryant, ed., Rockville, MD: Computer Science Press,
1983, pp. 57-69.

[Ost84] John K. Osterhout, Gorton T. Hamachi, Robert N. Mayo, Walter S. Scott, and George S.
Taylor, “Magic: A VLSI Layout System,” in Proceedings, 21st Design Automation Conference,
ACM/IEEE, 1984, pp. 152-159.

[Ott80] R. H. J. M. Otten, “Complexity and diversity in IC layout design,” Proceedings of the
International Conference on Circuits and Computers, IEEE Computer Society, 1980, pp. 464-467.

[Pap90] Chris Papachristou and Scott Chiu, “High level synthesis with self testability,” Proceedings,
Techcon ’90, Semiconductor Research Corporation, October, 1990, pp. 407-410.

[Par92] Kenneth P. Parker, The Boundary-Scan Handbook, Kluwer Academic Publishers, 1992.

[Ped06] Massoud Pedram and Shahin Nazarian, “Thermal modeling, analysis, and management in
VLSI circuits: principles and methods,” Proceedings of the IEEE, 94(8), August 2006, pp. 1487-1501.

[Pet67] Richard L. Petritz, “Current status of large scale integration technology,” IEEE Journal of
Solid-State Circuits, SC-2(4), December, 1967, pp. 130-147.

[Pet04] Laura Peters, “Demystifying design-for-yield,” Semiconductor International, July 1, 2004,
http://www.semiconductor.net/article/CA430963.html, read May 26, 2008.

[Pil90] Lawrence T. Pillage and Ronald A. Rohrer, “Asymptotic waveform evaluation for timing
analysis,” IEEE Transactions on CAD/ICAS, 9(4), April 1990, pp. 352-366.

[Pop06] Mikhail Popovich, Eby G. Friedman, Michael Sotman, Avinoam Kolodny, and Radu M.
Secareanu, “Maximum effective distance of on-chip decoupling capacitors in power distribution grids,”
in Great Lakes Symposium on VLSI ‘06, IEEE, 2006, pp. 173-179.

[Pre79] Bryan T. Preas, Placement and Routing Algorithms for Hierarchical Integrated Circuit
Layout, Ph.D. Thesis, Stanford University, August, 1979.

[Pre88] Bryan T. Preas and Michael J. Lorenzetti, eds. Physical Design Automation of VLSI Sys-
tems, Benjamin-Cummings, 1988.

[Qia94] Jessica Qian, Satyamurthy Pullela, and Lawrence Pillage, “Modeling the ‘effective capaci-
tance’ for the RC interconnect of CMOS gates,” IEEE Transactions on CAD/ICAS, 13(12), December
1994, pp. 1526-1535.

[Rab75] Lawrence R. Rabiner and Bernard Gold, Theory and Application of Digital Signal Pro-
cessing, Prentice Hall, 1975.

[Rab03] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, Digital Integrated Circuits:
A Design Perspective, second edition, Prentice Hall, 2003.

[Ram65] Simon Ramo, John R. Whinnery, and Theodore van Duzer, Fields and Waves in Communi-
cation Electronics, New York: John Wiley and Sons, 1965.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 620 Return to Table of Contents

References 609

[Raz98] Behzad Razavi, RF Microelectronics, Upper Saddle River NJ: Prentice Hall PTR, 1998.

[Reg70] William M. Regitz and Joel A. Karp, “Three-transistor-cell 1024-bit 500-ns MOS RAM,”
IEEE Journal of Solid-State Circuits, SC-5(5), October, 1970, pp. 181-186.

[Ren06] Renasas Technology, Semiconductor Reliability Handbook, REJ27L0001-0100, Rev. 1.00,
August 31, 2006.

[Roy93] Kaushik Roy and Sharat C. Prasad, “Circuit activity based logic synthesis for reliable oper-
ations,” IEEE Transactions on VLSI Systems, 1(4), December, 1993, pp. 503-513.

[Roy00] Kaushik Roy and Sharat C. Prasad, Low-Power CMOS VLSI Circuit Design, New York:
Wiley Interscience, 2000.

[Rub83] J. Rubinstein, P. Penfield, Jr., and M. A. Horowitz, “Signal Delay in RC Tree Networks,”
IEEE Transactions on CAD/ICAS, CAD-2(3), July, 1983, pp. 202-211.

[Sai93] A. Saini, “Design of the Intel Pentium Processor,” in Proceedings, ICCD ’93, IEEE
Computer Society Press, 1993, pp. 248-252.

[Sak92] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “Analysis and design of latch-controlled
synchronous digital circuits,” IEEE Transactions on CAD/ICAS, 11(3), March, 1992, pp. 322-333.

[Sak93] Takayasu Sakurai, “Closed-form expressions for interconnect delay, coupling, and crosstalk
in VLSI’s,” IEEE Transactions on Electron Devices, 40(1), January 1993, pp. 118-124.

[Sal89] Alexander Saldanha, Albert R. Wang, Robert K. Brayton, and Alberto L. Sangiovanni-Vin-
centelli, “Multi-level logic simplification using don't-cares and filters,” Proceedings, 26th Design
Automation Conference, IEEE Computer Society Press, 1989, pp. 277-282.

[Sap00] Sachin S. Sapatnekar, “A timing model incorporating the effects of crosstalk on delay and its
application to optimal channel routing,” IEEE Transactions on CAD/ICAS, 19(3), May 2000, pp. 550-
559.

[Sat05] Takashi Sato, Junji Ichimiya, Nobuto Ono, Koutaro Hachiya, and Masanori Hashimoto,
“On-Chip Thermal Gradient Analysis and Temperature Flattening for SoC Design,” IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sciences, E88-A(12), December
2005, pp. 3382-3389.

[Sec85] Carl Sechen and Alberto Sangiovanni-Vincentelli, “The TimberWolf placement and routing
package,” IEEE Journal of Solid-State Circuits, SC-20(2), April, 1985, pp. 510-522.

[Ser89] Donald P. Seraphim, Ronald Lasky, and Che-Yu Li, Principles of Electronic Packaging,
McGraw-Hill, 1989.

[Ser07] Dimitrios Serpanos and Wayne Wolf, “VLSI models of network-on-chip interconnect,” in
Proceedings, 15th Annual IFIP International Conference on Very Large Scale Integration, IFIP, 2007.

[Sha38] Claude E. Shannon, “A symbolic analysis of relay and switching circuits,” Transactions of
the AIEE, 57, 1938, pp. 713-723.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 621 Return to Table of Contents

610 References

[She98] Naveed A. Sherwani, Algorithms for Physical VLSI Design Automation, third edition,
Springer Verlag, 1998.

[Shi93] Katsuhiro Shimonhigashi and Koichi Seki, “Low-voltage ULSI design,” IEEE Journal of
Solid-State Circuits, 28(4), April, 1993, pp. 408-413.

[Sho81] M. Shoji, “Electrical design of the BELLMAC-32A microprocessor,” in Proceedings, IEEE
International Conference on Circuits and Computers, IEEE Computer Society Press, 1982, pp. 1132-
115.

[Sho88] Masakazu Shoji, CMOS Digital Circuit Technology, Prentice Hall, 1988.

[Shu91] C. B. Shung, R. Jain, K. Rimey, E. Wang, M. B. Srinistava, B. C. Richards, E. Lettang, S. K
Azim, L. Thon, P. N. Hilfinger, J. M. Rabaey, and R. W. Brodersen, “An integrated CAD system for
algorithm-specific IC design,” IEEE Transactions on CAD/ICAS, 10(4), April, 1991, pp. 447-463.

[Sie98] Daniel P. Siewiorek and Robert S. Swarz, Reliable Computer Systems: Design and Evalua-
tion, A K Peters, 1998.

[Sin88] Kanwar Jit Singh, Albert R. Wang, Robert K. Brayton, and Alberto Sangiovanni-Vincentelli,
“Timing optimization of combinational logic,” Proceedings, ICCAD-88, IEEE Computer Society
Press, 1988, pp. 282-285.

[Smi00] David R. Smith and Paul D. Franzon, Verilog Styles for Synthesis of Digital Systems, Pren-
tice Hall, 2000.

[Sno78] Edward A. Snow, Automation of Module Set Independent Register-Transfer Level
Design, Ph.D. Thesis, Carnegie-Mellon University, April, 1978.

[Sta98] J. Staunstrup and W. Wolf, eds., Hardware/Software Co-Design: Principles and Practice,
Norwell MA: Kluwer Academic Publishers, 1998.

[Sun84] Hideo Sunami, Tokuo Kure, Norikazu Hashimoto, Kiyoo Itoh, Toru Toyabe, and Shojiro
Asai, “A corrugated capacitor cell (CCC),” IEEE Transactions on Electron Devices, ED-31(6), June,
1984, pp. 746-753.

[Sut99] Ivan Sutherland, Bob Sproull, and David Harris, Logical Effort: Designing Fast CMOS
Circuits, San Francisco: Morgan Kaufman, 1999.

[Sye82] Zahir A. Syed and Abbas El Gamal, vSingle layer routing of power and ground networks in
integrated circuits," Journal of Digital Systems, 6(1), 1982, pp. 53-63.

[Syl01] Dennis Sylvester and Chenming Hu, “Analytical modeling and characterization of deep-sub-
micrometer interconnect,” Proceedings of the IEEE, 89(5), May 2001, pp. 634-664.

[Sze81] S. M. Sze, Physics of Semiconductor Devices, second edition, New York: John Wiley and
Sons, 1981.

[Sze85] S. M. Sze, Semiconductor Devices: Physics and Technology, New York: John Wiley and
Sons, 1985.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 622 Return to Table of Contents

References 611

[Szy85] T. G. Szymanski, “Dogleg channel routing is NP-complete,” IEEE Transactions on CAD/
ICAS, CAD-4(1), January, 1985, pp. 31-41.

[Tak85] Yoshihiro Takemae, Taiji Ema, Masao Nakano, Fumio Baba, Takashi Yabu, Kiyoshi
Miyakasa, and Kazunari Shirai, “A 1 Mb DRAM with 3-dimensional stacked capacitor cells,” in
Digest of Technical Papers, 1985 IEEE International Solid-State Circuits Conference, IEEE, 1985,
pp. 250-251.

[Tal07] Deepu Talla and Jeremiah Golston, “Using DaVinci technology for digital video devices,”
IEEE Computer, 40(10), October 2007, pp. 53-61.

[Tee07] P. Teehan, M. Greenstreet, and G. Lemieux, “A survey and taxonomy of GALS design
styles,” IEEE Design & Test of Computers, 24(5), September-October 2007, pp. 418-428.

[Tho91] Donald E. Thomas and Philip Moorby, The Verilog Hardware Description Language, Klu-
wer Academic Publishers, 1991.

[Tho02] Donald E. Thomas and Philip R. Moorby, The Verilog Hardware Description Language,
Fifth Edition, Norwell MA: Kluwer Academic Publishers, 2002.

[Tri94] Stephen M. Trimberger, ed., Field-Programmable Gate Array Technology, Kluwer Aca-
demic Publishers, 1994.

[Ung69] Stephen H. Unger, Asynchronous Sequential Switching Circuits, Wiley-Interscience, 1969.

[Uye92] John P. Uyemura, Circuit Design for CMOS VLSI, Kluwer Academic Publishers, 1992.

[VHD88] VHDL Standards Committee, IEEE Standard VHDL Language Reference Manual, IEEE
Std 1076-1977, 1988.

[van90] Lukas P. P. P. van Ginneken, “Buffer placement in distributed RC-tree networks for minimal
Elmore delay,” in Proceedings, ISCAS, IEEE, 1990, pp. 865-868.

[Vin98] James E. Vinson and Juin J. Liou, “Electrostatic discharge in semiconductor devices: an
overview,” Proceedings of the IEEE, 86(2), February 1998, pp. 399-418.

[Wal64] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Electronic Com-
puters, EC-13(1), February, 1964, pp. 14-17.

[Was78] R. L. Wasdak, “Fault modeling and logic simulation of CMOS and MOS integrated cir-
cuits,” Bell System Technical Journal, 57, May-June, 1978, pp. 1474-1499.

[Wei94] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced CPU energy,” in
Proceedings, First USENIX Symposium on Operating Systems Design and Implementation (OSDI ‘94),
1994, pp. 13-23.

[Wil81] T. W. Williams and N. C. Brown, “Defect level as a function of fault coverage,” IEEE
Transactions on Computers, C-30(12), December, 1981, pp. 987-988.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 623 Return to Table of Contents

612 References

[Wil83] Thomas W. Williams and Kenneth P. Parker, “Design for testability—a survey,” Proceed-
ings of the IEEE, 71(1), January, 1983, pp. 98-112. Reprinted in Vishwani D. Agrawal and Sharad C.
Seth, Test Generation for VLSI Chips, IEEE Computer Society Press, 1988.

[Wol00] Wayne Wolf, Computers as Components: Principles of Embedded Computing System
Design, Morgan Kaufman, 2000.

[Wol06] Wayne Wolf, High Performance Embedded Computing, Morgan Kaufman, 2006.

[Wol07] Wayne Wolf, Ahmed Jerraya, and Grant Martin, “Multiprocessor Systems-on-Chips,” IEEE
Transations on CAD/ICAS, 27(10), October 2008, pp. 1701-1713.

[Xue96] T. Xue, E. S. Kuh, and D. Wang, “Post global routing crosstalk risk estimation and reduc-
tion,” in ICCAD-96 Digest of Technical Papers, IEEE Computer Society Press, 1996, pp. 302-309.

[Yan78] Edward S. Yang, Fundamentals of Semiconductor Devices, McGraw-Hill, 1978.

[You92] Ian A. Young, Jeffrey K. Greason, and Keng L. Wong, “A PLL clock generator with 5 to 110
MHz of lock range for microprocessors,” IEEE Journal of Solid-State Circuits, 27(11), November,
1992, pp. 1599-1607.

Modern VLSI Design: IP-Based Design, Fourth Edition Page 624 Return to Table of Contents

tub tie

2

n diff

4

p tub

n tub

p diff

poly

metal
2

metal
1

2 2

3 3

10

3

3

SCMOS Design Rules

Modern VLSI Design: IP-Based Design, Fourth Edition Page 625 Return to Table of Contents

Typical 180 nm process parameters

n-type transconductance k’n

p-type transconductance k’p

n-type threshold voltage Vtn

p-type threshold voltage Vtp

n-diffusion bottomwall capacitance Cndiff,bot

n-diffusion sidewall capacitance Cndiff,side

p-diffusion bottomwall capacitance Cpdiff,bot

p-diffusion sidewall capacitance Cpdiff,side

n-type source/drain resistivity Rndiff

p-type source/drain resistivity Rpdiff

poly-substrate plate capacitance Cpoly,plate

poly-substrate fringe capacitance Cpoly,fringe

poly resistivity Rpoly

metal 1-substrate plate capacitance Cmetal1,plate

metal 1-substrate fringe capacitance Cmetal1,fringe

metal 2-substrate capacitance Cmetal2,plate

metal 2-substrate fringe capacitance Cmetal2,fringe

metal 3-substrate capacitance Cmetal3,plate

metal 3-substrate fringe capacitance Cmetal3,fringe

metal 1 resistivity Rmetal1

metal 2 resistivity Rmetal2

metal 3 resistivity Rmetal3

metal current limit Im,max

170 A V2

-30 A V2

0.5V

-0.5V

940aF m2

200aF m

1000aF m2

200aF m

7

7

63aF m2

63aF m

8

36aF m2

54aF m

36aF m2

51aF m

37aF m2

54aF m

0.08

0.08

0.03

1mA m

Modern VLSI Design: IP-Based Design, Fourth Edition Page 626 Return to Table of Contents

a

+

out

inverter

+

ab

out

NAND

+

b

a

out

NOR

+

a b

c

out

a

b

c

AOI-21

Modern VLSI Design: IP-Based Design, Fourth Edition Page 627 Return to Table of Contents

D Q'

φ

φ'

dynamic latch

d

c

time

t1

t2

ack

t3

timing diagram

x0
y1

x1
y1

x2
y1

x0
y2

x1
y2

x2
y2

x0
y3

x1
y3

x2
y3

0 0 0

x3 y0 x2 y0 x1 y0

x3 y1

x3 y2

x3 y3

x0 y0

p7 p6 p5 p4 p3 p2 p1 p0

+++

FAFAFA

FAFAFA

FAFAFA

array multiplier

Rn 6.47 kΩ
Rp 29.6 kΩ
Cl 0.89 fF

transistor parameters

Modern VLSI Design: IP-Based Design, Fourth Edition Page 628 Return to Table of Contents

	Front Cover
	Table of Contents
	Title Page
	Copyright Page
	Dedication
	Prentice Hall Modern Semiconductor Design Series
	Preface to the Fourth Edition
	Preface to the Third Edition
	Preface to the Second Edition
	Preface
	About the Author
	Chapter 1 Digital Systems and VLSI
	Why Design Integrated Circuits?
	Integrated Circuit Manufacturing
	CMOS Technology
	Integrated Circuit Design Techniques
	IP-Based Design
	A Look into the Future
	Summary
	References
	Problems

	Chapter 2 Fabrication and Devices
	Introduction
	Fabrication Processes
	Transistors
	Wires and Vias
	Fabrication Theory and Practice
	Reliability
	Layout Design and Tools
	References
	Problems

	Chapter 3 Logic Gates
	Introduction
	Combinational Logic Functions
	Static Complementary Gates
	Switch Logic
	Alternative Gate Circuits
	Low-Power Gates
	Delay through Resistive Interconnect
	Delay through Inductive Interconnect
	Design-for-Yield
	Gates as IP
	References
	Problems

	Chapter 4 Combinational Logic Networks
	Introduction
	Standard Cell-Based Layout
	Combinational Network Delay
	Logic and Interconnect Design
	Power Optimization
	Switch Logic Networks
	Combinational Logic Testing
	References
	Problems

	Chapter 5 Sequential Machines
	Introduction
	Latches and Flip-Flops
	Sequential Systems and Clocking Disciplines
	Performance Analysis
	Clock Generation
	Sequential System Design
	Power Optimization
	Design Validation
	Sequential Testing
	References
	Problems

	Chapter 6 Subsystem Design
	Introduction
	Combinational Shifters
	Adders
	ALUs
	Multipliers
	High-Density Memory
	Image Sensors
	Field-Programmable Gate Arrays
	Programmable Logic Arrays
	Buses and Networks-on-Chips
	Data Paths
	Subsystems as IP
	References
	Problems

	Chapter 7 Floorplanning
	Introduction
	Floorplanning Methods
	Global Interconnect
	Floorplan Design
	Off-Chip Connections
	References
	Problems

	Chapter 8 Architecture Design
	Introduction
	Hardware Description Languages
	Register-Transfer Design
	Pipelining
	High-Level Synthesis
	Architectures for Low Power
	GALS Systems
	Architecture Testing
	IP Components
	Design Methodologies
	Multiprocessor System-on-Chip Design
	References
	Problems

	Appendices
	Appendix A: A Chip Designer’s Lexicon
	Appendix B: Hardware Description Languages
	B.1 Introduction
	B.2 Verilog
	B.3 VHDL

	References
	Inside Front Cover
	Inside Back Cover

