
Micro Processors & Micro Controllers
Lecture Notes

(As Per JNTUK-[R07] Syllabus)

Prepared By,
Umasankar.Ch M.Tech(EC)

(€-mail: sankarch.4u@gmail.com)

mailto:sankarch.4u@gmail.com

Micro Processors Notes

Ch.Uma SankarM.Tech Page 2

Micro Processors Notes

Ch.Uma SankarM.Tech Page 3

CONTENTS

Chapter Name of the Chapter Page
No

1 Operation of 8086 Microprocessor 5

2 Assembler Directives 29

3 Instruction Set of 8086 39

4 Programmable Peripheral Interface(8255) 87

5 DMA Controller(8237/57) 111

6 USART(8251) 121

7 Introduction to Microcontrollers 133

Micro Processors Notes

Ch.Uma SankarM.Tech Page 4

Micro Processors Notes

Ch.Uma SankarM.Tech Page 5

CHAPTER 1

OPERATION OF 8086 MICROPROCESSOR

8086 Microprocessor- Features

It is a 16-bit p.

8086 has a 20 bit address bus can access up to 220 memory locations (1 MB).

It can support up to 64K I/O ports.

It provides 14, 16 -bit registers.

It has multiplexed address and data bus AD0- AD15 and A16 A19.

It requires single phase clock with 33% duty cycle to provide internal timing.

8086 is designed to operate in two modes, Minimum and Maximum.

It can prefetches upto 6 instruction bytes from memory and queues them in order to

speed up instruction execution.

It requires +5V power supply.

A 40 pin dual in line package

Internal Architecture of 8086
8086 has two blocks BIU and EU.

The BIU performs all bus operations such as instruction fetching, reading and writing

operands for memory and calculating the addresses of the memory operands. The

instruction bytes are transferred to the instruction queue.

EU executes instructions from the instruction system byte queue.

Both units operate asynchronously to give the 8086 an overlapping instruction fetch and

execution mechanism which is called as Pipelining. This results in efficient use of the

system bus and system performance.

BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.

EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register,

Flag register.

BUS INTERFACR UNIT:
It provides a full 16 bit bidirectional data bus and 20 bit address bus.

The bus interface unit is responsible for performing all external bus operations.

Specifically it has the following functions:

Instruction fetch, Instruction queuing, Operand fetch and storage, Address relocation and

Bus control.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 6

The BIU uses a mechanism known as an instruction stream queue to implement pipeline

architecture. This queue permits prefetch of up to six bytes of instruction code. When

ever the queue of the BIU is not full, it has room for at least two more bytes and at the

same time the EU is not requesting it to read or write operands from memory, the BIU is

free to look ahead in the program by prefetching the next sequential instruction.

These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the

BIU fetches two instruction bytes in a single memory cycle.

After a byte is loaded at the input end of the queue, it autDMAtically shifts up through

the FIFO to the empty location nearest the output.

The EU accesses the queue from the output end. It reads one instruction byte after the

other from the output of the queue. If the queue is full and the EU is not requesting access

to operand in memory.

These intervals of no bus activity, which may occur between bus cycles are known as

Idle state.

If the BIU is already in the process of fetching an instruction when the EU request it to

read or write operands from memory or I/O, the BIU first completes the instruction fetch

bus cycle before initiating the operand read / write cycle.

The BIU also contains a dedicated adder which is used to generate the 20bit physical

address that is output on the address bus. This address is formed by adding an appended

16 bit segment address and a 16 bit offset address.

For example: The physical address of the next instruction to be fetched is formed by

combining the current contents of the code segment CS register and the current contents

of the instruction pointer IP register.

The BIU is also responsible for generating bus control signals such as those for memory

read or write and I/O read or write.

Micro Processors Notes

Figure 1 Architecture of 8086

EXECUTION UNIT :
 The Execution unit is responsible for decoding and executing all instructions.

The EU extracts instructions from the top of the queue in the BIU, decodes them, generates

operands if necessary, passes them to the BIU and requests it to perform the read or write

bys cycles to memory or I/O and perform the operation specified by the instruction on the

operands.

During the execution of the instruction, the EU tests the status and control flags and updates

them based on the results of executing the instruction.

If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted to

top of the queue.

When the EU executes a branch or jump instruction, it transfers control to a location

corresponding to another set of sequential instructions.

Whenever this happens, the BIU autDMAtically resets the queue and then begins to fetch

instructions from this new location to refill the queue.

Module 1 and learning unit 4:

Signal Description of 8086 The Microprocessor 8086 is a 16-bit CPU available in different

clock rates and packaged in a 40 pin CERDIP or plastic package.

The 8086 operates in single processor or multiprocessor configuration to achieve high

performance. The pins serve a particular function in minimum mode (single processor

mode) and other function in maximum mode configuration (multiprocessor mode).

Micro Processors Notes

The 8086 signals can be categorized in three groups. The first are the signal having common

functions in minimum as well as maximum mode.

The second are the signals which have special functions for minimum mode and third are the

signals having special functions for maximum mode.

Minimum and Maximum Modes:
The minimum mode is selected by applying logic 1 to the MN / MX input pin. This is a

single microprocessor configuration.

The maximum mode is selected by applying logic 0 to the MN / MXinput pin. This is a

multi micro processors configuration.

Figure 2 Pin Description of 8086

Micro Processors Notes

Signal Description of 8086
The Microprocessor 8086 is a 16-bit CPU available in different clock rates and packaged

in a 40 pin CERDIP or plastic package.

The 8086 operates in single processor or multiprocessor configuration to achieve high

performance. The pins serve a particular function in minimum mode (single processor

mode) and other function in maximum mode configuration (multiprocessor mode).

The 8086 signals can be categorised in three groups. The first are the signal having

common functions in minimum as well as maximum mode.

The second are the signals which have special functions for minimum mode and third are

the signals having special functions for maximum mode.

The following signal descriptions are common for both modes.

AD15-AD0: These are the time multiplexed memory I/O address and data lines.

 Address remains on the lines during T1 state, while the data is available on the data bus

during T2, T3, Tw and T4.

These lines are active high and float to a tristate during interrupt acknowledge and local

bus hold acknowledge cycles.

A19/S6,A18/S5,A17/S4,A16/S3: These are the time multiplexed address and status lines.

During T1 these are the most significant address lines for memory operations.

During I/O operations, these lines are low. During memory or I/O operations, status

information is available on those lines for T2,T3,Tw and T4.

The status of the interrupt enable flag bit is updated at the beginning of each clock cycle.

The S4 and S3 combinedly indicate which segment register is presently being used for

memory accesses as in below fig.

These lines float to tri-state off during the local bus hold acknowledge. The status line S6

is always low.

The address bit are separated from the status bit using latches controlled by the ALE

signal.

Micro Processors Notes

•BHE/S7: The bus high enable is used to indicate the transfer of data over the higher order (

D15-D8) data bus as shown in table. It goes low for the data transfer over D15-D8 and is

used to derive chip selects of odd address memory bank or peripherals. BHE is low during

T1 for read, write and interrupt acknowledge cycles, whenever a byte is to be transferred

on higher byte of data bus. The status information is available during T2, T3 and T4. The

signal is active low and tristated during hold. It is low during T1 for the first pulse of the

interrupt acknowledges cycle.

•RD-Read: This signal on low indicates the peripheral that the processor is performing s

memory or I/O read operation. RD is active low and shows the state for T2, T3, Tw of

any read cycle. The signal remains tristated during the hold acknowledge.

READY: This is the acknowledgement from the slow device or memory that they have

completed the data transfer. The signal made available by the devices is synchronized

by the 8284A clock generator to provide ready input to the 8086. the signal is active

high.

INTR-Interrupt Request: This is a triggered input. This is sampled during the last clock

cycles of each instruction to determine the availability of the request. If any interrupt

request is pending, the processor enters the interrupt acknowledge cycle.

This can be internally masked by resulting the interrupt enable flag. This signal is active

high and internally synchronized.

TESTThis input is examined by a WAIT instruction. If the TEST pin goes low,

execution will continue, else the processor remains in an idle state. The input is

synchronized internally during each clock cycle on leading edge of clock.

CLK- Clock Input: The clock input provides the basic timing for processor operation and

bus control activity. Its an asymmetric square wave with 33% duty cycle.

MN/MX: The logic level at this pin decides whether the processor is to operate in either

minimum or maximum mode.

The following pin functions are for the minimum mode operation of 8086.

M/IO Memory/IO: This is a status line logically equivalent to S2 in maximum mode.

When it is low, it indicates the CPU is having an I/O operation, and when it is high, it

indicates that the CPU is having a memory operation. This line becomes active high in

Micro Processors Notes

Ch.Uma SankarM.Tech Page 11

the previous T4 and remains active till final T4 of the current cycle. It is tristated

during local bus hold acknowledge .

INTAInterrupt Acknowledge: This signal is used as a read strobe for interrupt

acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.

ALE Address Latch Enable: This output signal indicates the availability of the valid

address on the address/data lines, and is connected to latch enable input of latches.

This signal is active high and is never tristated.

DT/R Data Transmit/Receive: This output is used to decide the direction of data flow

through the transreceivers (bidirectional buffers). When the processor sends out data,

this signal is high and when the processor is receiving data, this signal is low.

DEN Data Enable: This signal indicates the availability of valid data over the

address/data lines. It is used to enable the transreceivers (bidirectional buffers) to

separate the data from the multiplexed address/data signal. It is active from the middle

of T2 until the middle of T4. This is tristated during hold acknowledge cycle.

HOLD, HLDA- Acknowledge: When the HOLD line goes high, it indicates to the

processor that another master is requesting the bus access.

The processor, after receiving the HOLD request, issues the hold acknowledge signal on

HLDA pin, in the middle of the next clock cycle after completing the current bus

cycle. At the same time, the processor floats the local bus and control lines. When the

processor detects the HOLD line low, it lowers the HLDA signal. HOLD is an

asynchronous input, and is should be externally synchronized.

If the DMA request is made while the CPU is performing a memory or I/O cycle, it will

release the local bus during T4 provided:

1.The request occurs on or before T2 state of the current cycle.

2.The current cycle is not operating over the lower byte of a word.

3.The current cycle is not the first acknowledge of an interrupt acknowledge sequence.

4. A Lock instruction is not being executed.

The following pin function are applicable for maximum mode operation of 8086.
S2, S1, S0 Status Lines: These are the status lines which reflect the type of operation,

being carried out by the processor. These become activity during T4 of the previous cycle

and active during T1 and T2 of the current bus cycles.

Micro Processors Notes

LOCKThis output pin indicates that other system bus master will be prevented from

gaining the system bus, while the LOCK signal is low.

The LOCK signal is activated by the LOCK prefix instruction and remains active until

the completion of the next instruction. When the CPU is executing a critical

instruction which requires the system bus, the LOCK prefix instruction ensures that

other processors connected in the system will not gain the control of the bus.

The 8086, while executing the prefixed instruction, asserts the bus lock signal output,

which may be connected to an external bus controller.

QS1, QS0 Queue Status: These lines give information about the status of the code-

prefetch queue. These are active during the CLK cycle after while the queue operation

is performed.

This modification in a simple fetch and execute architecture of a conventional

microprocessor offers an added advantage of pipelined processing of the instructions.

The 8086 architecture has 6-byte instruction prefetch queue. Thus even the largest (6-

bytes) instruction can be prefetched from the memory and stored in the prefetch. This

results in a faster execution of the instructions.

In 8085 an instruction is fetched, decoded and executed and only after the execution of

this instruction, the next one is fetched.

By prefetching the instruction, there is a considerable speeding up in instruction

execution in 8086. This is known as instruction pipelining.

At the starting the CS:IP is loaded with the required address from which the execution is

to be started. Initially, the queue will be empty an the microprocessor starts a fetch

operation to bring one byte (the first byte) of instruction code, if the CS:IP address is

odd or two bytes at a time, if the CS:IP address is even.

The first byte is a complete opcode in case of some instruction (one byte opcode

instruction) and is a part of opcode, in case of some instructions (two byte opcode

instructions), the remaining part of code lie in second byte.

Micro Processors Notes

The second byte is then decoded in continuation with the first byte to decide the

instruction length and the number of subsequent bytes to be treated as instruction data.

The queue is updated after every byte is read from the queue but the fetch cycle is

initiated by BIU only if at least two bytes of the queue are empty and the EU may be

concurrently executing the fetched instructions.

The next byte after the instruction is completed is again the first opcode byte of the next

instruction. A similar procedure is repeated till the complete execution of the

program. The fetch operation of the next instruction is overlapped with the execution

of the current instruction. As in the architecture, there are two separate units, namely

Execution unit and Bus interface unit.

While the execution unit is busy in executing an instruction, after it is completely

decoded, the bus interface unit may be fetching the bytes of the next instruction from

memory, depending upon the queue status.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 14

RQ/0GT,RQ/1GT Request/Grant: These pins are used by the other local bus master

in maximum mode, to force the processor to release the local bus at the end of the

processor current bus cycle.

Each of the pin is bidirectional with RQ/GT0 having higher priority than RQ/GT1.

RQ/GT pins have internal pull-up resistors and may be left unconnected.

Request/Grant sequence is as follows:

1.A pulse of one clock wide from another bus master requests the bus access to 8086.

2.During T4(current) or T1(next) clock cycle, a pulse one clock wide from 8086 to the

requesting master, indicates that the 8086 has allowed the local bus to float and that it

will enter the hold acknowledge state at next cycle. The CPU bus interface unit is

likely to be disconnected from the local bus of the system.

3.A one clock wide pulse from the another master indicates to the 8086 that the hold

request is about to end and the 8086 may regain control of the local bus at the next

clock cycle. Thus each master to master exchange of the local bus is a sequence of 3

pulses.

There must be at least one dead clock cycle after each bus exchange.

The request and grant pulses are active low.

For the bus request those are received while 8086 is performing memory or I/O cycle, the

granting of the bus is governed by the rules as in case of HOLD and HLDA in

minimum mode.

General Bus Operation:

The 8086 has a combined address and data bus commonly referred as a time multiplexed

address and data bus.

The main reason behind multiplexing address and data over the same pins is the
maximum utilisation of processor pins and it facilitates the use of 40 pin standard DIP
package.

The bus can be demultiplexed using a few latches and transreceivers, when ever required.

Basically, all the processor bus cycles consist of at least four clock cycles. These are

referred to as T1, T2, T3, T4. The address is transmitted by the processor during T1. It

is present on the bus only for one cycle.

The negative edge of this ALE pulse is used to separate the address and the data or status

information. In maximum mode, the status lines S0, S1 and S2 are used to indicate the

type of operation.

Status bits S3 to S7 are multiplexed with higher order address bits and the BHE signal.

Address is valid during T1 while status bits S3 to S7 are valid during T2 through T4.

Micro Processors Notes

Minimum Mode 8086 System
In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum

mode by strapping its MN/MX pin to logic 1.

In this mode, all the control signals are given out by the microprocessor chip itself. There

is a single microprocessor in the minimum mode system.

The remaining components in the system are latches, transreceivers, clock generator,

memory and I/O devices. Some type of chip selection logic may be required for

selecting memory or I/O devices, depending upon the address map of the system.

Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are

used for separating the valid address from the multiplexed address/data signals and are

controlled by the ALE signal generated by 8086.

Transreceivers are the bidirectional buffers and some times they are called as data

amplifiers. They are required to separate the valid data from the time multiplexed

address/data signals.

They are controlled by two signals namely, DEN and DT/R.

The DEN signal indicates the direction of data, i.e. from or to the processor. The system

contains memory for the monitor and users program storage.

Usually, EPROM are used for monitor storage, while RAM for users program storage. A

system may contain I/O devices.

The working of the minimum mode configuration system can be better described in terms

of the timing diagrams rather than qualitatively describing the operations.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 16

The opcode fetch and read cycles are similar. Hence the timing diagram can be

categorized in two parts, the first is the timing diagram for read cycle and the second is

the timing diagram for write cycle.

The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and

also M / IO signal. During the negative going edge of this signal, the valid address is

latched on the local bus.

The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO

signal indicates a memory or I/O operation.

At T2, the address is removed from the local bus and is sent to the output. The bus is then

tristated. The read (RD) control signal is also activated in T2.

The read (RD) signal causes the address device to enable its data bus drivers. After RD

goes low, the valid data is available on the data bus.

The addressed device will drive the READY line high. When the processor returns the

read signal to high level, the addressed device will again tristate its bus drivers.

A write cycle also begins with the assertion of ALE and the emission of the address. The

M/IO signal is again asserted to indicate a memory or I/O operation. In T2, after

sending the address in T1, the processor sends the data to be written to the addressed

location.

The data remains on the bus until middle of T4 state. The WR becomes active at the

beginning of T2 (unlike RD is somewhat delayed in T2 to provide time for floating).

The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O

word to be read or write.

The M/IO, RD and WR signals indicate the type of data transfer as specified in table

below.

Hold Response sequence: The HOLD pin is checked at leading edge of each clock pulse.

If it is received active by the processor before T4 of the previous cycle or during T1

state of the current cycle, the CPU activates HLDA in the next clock cycle and for

succeeding bus cycles, the bus will be given to another requesting master.

The control of the bus is not regained by the processor until the requesting master does

not drop the HOLD pin low. When the request is dropped by the requesting master, the

HLDA is dropped by the processor at the trailing edge of the next clock.

Micro Processors Notes

Maximum Mode 8086 System

In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus

controller derives the control signal using this status information.

In the maximum mode, there may be more than one microprocessor in the system

configuration.

The components in the system are same as in the minimum mode system.

The basic function of the bus controller chip IC8288, is to derive control signals like RD

and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information

by the processor on the status lines.

The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are

driven by CPU.

It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and

AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor

systems.

AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance

of the MCE/PDEN output depends upon the status of the IOB pin.

If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts

as peripheral data enable used in the multiple bus configurations.

Micro Processors Notes

INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to

an interrupting device.

IORC, IOWC are I/O read command and I/O write command signals respectively. These

signals enable an IO interface to read or write the data from or to the address port.

The MRDC, MWTC are memory read command and memory write command signals

respectively and may be used as memory read or write signals.

All these command signals instructs the memory to accept or send data from or to the

bus.

For both of these write command signals, the advanced signals namely AIOWC and

AMWTC are available.

Here the only difference between in timing diagram between minimum mode and

maximum mode is the status signals used and the available control and advanced

command signals.

Micro Processors Notes

Micro Processors Notes

Micro Processors Notes

R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as

on the ALE and apply a required signal to its DT / R pin during T1.

In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate

MRDC or IORC. These signals are activated until T4. For an output, the AMWC or

AIOWC is activated from T2 to T4 and MWTC or IOWC is activated from T3 to T4.

The status bit S0 to S2 remains active until T3 and become passive during T3 and T4.

If reader input is not activated before T3, wait state will be inserted between T3 and T4.

Timings for RQ/ GT Signals:

The request/grant response sequence contains a series of three pulses. The request/grant

pins are checked at each rising pulse of clock input.

When a request is detected and if the condition for HOLD request are satisfied, the

processor issues a grant pulse over the RQ/GT pin immediately during T4 (current) or

T1 (next) state.

When the requesting master receives this pulse, it accepts the control of the bus, it sends a

release pulse to the processor using RQ/GT pin.

Minimum Mode Interface

When the Minimum mode operation is selected, the 8086 provides all control signals

needed to implement the memory and I/O interface.

The minimum mode signal can be divided into the following basic groups: address/data

bus, status, control, interrupt and DMA.

Address/Data Bus: these lines serve two functions. As an address bus is 20 bits long and

consists of signal lines A0 through A19. A19 represents the MSB and A0 LSB. A

20bit address gives the 8086 a 1Mbyte memory address space. More over it has an

independent I/O address space which is 64K bytes in length.

The 16 data bus lines D0 through D15 are actually multiplexed with address lines A0

through A15 respectively. By multiplexed we mean that the bus work as an address

bus during first machine cycle and as a data bus during next machine cycles. D15 is

the MSB and D0 LSB.

Micro Processors Notes

When acting as a data bus, they carry read/write data for memory, input/output data for

I/O devices, and interrupt type codes from an interrupt controller.

Status signal:

The four most significant address lines A19 through A16 are also multiplexed but in this

case with status signals S6 through S3. These status bits are output on the bus at the

same time that data are transferred over the other bus lines.

Bit S4 and S3 together from a 2 bit binary code that identifies which of the 8086 internal

segment registers are used to generate the physical address that was output on the

address bus during the current bus cycle.

Code S4S3 = 00 identifies a register known as extra segment register as the source of the

segment address.

Status line S5 reflects the status of another internal characteristic of the 8086. It is the

logic level of the internal enable flag. The last status bit S6 is always at the logic 0

level.

Control Signals:

The control signals are provided to support the 8086 memory I/O interfaces. They control

functions such as when the bus is to carry a valid address in which direction data are to

be transferred over the bus, when valid write data are on the bus and when to put read

data on the system bus.

ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on

the bus. This address must be latched in external circuitry on the 1-to-0 edge of the

pulse at ALE.

Another control signal that is produced during the bus cycle is BHE bank high enable.

Logic 0 on this used as a memory enable signal for the most significant byte half of the

data bus D8 through D1. These lines also serves a second function, which is as the S
7

status line.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 23

Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress

and in which direction data are to be transferred over the bus.

The logic level of M/IO tells external circuitry whether a memory or I/O transfer is taking

place over the bus. Logic 1 at this output signals a memory operation and logic 0 an

I/O operation.

The direction of data transfer over the bus is signaled by the logic level output at DT/R.

When this line is logic 1 during the data transfer part of a bus cycle, the bus is in the

transmit mode. Therefore, data are either written into memory or output to an I/O

device.

On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This

corresponds to reading data from memory or input of data from an input port.

The signal read RD and write WR indicates that a read bus cycle or a write bus cycle is in

progress. The 8086 switches WR to logic 0 to signal external device that valid write or

output data are on the bus.

 On the other hand, RD indicates that the 8086 is performing a read of data of the bus.

During read operations, one other control signal is also supplied. This is DEN (data

enable) and it signals external devices when they should put data on the bus.

There is one other control signal that is involved with the memory and I/O interface. This

is the READY signal.

READY signal is used to insert wait states into the bus cycle such that it is extended by a

number of clock periods. This signal is provided by an external clock generator device

and can be supplied by the memory or I/O sub-system to signal the 8086 when they

are ready to permit the data transfer to be completed.

Interrupt signals: The key interrupt interface signals are interrupt request (INTR) and

interrupt acknowledge (INTA).

INTR is an input to the 8086 that can be used by an external device to signal that it need

to be serviced.

Logic 1 at INTR represents an active interrupt request. When an interrupt request has

been recognized by the 8086, it indicates this fact to external circuit with pulse to logic

0 at the INTA output.

The TEST input is also related to the external interrupt interface. Execution of a WAIT

instruction causes the 8086 to check the logic level at the TEST input.

If the logic 1 is found, the MPU suspend operation and goes into the idle state. The 8086

no longer executes instructions, instead it repeatedly checks the logic level of the

TEST input waiting for its transition back to logic 0.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 24

As TEST switches to 0, execution resume with the next instruction in the program. This

feature can be used to synchronize the operation of the 8086 to an event in external

hardware.

There are two more inputs in the interrupt interface: the nonmaskable interrupt NMI and

the reset interrupt RESET.

On the 0-to-1 transition of NMI control is passed to a nonmaskable interrupt service

routine. The RESET input is used to provide a hardware reset for the 8086. Switching

RESET to logic 0 initializes the internal register of the 8086 and initiates a reset

service routine.

DMA Interface signals:The direct memory access DMA interface of the 8086 minimum

mode consist of the HOLD and HLDA signals.

When an external device wants to take control of the system bus, it signals to the 8086 by

switching HOLD to the logic 1 level. At the completion of the current bus cycle, the

8086 enters the hold state. In the hold state, signal lines AD0 through AD15, A16/S3

through A19/S6, BHE, M/IO, DT/R, RD, WR, DEN and INTR are all in the high Z

state. The 8086 signals external device that it is in this state by switching its HLDA

output to logic 1 level.

Maximum Mode Interface

When the 8086 is set for the maximum-mode configuration, it provides signals for

implementing a multiprocessor / coprocessor system environment.

By multiprocessor environment we mean that one microprocessor exists in the system

and that each processor is executing its own program.

Usually in this type of system environment, there are some system resources that are

common to all processors.

They are called as global resources. There are also other resources that are assigned to

specific processors. These are known as local or private resources.

Coprocessor also means that there is a second processor in the system. In this two

processor does not access the bus at the same time.

One passes the control of the system bus to the other and then may suspend its operation.

In the maximum-mode 8086 system, facilities are provided for implementing allocation

of global resources and passing bus control to other microprocessor or coprocessor.

8288 Bus Controller Bus Command and Control Signals:

8086 does not directly provide all the signals that are required to control the memory, I/O

and interrupt interfaces.

Micro Processors Notes

Specially the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer produced by

the 8086. Instead it outputs three status signals S0, S1, S2 prior to the initiation of each

bus cycle. This 3- bit bus status code identifies which type of bus cycle is to follow.

S2S1S0 are input to the external bus controller device, the bus controller generates the

appropriately timed command and control signals.

The 8288 produces one or two of these eight command signals for each bus cycles. For

instance, when the 8086 outputs the code S2S1S0 equals 001, it indicates that an I/O

read cycle is to be performed.

In the code 111 is output by the 8086, it is signaling that no bus activity is to take place.

The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3 signals

provide the same functions as those described for the minimum system mode. This set

of bus commands and control signals is compatible with the Multibus and industry

standard for interfacing microprocessor systems.

The output of 8289 are bus arbitration signals:

Bus busy (BUSY), common bus request (CBRQ), bus priority out (BPRO), bus priority in

(BPRN), bus request (BREQ) and bus clock (BCLK).

They correspond to the bus exchange signals of the Multibus and are used to lock other

processor off the system bus during the execution of an instruction by the 8086.

In this way the processor can be assured of uninterrupted access to common system

resources such as global memory.

Queue Status Signals: Two new signals that are produced by the 8086 in the maximum-

mode system are queue status outputs QS0 and QS1. Together they form a 2-bit queue

status code, QS1QS0.

Following table shows the four different queue status.

Micro Processors Notes

Local Bus Control Signal Request / Grant Signals: In a maximum mode

configuration, the minimum mode HOLD, HLDA interface is also changed. These two

are replaced by request/grant lines RQ/ GT0 and RQ/ GT1, respectively. They provide

a prioritized bus access mechanism for accessing the local bus.

Internal Registers of 8086

The 8086 has four groups of the user accessible internal registers. They are the instruction

pointer, four data registers, four pointer and index register, four segment registers.

The 8086 has a total of fourteen 16-bit registers including a 16 bit register called the

status register, with 9 of bits implemented for status and control flags.

Most of the registers contain data/instruction offsets within 64 KB memory segment.

There are four different 64 KB segments for instructions, stack, data and extra data. To

specify where in 1 MB of processor memory these 4 segments are located the

processor uses four segment registers:

Code segment (CS) is a 16-bit register containing address of 64 KB segment with

processor instructions. The processor uses CS segment for all accesses to instructions

referenced by instruction pointer (IP) register. CS register cannot be changed directly.

The CS register is autDMAtically updated during far jump, far call and far return

instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with

program stack. By default, the processor assumes that all data referenced by the stack

pointer (SP) and base pointer (BP) registers is located in the stack segment. SS register

can be changed directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with

program data. By default, the processor assumes that all data referenced by general

registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment.

DS register can be changed directly using POP and LDS instructions.

Accumulator register consists of two 8-bit registers AL and AH, which can be combined

together and used as a 16-bit register AX. AL in this case contains the low-order byte

Micro Processors Notes

Ch.Uma SankarM.Tech Page 27

of the word, and AH contains the high-order byte. Accumulator can be used for I/O

operations and string manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together

and used as a 16-bit register BX. BL in this case contains the low-order byte of the

word, and BH contains the high-order byte. BX register usually contains a data pointer

used for based, based indexed or register indirect addressing.

Count register consists of two 8-bit registers CL and CH, which can be combined

together and used as a 16-bit register CX. When combined, CL register contains the

low-order byte of the word, and CH contains the high-order byte. Count register can

be used in Loop, shift/rotate instructions and as a counter in string manipulation,.

Data register consists of two 8-bit registers DL and DH, which can be combined together

and used as a 16-bit register DX. When combined, DL register contains the low-order

byte of the word, and DH contains the high-order byte. Data register can be used as a

port number in I/O operations. In integer 32-bit multiply and divide instruction the DX

register contains high-order word of the initial or resulting number.

The following registers are both general and index registers:

Stack Pointer (SP) is a 16-bit register pointing to program stack.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is

usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register

indirect addressing, as well as a source data address in string manipulation

instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and

register indirect addressing, as well as a destination data address in string manipulation

instructions.

Other registers:

Instruction Pointer (IP) is a 16-bit register.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 28

Flags is a 16-bit register containing 9 one bit flags.

Overflow Flag (OF) - set if the result is too large positive number, or is too small

negative number to fit into destination operand.

Direction Flag (DF) - if set then string manipulation instructions will auto-decrement

index registers. If cleared then the index registers will be auto-incremented.

Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.

Single-step Flag (TF) - if set then single-step interrupt will occur after the next

instruction.

Sign Flag (SF) - set if the most significant bit of the result is set.

Zero Flag (ZF) - set if the result is zero.

Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the AL

register.

Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the result

is even.

Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit

during last result calculation.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 29

Chapter-2
ASSENBLER DIRECTIVES

Micro Processors Notes

Ch.Uma SankarM.Tech Page 30

1

Assembler directives

By

Ch.UMA SANKAR,

Dept. of ECE,

GIST.
2/16/2012 $

Machine Language

A language of numbers, called the Processor’s
Instruction Set

The set of basic operations a processor can perform

Each instruction is coded as a number

Instructions may be one or more bytes

Every number corresponds to an instruction

2/16/2012 2$

Micro Processors Notes

Ch.Uma SankarM.Tech Page 31

Build Executable Programs

Syntax check
Translate source

files into

machine code

Source files
Assembler Linker

OBJ
files

OBJ
files

library

Executable
files

q Assemblers

ØMicrosoft ML, LINK, & DEBUG
Ø 8086 Emulator
Ø A86
ØMASM32 package

2/16/2012 $ 3

8086 Instruction - Basic Structure

Label Operator Operand[s] ;Comment

Label - optional alphanumeric string
1st character must be a-z,A-Z,?,@,_,$
Last character must be :

Operator - assembly language instruction
mnemonic: an instruction format for humans
Assembler translates mnemonic into hexadecimal opcode
example: mov is f8h

Operand[s] - 0 to 3 pieces of data required by instruction
Can be several different forms
Delineated by commas
immediate, register name, memory data, memory address

Comment - Extremely useful in assembler language

These fields are separated by White Space (tab, blank, \n, etc.)
2/16/2012 4$

Micro Processors Notes

Ch.Uma SankarM.Tech Page 32

5

Example of Assembly Language Program

;NUMOFF.ASM: Turn NUM-LOCK indicator off.

.MODEL SMALL

.STACK

.CODE

.STARTUP

MOV AX,40H ;set AX to 0040H

D1: MOV DS,AX ;load data segment with 0040H

MOV SI,17H ;load SI with 0017H

AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit

.EXIT

END

Comments

Assembly directive

Instructions

Assembly directive

Label
2/16/2012 $

8086 Instruction - Example
Label Operator Operand[s] ;Comment

INIT:mov ax, bx ; Copy contents of bx into
ax

Label - INIT:
Operator - mov
Operands - ax and bx
Comment - alphanumeric string between ; and \n

• Not case sensitive
• Unlike other assemblers, destination operand is first
• mov is the mnemonic that the assembler translates into an

opcode

2/16/2012 6$

Micro Processors Notes

Ch.Uma SankarM.Tech Page 33

Assembler Directives

end label end of program, label is entry point

proc far|near begin a procedure; far, near keywords
specify if procedure in different code
segment (far), or same code segment (near)

endp end of procedure

title title of the listing file

.code mark start of code segment

.data mark start of data segment

.stack set size of stack segment

2/16/2012 7$

Assembler Directives
db define byte

dw define word (2 bytes)

dd define double word (4 bytes)

dq define quadword (8 bytes)

dt define tenbytes

equ equate, assign numeric expression to a name

Examples:

db 100 dup (?) define 100 bytes, with no initial values for bytes

db Hello define 5 bytes, ASCII equivalent of Hello .

maxint equ 32767

count equ 10 * 20 ; calculate a value (200)

2/16/2012 8$

Micro Processors Notes

Ch.Uma SankarM.Tech Page 34

Assembler Language Segment Types
Stack

For dynamic data storage
Source file defines size
Must have exactly 1

Data

For static data Storage
Source file defines size
Source file defines content (optional)
Can have 0 or more

Code

For machine Instructions
Must have 1 or more

2/16/2012 9$

Directives
DB Define Byte : It defines a byte type variable. It
direct the assembler to reserve one byte of memory
and initialize that byte with the specified value. It can
define single or multiple variables.
Examples: Temperature DB 10

Temperature DB ?
Temperature DB 10. 20. 30. 40. 50
Temperature DB ?. ?. ?. ?. ?
Temperature DB 100 DUP(?)
Temperature DB 10. 5 dup(55). 20
Temperature DB 4 DUP(3 DUP(5))
Temperature DB ABCD

2/16/2012 10$

Micro Processors Notes

Ch.Uma SankarM.Tech Page 35

DW Define Word : It defines a word type variable. It
direct the assembler to reserve two byte of memory
and initialize those bytes with the specified value. It
can define single or multiple variables.
Examples : Temperature DW 1234H

Temperature DW 1234. 5678. 1456
Temperature DW 2 DUP(0)

2/16/2012 11$

DD Define Double Word : It defines a double word(4
bytes) type variable. It direct the assembler to reserve
four byte of memory and initialize those bytes with the
specified value. It can define single or multiple
variables.
Examples : Temperature DD 12345678

Temperature DD 5 DUP(0)
DQ Define Quad Word : It defines a quad word(8
bytes) type variable. It direct the assembler to reserve
eight byte of memory and initialize those bytes with
the specified value. It can define single or multiple
variables.
Examples : Temperature DQ 12345678

Temperature DQ 5 DUP(0)
DT Define Ten Bytes

2/16/2012 12$

Micro Processors Notes

Ch.Uma SankarM.Tech Page 36

EXTRN External : It tells the assembler that names
or labels following the directive are in some other
assembly module.
Examples: EXTERN Temperature : word

EXTERN Temperature : far
PUBLIC : It informs the assembler that the defined
name or label can be accessed from other program
modules.
Examples: PUBLIC Temperature1, Temperature2
GLOBAL :
SEGMENT : It indicate the beginning of a logical
segment.
Syntax: segment name SEGMENT [word/public]

2/16/2012 13$

ENDS : It informs the assembler the end of the
segment.
Syntax: segment name ENDS
ENDP : It indicate the end of procedure.
Syntax: procedure name ENDP
END : It indicate the end of the program.
ASSUME : This tells the assembler the name of a
logical segment, which is to be used for a specified
segment.
Examples: ASSUME CS:code; DS:data
EQU : It assign name to some value.
Examples: Temp EQU 04H
ORG : It tells the assembler to assign addresses to
data items or instruction in a program.2/16/2012 14$

Micro Processors Notes

Ch.Uma SankarM.Tech Page 37

Examples: ORG 0100H
ORG $ current value of address
ORG $ + 30

SRUCT or STRUC :It is used to define the start of a
data structure.
PTR : It is an operator. It points the type of memory
access.
Examples: mov byte ptr [bx], 58h
LENGTH : It tells the assembler to determine the
number of elements in a specified variable.
Examples: mov cx, length arry1
SIZE : It gives the number of byte allocated to data
item.
OFFSET : It determines the offset.2/16/2012 15$

2/16/2012 16$

ALIGN: Aligns next variable or instruction to byte
which is multiple of operand.
Examples : ALIGN 8:

assembler divides the memory to be divisible by 8.

MACRO : Defines a macro (or) starts MACRO
definition.
PROC : Starts the procedure definition.
MODEL: specifies the mode for assembling the
program.

1 0 1 1 1 1 1 1

0 1 1 1 1 1 0 0

Micro Processors Notes

Ch.Uma SankarM.Tech Page 38

MASM(Microsoft Macro Assembler)

The Microsoft Macro Assembler (abbreviated MASM)
is an assembler for the x86 family of microprocessors.
It was originally produced by Microsoft for
development work on their MS-DOS operating system,
and was for some time the most popular assembler
available for that operating system.
Steps to work on MASM:

* c:\masm> edit [filename.asm]
* Save file with filename.asm
* c:\masm> masm filename.asm
* c:\masm> link filename + io
* c:\masm> filename

2/16/2012 18$

TASM(Turbo ASseMbler)

The Turbo Assembler (TASM) mainly PC-targeted
assembler package.
TASM worked well with Borland's high-level language
compilers for the PC, such as Turbo C and Turbo
Pascal.
Steps to work on TASM:

* c:\tasm> edit [filename.asm]
* Save file with filename.asm
* c:\tasm> tasm filename.asm
* c:\tasm> tlink filename + io
* c:\tasm> td filename

2/16/2012 19$

Micro Processors Notes

Ch.Uma SankarM.Tech Page 39

CHAPTER- 3

INSTRUCTION SET of 8086

Micro Processors Notes

Ch.Uma SankarM.Tech Page 40

1

Instruction set of 8086
Microprocessor

By

Ch.UMA SANKAR,

Dept. of ECE,

GIST.
22/12/2010 $

2

The sequence of commands used to tell a microcomputer what to
do is called a program,
Each command in a program is called an instruction
8086/88 understands and performs operations for 117 basic
instructions
The native language of the IBM PC is the machine language of the
8086/88
A program written in machine language is referred to as machine
code
In 8086/88 assembly language, each of the operations is described
by alphanumeric symbols instead of 0-1s.

ADD AX, BX

(Opcode) (Destination operand) (Source operand)

Software

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 41

3

Instructions

LABEL: INSTRUCTION ; COMMENT
Address identifier Does not generate any machine code

Ex. START: MOV AX, BX ; copy BX into AX

There is a one-to-one relationship between assembly and
machine language instructions

A compiled machine code implementation of a program
written in a high-level language results in inefficient code

More machine language instructions than an assembled version of an
equivalent handwritten assembly language program

22/12/2010 $

4

Two key benefits of assembly language
programming

It takes up less memory

It executes much faster

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 42

5

Converting Assembly Language Instructions
to Machine Code

An instruction can be coded with 1 to 6 bytes
Byte 1 contains three kinds of information

Opcode field (6 bits) specifies the operation (add, subtract,
move)

Register Direction Bit (D bit) Tells the register operand in REG
field in byte 2 is source or destination operand
1: destination 0: source

- Data Size Bit (W bit) Specifies whether the operation will be
performed on 8-bit or 16-bit data
0: 8 bits 1: 16 bits

22/12/2010 $

6

Byte 2 has three fields
Mode field (MOD)
Register field (REG) used to identify the register for the first operand
Register/memory field (R/M field)

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 43

22/12/2010 7$

8

Mnemonic Meaning Format Operation Flags affected

MOV Move Mov D,S (S)à (D) None

Data Transfer Instructions - MOV

Destination Source
Memory Accumulator
Accumulator Memory

Register Register
Register Memory
Memory Register
Register Immediate
Memory Immediate
Seg reg Reg 16
Seg reg Mem 16
Reg 16 Seg reg
Memory Seg reg

NO MOV

Memory
Immediate
Segment Register

Memory
Segment Register
Segment Register

EX: MOV AL, BL
22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 44

9

Data Transfer Instructions - XCHG

Mnemonic Meaning Format Operation Flags affected

XCHG Exchange XCHG D,S (S) (D) None

Destination Source

Accumulator Reg 16

Memory Register

Register Register

Register Memory

Example: XCHG [1234h], BX

NO XCHG
MEMs
SEG REGs

22/12/2010 $

10

Data Transfer Instructions LEA, LDS, LES

Mnemo
nic

Meaning Format Operation Flags
affected

LEA Load
Effective
Address

LEA Reg16,EA EA à (Reg16) None

LDS Load
Register
And DS

LDS Reg16,MEM32 (MEM32) à (Reg16)

(Mem32+2) à (DS)

None

LES Load
Register
and ES

LES Reg16,MEM32 (MEM32)à (Reg16)

(Mem32+2) à (DS)

None

LEA SI DATA (or) MOV SI Offset DATA
22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 45

11

The XLAT Instruction

Mnemonic Meaning Format Operation Flags
XLAT Translate XLAT ((AL)+(BX)+(DS)0) à (AL) None

Example:

Assume (DS) = 0300H, (BX)=0100H, and (AL)=0DH
XLAT replaces contents of AL by contents of memory location with
PA=(DS)0 +(BX) +(AL)

= 03000H + 0100H + 0DH = 0310DH
Thus
(0310DH)à (AL)

22/12/2010 $

22/12/2010 12

Arithmetic & Logical Instructions

$

Micro Processors Notes

Ch.Uma SankarM.Tech Page 46

22/12/2010 13

Arithmetic & Logical Instructions
TYPE INSTRUCTIONS

ADD,ADC,INC
SUB,SBB,DEC,NEG
MUL,IMUL
DIV,IDIV
DAA,DAS
AAA,AAS,AAM,AAD
CMP
AND,OR,XOR,NOT,SAL,SHL,
SAR,SHR,ROR,RCR,ROL,RCL

$

14

Arithmetic Instructions: ADD, ADC, INC, AAA, DAA

Mnemonic Meaning Format Operation Flags
affected

ADD Addition ADD D,S (S)+(D) à (D)
carry à (CF)

ALL

ADC Add with
carry

ADC D,S (S)+(D)+(CF) à (D)
carry à (CF)

ALL

INC Increment by
one

INC D (D)+1 à (D) ALL but CY

AAA ASCII adjust
for addition

AAA If the sum is >9, AH
is incremented by 1

AF,CF

DAA Decimal
adjust for
addition

DAA Adjust AL for decimal
Packed BCD

ALL

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 47

15

Examples:

Ex.1 ADD AX,2
ADC AX,2

Ex.2 INC BX
INC WORD PTR [BX]

Ex.3 ASCII CODE 0-9 = 30-39h

MOV AX,38H ; (ASCII code for number 8)
ADD AL,39H ; (ASCII code for number 9) AL=71h
AAA ; used for addition AH=01, AL=07
ADD AX,3030H ; answer to ASCII 0107 AX=3137

Ex.4 AL contains 25 (packed BCD)
BL contains 56 (packed BCD)

ADD AL, BL
DAA

25
+ 56

7B 81

22/12/2010 $

16

Arithmetic Instructions SUB, SBB, DEC, AAS, DAS, NEG

Mnemonic Meaning Format Operation Flags
affected

SUB Subtract SUB D,S (D) - (S) à (D)
Borrow à (CF)

All

SBB
Subtract

with
borrow

SBB D,S (D) - (S) - (CF) à (D) All

DEC Decrement
by one

DEC D (D) - 1 à (D) All but CF

NEG Negate NEG D All

DAS
Decimal

adjust for
subtraction

DAS Convert the result in AL to
packed decimal format

All

AAS
ASCII

adjust for
subtraction

AAS (AL) difference
(AH) dec by 1 if borrow

CY,AC

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 48

17

Examples: DAS

MOV BL, 28H
MOV AL, 83H
SUB AL,BL ; AL=5BH
DAS ; adjust as AL=55H

MOV AX, 38H
SUB AL,39H; AX=00FF
AAS ; AX=FF09 ten s complement of -1 (Borrow one from AH)

OR AL,30H ; AL=39

22/12/2010 $

18

Multiplication and Division

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 49

19

Multiplication and Division

22/12/2010 $

20

Multiplication
(MUL or IMUL)

Multiplicand Operand
(Multiplier)

Result

Byte*Byte AL Register or memory AX

Word*Word AX Register or memory DX :AX

Dword*Dword EAX Register or memory EAX :EDX

Division
(DIV or IDIV)

Dividend Operand
(Divisor)

Quotient: Remainder

Word/Byte AX Register or Memory AL : AH

Dword/Word DX:AX Register or Memory AX : DX

Qword/Dword EDX: EAX Register or Memory EAX : EDX

Multiplication and Division

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 50

21

Multiplication and Division Examples

Ex1: Assume that each instruction starts from these values:
AL = 85H, BL = 35H, AH = 0H

1. MUL BL AL . BL = 85H * 35H = 1B89H AX = 1B89H

2. IMUL BL AL . BL = S AL * BL = S (85H) * 35H
= 7BH * 35H = 1977H s comp E689H AX.

3. DIV BL = = 02 (85-02*35=1B)

4. IDIV BL = =

1BH
H

35
0085

02
AH AL

H
H

35
0085

1B 02
AH AL

22/12/2010 $

22

Ex2: AL = F3H, BL = 91H, AH = 00H

1. MUL BL AL * BL = F3H * 91H = 89A3H AX = 89A3H

2. IMUL BL AL * BL = S AL * S BL = S (F3H) * S(91H) =
0DH * 6FH = 05A3H AX.

3.IDIV BL = = = 2 (00F3 2*6F=15H)
BL
AX

)91('2
300

HS
HF

FH
HF

6
300

AH AL
15 02
R Q

NEG
NEG
POS

= s(02) = FEH
AH AL
15 FE

4. DIV BL = = 01 (F3-1*91=62)
BL
AX

H
HF

91
300 AH AL

62 01
R Q

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 51

23

Ex3: AX= F000H, BX= 9015H, DX= 0000H

1. MUL BX = F000H * 9015H =

DX AX
8713 B000

2. IMUL BX = S(F000H) * S(9015H) = 1000 * 6FEB =
DX AX

06FE B000

3. DIV BL = = B6DH More than FFH Divide Error.H
HF

15
000

4. IDIV BL = = C3H > 7F Divide Error.
H

HFS
15

)000('2
H
H

15
1000

22/12/2010 $

24

Ex4: AX= 1250H, BL= 90H

1. IDIV BL = = = = =BL
AX

H
H

90
1250

NEG
POS

sNEG
POS
'2)90('2

1250
Hs
H

H
H

70
1250

= 29H (Q) (1250 29 * 70) = 60H (REM)

29H (POS) S (29H) = D7H R Q
60H D7H

2. DIV BL = = 20H 1250-20*90 =50H
BL
AX

H
H

90
1250 R Q

50H 20H
AH AL

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 52

25

Mnemonic Meaning Format Operation Flags Affected
AND

OR

XOR

NOT

Logical AND

Logical Inclusive
OR

Logical Exclusive
OR

LOGICAL NOT

AND D,S

OR D,S

XOR D,S

NOT D

(S) · (D) (D)

(S)+(D) (D)

(S) (D) (D)

_
(D) (D)

OF, SF, ZF, PF,
CF

AF undefined
OF, SF, ZF, PF,

CF
AF undefined

OF, SF, ZF, PF,
CF

AF undefined
None

+

Logical Instructions

Destination Source

Register
Register
Memory
Register
Memory

Accumulator

Register
Memory
Register

Immediate
Immediate
Immediate

Destination

Register
Memory

22/12/2010 $

26

LOGICAL Instructions

 AND
Uses any addressing mode except memory-to-memory and
segment registers
Especially used in clearing certain bits (masking)

xxxx xxxx AND 0000 1111 = 0000 xxxx
(clear the first four bits)

Examples: AND BL, 0FH
AND AL, [345H]

 OR
Used in setting certain bits

xxxx xxxx OR 0000 1111 = xxxx 1111
(Set the upper four bits)

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 53

27

XOR
Used in Inverting bits

xxxx xxxx XOR 0000 1111 = xxxxx

-Example: Clear bits 0 and 1, set bits 6 and 7, invert bit 5 of
register CL:

AND CL, OFCH ; 1111 1100B
OR CL, 0C0H ; 1100 0000B
XOR CL, 020H ; 0010 0000B

22/12/2010 $

Shift and Rotate Instructions
qSHL/SAL: shift logical left/shift

arithmetic left
q SHR: shift logical right
q SAR: shift arithmetic right
q ROL: rotate left
q ROR: rotate right
q RCL: rotate left through carry
q RCR: rotate right through carry

Micro Processors Notes

Ch.Uma SankarM.Tech Page 54

29

Logical vs Arithmetic Shifts

A logical shift fills the newly created bit position
with zero:

CF

0

An arithmetic shift fills the newly created bit
position with a copy of the number s sign bit:

CF

22/12/2010 $

30

Mnemo
-nic

Meaning Format Operation Flags
Affected

SAL/SH
L

SHR

SAR

Shift
arithmetic
Left/shift
Logical left

Shift
logical
right

Shift
arithmetic
right

SAL/SHL D, Count

SHR D, Count

SAR D, Count

Shift the (D) left by the
number of bit positions
equal to count and fill the
vacated bits positions on
the right with zeros

Shift the (D) right by the
number of bit positions
equal to count and fill the
vacated bits positions on
the left with zeros

Shift the (D) right by the
number of bit positions
equal to count and fill the
vacated bits positions on
the left with the original
most significant bit

CF,PF,SF,ZF
AF undefined
OF undefined
if count 1

CF,PF,SF,ZF
AF undefined
OF undefined
if count 1

CF,PF,SF,ZF
AF undefined
OF undefined
if count 1

Shift Instructions

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 55

31

Allowed operands

Destination Count

Register

Register

Memory

Memory

1

CL

1

CL

22/12/2010 $

3222/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 56

33

SHL Instruction

The SHL (shift left) instruction performs a logical
left shift on the destination operand, filling the
lowest bit with 0.

CF

0

Operand types:
SHL reg,imm8
SHL mem,imm8
SHL reg,CL
SHL mem,CL

22/12/2010 $

34

Fast Multiplication

mov dl,5

shl dl,1

Shifting left 1 bit multiplies a number by 2

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 = 5

= 10

Before:

After:

mov dl,5
shl dl,2 ; DL = 20

Shifting left n bits multiplies the operand by

2n

For example, 5 * 22 = 20

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 57

35

Ex.
; Multiply AX by 10

SHL AX, 1
MOV BX, AX
MOV CL,2
SHL AX,CL
ADD AX, BX

22/12/2010 $

36

SHR Instruction

The SHR (shift right) instruction performs a logical
right shift on the destination operand. The highest
bit position is filled with a zero.

CF

0

MOV DL,80
SHR DL,1 ; DL = 40
SHR DL,2 ; DL = 10

Shifting right n bits divides the operand by 2n

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 58

37

SAR Instruction

SAR (shift arithmetic right) performs a right
arithmetic shift on the destination operand.

CF

An arithmetic shift preserves the number's sign.

MOV DL,-80
SAR DL,1 ; DL = -40
SAR DL,2 ; DL = -10

22/12/2010 $

38

Rotate Instructions
Mnem
-onic

Meaning Format Operation Flags Affected

ROL Rotate
Left

ROL D,Count Rotate the (D) left by the
number of bit positions equal
to Count. Each bit shifted out
from the left most bit goes back
into the rightmost bit position.

CF
OF undefined
if count 1

ROR Rotate
Right

ROR D,Count Rotate the (D) right by the
number of bit positions equal
to Count. Each bit shifted out
from the rightmost bit goes
back into the leftmost bit
position.

CF
OF undefined
if count 1

RCL Rotate
Left
through
Carry

RCL D,Count Same as ROL except carry is
attached to (D) for rotation.

CF
OF undefined
if count 1

RCR Rotate
right
through
Carry

RCR D,Count Same as ROR except carry is
attached to (D) for rotation.

CF
OF undefined
if count 122/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 59

39

ROL Instruction

ROL (rotate) shifts each bit to the left
The highest bit is copied into both the Carry
flag and into the lowest bit
No bits are lost

CF

MOV Al,11110000b
ROL Al,1 ; AL = 11100001b

MOV Dl,3Fh
ROL Dl,4 ; DL = F3h

22/12/2010 $

40

ROR Instruction

ROR (rotate right) shifts each bit to the right
The lowest bit is copied into both the Carry flag and
into the highest bit
No bits are lost

CF

MOV AL,11110000b
ROR AL,1 ; AL = 01111000b

MOV DL,3Fh
ROR DL,4 ; DL = F3h

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 60

41

RCL Instruction
RCL (rotate carry left) shifts each bit to the left
Copies the Carry flag to the least significant bit
Copies the most significant bit to the Carry flag

CF

CLC ; CF = 0
MOV BL,88H ; CF,BL = 0 10001000b
RCL BL,1 ; CF,BL = 1 00010000b
RCL BL,1 ; CF,BL = 0 00100001b

22/12/2010 $

42

RCR Instruction
RCR (rotate carry right) shifts each bit to the right
Copies the Carry flag to the most significant bit
Copies the least significant bit to the Carry flag

STC ; CF = 1
MOV AH,10H ; CF,AH = 00010000 1
RCR AH,1 ; CF,AH = 10001000 0

CF

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 61

43

Destination Count

Register

Register

Memory

Memory

1

CL

1

CL

Rotate Instructions

22/12/2010 $

44

Compare Instruction, CMP
Mnemo
nic

Meaning Format Operation Flags
Affected

CMP Compare CMP D,S (D) (S) is used in
setting or resetting the
flags

CF, AF, OF,
PF, SF, ZF

(D) = (S) ; ZF=1

(D) > (S) ; ZF=0, CF=0

(D) < (S) ; ZF=0, CF=1

Allowed Operands
Destination Source

Register Register

Register Memory

Memory Register

Register Immediate

Memory Immediate

Accumulator Immediate22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 62

45

String?

An array of bytes or words located in
memory
Supported String Operations

Copy (move, load)
Search (scan)
Store
Compare

22/12/2010 $

46

String Instruction Basics

Source DS:SI, Destination ES:DI

You must ensure DS and ES are correct
You must ensure SI and DI are offsets into DS
and ES respectively

Direction Flag (0 = Up, 1 = Down)

CLD - Increment addresses (left to right)
STD - Decrement addresses (right to left)22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 63

47

String Instructions
Instruction prefixes

Prefix Used with Meaning

REP

REPE/REPZ

REPNE/REP
NZ

MOVS
STOS

CMPS
SCAS

CMPS
SCAS

Repeat while not end of string
CX 0

Repeat while not end of string
and strings are equal. CX 0
and ZF = 1

Repeat while not end of string
and strings are not equal. CX
0 and ZF = 022/12/2010 $

48

Instructions

Mnemo-
Nic

meaning format Operation Flags
effect

-ed
MOVS Move string

DS:SI
àES:DI

MOVSB/
MOVSW

((ES)0+(DI))ß ((DS)0+(SI))
(SI)ß (SI) 1 or 2
(DI)ß (DI) 1 or 2

none

CMPS Compare
string
DS:SI
àES:DI

CMPSB/
CMPSW

Set flags as per
((DS)0+(SI)) - ((ES)0+(DI))
(SI)ß (SI) 1 or 2
(DI)ß (DI) 1 or 2

All
status
flags

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 64

49

Mnemo-
Nic

meaning format Operation

SCAS Scan string
AX ES:DI

SCASB/
SCASW

Set flags as per
(AL or AX) - ((ES)0+(DI))
(DI)ß (DI) 1 or 2

LODS Load string
DS:SIà AX

LODSB/
LODSW

(AL or AX)ß ((DS)0+(SI))
(SI)ß (SI) 1 or 2

STOS Store string
ES:DIß AX

STOSB/
STOSW

((ES)0+(DI))ß (AL or A) 1 or 2
(DI)ß (DI) 1 or 2

22/12/2010 $

50

Branch group of instructions

Branch instructions provide lot of convenience to the
programmer to perform operations selectively, repetitively
etc.

Branch group of instructions

Conditional
jumps

Uncondi-
tional
jump

Iteration
instructions

CALL
instructions

Return
instructions

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 65

51

SUBROUTINE & SUBROUTINE HANDILING INSTRUCTIONS

Call subroutine A
Next instruction

Call subroutine A
Next instruction

Main program

Subroutine A

First Instruction

Return

22/12/2010 $

52

§ A subroutine is a special segment of program that can be called for
execution from any point in a program.

§ An assembly language subroutine is also referred to as a procedure .
§ Whenever we need the subroutine, a single instruction is inserted in to

the main body of the program to call subroutine.
§ To branch a subroutine the value in the IP or CS and IP must be

modified.
§ After execution, we want to return the control to the instruction that

immediately follows the one called the subroutine i.e., the original value
of IP or CS and IP must be preserved.

§ Execution of the instruction causes the contents of IP to be saved on
the stack. (this time (SP)ß (SP) -2)

§ A new 16-bit (near-proc, mem16, reg16 i.e., Intra Segment) value
which is specified by the instructions operand is loaded into IP.

§ Examples: CALL 1234H
CALL BX
CALL [BX]

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 66

53

Inter Segment

At starting CS and IP placed in a stack.
New values are loaded in to CS and IP given by the
operand.
After execution original CS, IP values placed as it is.

Far-proc
Memptr32

These two words (32 bits) are loaded directly into IP and
CS with execution at CALL instruction.

First 16à IP

Next 16à CS

22/12/2010 $

54

Mnem-
onic

Meaning Format Operation Flags
Affected

CALL Subroutine
call

CALL operand Execution continues from
the address of the
subroutine specified by
the operand. Information
required to return back to
the main program such as
IP and CS are saved on
the stack.

none

Operand

Near-proc

Far proc

Memptr 16

Regptr 16

Memptr 3222/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 67

55

RETURN
Every subroutine must end by executing an instruction that returns control
to the main program. This is the return (RET) instruction.

By execution the value of IP or IP and CS that were saved in the stack to
be returned back to their corresponding regs. (this time (SP)ß (SP)+2)

Mnem
-onic

Meaning Format Operation Flags
Affected

RET Return RET or
RET operand

Return to the main
program by restoring IP
(and CS for far-proc). If
operands is present, it is
added to the contents of
SP.

None

Operand

None

Disp16
22/12/2010 $

56

Loop Instructions
These instructions are used to repeat a set of instructions several
times.
Format: LOOP Short-Label
Operation: (CX)ß (CX)-1
Jump is initialized to location defined by short label if CX 0.
otherwise, execute next sequential instruction.
Instruction LOOP works w.r.t contents of CX. CX must be
preloaded with a count that represents the number of times the
loop is to be repeat.
Whenever the loop is executed, contents at CX are first
decremented then checked to determine if they are equal to zero.
If CX=0, loop is complete and the instruction following loop is
executed.
If CX 0, content return to the instruction at the label specified in
the loop instruction.
22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 68

57

General format : LOOP r8 ; r8 is 8-bit signed value.

It is a 2 byte instruction.

Used for backward jump only.

Maximum distance for backward jump is only 128 bytes.

LOOP AGAIN is almost same as: DEC CX
JNZ AGAIN

LOOP instruction does not affect any flags.

LOOP Instruction contd.

22/12/2010 $

58

Mnemonic meaning format Operation

LOOP Loop Loop short-label (CX)ß (CX) 1
Jump to location given by
short-label if CX 0

LOOPE/
LOOPZ

Loop while
equal/ loop
while zero

LOOPE/LOOPZ
short-label

(CX)ß (CX) 1
Jump to location given by
short-label if CX 0 and
ZF=1

LOOPNE/
LOOPNZ

Loop while
not equal/
loop while
not zero

LOOPNE/LOOPNZ
short-label

(CX)ß (CX) 1
Jump to location given by
short-label if CX 0 and
ZF=0

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 69

59

Unconditional Jump

Part 1

JMPAA Unconditional JMP

Skipped part

Part 3

AA XXXX

Part 2

Next instruction

Control flow and JUMP instructions

JMP à unconditional jump

JMP Operand

22/12/2010 $

60

Unconditional Jump

Unconditional Jump Instruction

Near Jump or Far Jump or
Intra segment Jump Inter segment Jump

(Jump within the segment) (Jump to a different segment)
Is limited to the address with in
the current segment. It is achieved
by modifying value in IP

Permits jumps from one code
segment to another. It is
achieved by modifying CS and IP

Operands
Short label

Near label

Far label

Memptr16

Regptr16

memptr32

Inter Segment Jump

Inter Segment Jump
22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 70

61

Conditional Jump

Part 1

Jcc AA Conditional Jump

Skipped part

Part 2

XXXX

Part 3

AA XXXX

condition

YES

NO

Next instruction

22/12/2010 $

62

Conditional Jump instructions

Conditional Jump instructions in 8086 are just 2 bytes long. 1-byte
opcode followed by 1-byte signed displacement (range of 128 to
+127).

Conditional Jump Instructions

Jumps based on
a single flag

Jumps based on
more than one flag

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 71

63

Conditional Jump Instructions

Mnemonic : Jcc

Meaning : Conditional Jump

Format : Jcc operand

Operation : If condition is true jump to the address specified by operand.
Otherwise the next instruction is executed.

Flags affected : None

22/12/2010 $

64

Mnemonic meaning condition

JA Above CF=0 and ZF=0

JAE Above or Equal CF=0

JB Below CF=1

JBE Below or Equal CF=1 or ZF=1

JC Carry CF=1

JCXZ CX register is Zero (CF or ZF)=0

JE Equal ZF=1

JG Greater ZF=0 and SF=OF

JGE Greater or Equal SF=OF

JL Less (SF XOR OF) = 1

TYPES

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 72

65

Mnemonic meaning condition

JLE Less or Equal ((SF XOR OF) or ZF) = 1

JNA Not Above CF =1 or Zf=1

JNAE Not Above nor Equal CF = 1

JNB Not Below CF = 0

JNBE Not Below nor Equal CF = 0 and ZF = 0

JNC Not Carry CF = 0

JNE Not Equal ZF = 0

JNG Not Greater ((SF XOR OF) or ZF)=1

JNGE Not Greater nor Equal (SF XOR OF) = 1

JNL Not Less SF = OF

22/12/2010 $

66

Mnemonic meaning condition
JNLE Not Less nor Equal ZF = 0 and SF = OF
JNO Not Overflow OF = 0
JNP Not Parity PF = 0
JNZ Not Zero ZF = 0
JNS Not Sign SF = 0
JO Overflow OF = 1
JP Parity PF = 1
JPE Parity Even PF = 1
JPO Parity Odd PF = 0
JS Sign SF = 1
JZ Zero ZF = 1

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 73

67

Jumps Based on a single flag
JZ r8 ;Jump if zero flag set to 1 (Jump if result is zero)

JNZ r8 ;Jump if Not Zero (Z flag = 0 i.e. result is nonzero)

JS r8 ;Jump if Sign flag set to 1 (result is negative)

JNS r8 ;Jump if Not Sign (result is positive)

JC r8 ;Jump if Carry flag set to 1

JNC r8 ;Jump if No Carry

JP r8 ;Jump if Parity flag set to 1 (Parity is even)

JNP r8 ;Jump if No Parity (Parity is odd)

JO r8 ;Jump if Overflow flag set to 1 (result is wrong)

JNO r8 ;Jump if No Overflow (result is correct)

There is no jump
based on AC flag

22/12/2010 $

68

JZ r8 ; JE (Jump if Equal) also means same.

JNZ r8 ; JNE (Jump if Not Equal) also means same.

JC r8 ;JB (Jump if below) and JNAE (Jump if Not Above
or Equal) also mean same.

JNC r8 ;JAE (Jump if Above or Equal) and JNB (Jump if
Not Above) also mean same.

JZ, JNZ, JC and JNC used after arithmetic operation

JE, JNE, JB, JNAE, JAE and JNB are used after a
compare operation.

JP r8 ; JPE (Jump if Parity Even) also means same.

JNP r8 ; JPO (Jump if Parity Odd) also means same.

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 74

69

Examples for JE or JZ instruction

Ex. for forward jump (Only examples for JE given)

CMP SI, DI

JE SAME

Should be
<=127
bytes

ADD CX, DX ;Executed if Z = 0

: (if SI not equal to DI)

:

SAME: SUB BX, AX ;Executed if Z = 1

(if SI = DI)

22/12/2010 $

70

Examples for JE or JZ instruction

Ex. for backward jump
BACK: SUB BX, AX ; executed if Z = 1

Should be
<= 128
bytes

: (if SI = DI)
:

CMP SI, DI
JE BACK
ADD CX, DX ;executed if Z = 0

(if SI not equal to DI)

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 75

71

Jumping beyond -128 to +127?

Requirement Then do this!

CMP SI, DI CMP SI, DI

JE SAME JNE NEXT

What if
>127
bytes

ADD CX, DX JMP SAME

: NEXT: ADD CX, DX

: :

SAME: SUB BX, AX :

SAME: SUB BX, AX

Range for JMP (unconditional jump) can be +215 = + 32K JMP instruction
discussed in detail later

22/12/2010 $

72

Terms used in comparison

Above and Below used for comparing Unsigned nos.
Greater than and less than used with signed numbers.
All Intel microprocessors use this convention.

95H is above 65H Unsigned comparison - True
95H is less than 65H Signed comparison - True

95H is negative, 65H is positive

65H is below 95H Unsigned comparison - True
65H is greater than 95H Signed comparison - True

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 76

73

Jump on multiple flags

Conditional Jumps based on more than one flag are used after a CMP
(compare) instruction.

JBE or
JNA

Jump if Below or Equal
Jump if Not Above

Jump if No Jump if Ex.

Cy = 1 OR Z= 1 Cy = 0 AND Z = 0 CMP BX, CX

Below OR Equal Surely Above JBE BX_BE

BX_BE (BX is Below or Equal) is a symbolic location
22/12/2010 $

74

Jump on multiple flags contd.

JNBE or
JA

Jump if Not (Below or Equal)
Jump if Above

Jump if No Jump if Ex.

Cy = 0 AND Z= 0 Cy = 1 OR Z = 1 CMP BX, CX
Surely Above Below OR Equal JA BXabove

BXabove (BX is above) is a symbolic location

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 77

75

Jump on multiple flags contd.

JLE or
JNG

Jump if Less than OR Equal
Jump if Not Greater than

Jump if No Jump if

S = 1 AND V = 0
(surely negative)

OR (S = 0 AND V = 1)
(wrong answer positive!)

OR Z = 1 (equal)

i.e. S XOR V = 1 OR Z = 1

S = 0 AND V = 0
(surely positive)

OR (S = 1 AND V = 1)
(wrong answer negative!)

AND Z = 0 (not equal)

i.e. S XOR V = 0 AND Z = 0

22/12/2010 $

76

Jump on multiple flags contd.
JNLE or
JG

Jump if Not (Less than OR Equal)
Jump if Greater than

Jump if No Jump if

S = 0 AND V = 0
(surely positive)

OR (S = 1 AND V = 1)
(wrong answer negative!)

AND Z = 0 (not equal)

i.e. S XOR V = 0 AND Z = 0

S = 1 AND V = 0
(surely negative)

OR (S = 0 AND V = 1)
(wrong answer positive!)

OR Z = 1 (equal)

i.e. S XOR V = 1 OR Z = 1

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 78

77

Jump on multiple flags contd.

JL or
JNGE

Jump if Less than
Jump if Not (Greater than OR Equal)

Jump if No Jump if

S = 1 AND V = 0
(surely negative)

OR (S = 0 AND V = 1)
(wrong answer positive!)

i.e. S XOR V = 1
When S = 1, result cannot be 0

S = 0 AND V = 0
(surely positive)

OR (S = 1 AND V = 1)
(wrong answer negative!)

i.e. S XOR V = 0
When S = 0, result can be 0

22/12/2010 $

78

Jump on multiple flags contd.

JNL or
JGE

Jump if Not Less than
Jump if Greater than OR Equal

Jump if No Jump if

S = 0 AND V = 0
(surely positive)

OR (S = 1 AND V = 1)
(wrong answer negative!)

i.e. S XOR V = 0
When S = 0, result can be 0

S = 1 AND V = 0
(surely negative)

OR (S = 0 AND V = 1)
(wrong answer positive!)

i.e. S XOR V = 1
When S = 1, result cannot be 0

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 79

79

Near Jump

Near Jump

Direct Jump
(common)

Indirect Jump
(uncommon)

Short Jump Long Jump
2 or more bytes

Starting with FFH
Range: complete

segment

2 bytes 3 bytes

EB r8 E9 r16

range + 27 range +215

3 Near Jump and 2 Far Jump instructions have the same mnemonic
JMP but different opcodes

22/12/2010 $

80

Short Jump

2 byte (EB r8) instruction Range: -128 to +127 bytes

Backward jump: Assembler knows the quantum of jump.
Generates Short Jump code if <=128 bytes is the required jump
Generates code for Long Jump if >128 bytes is the required jump

Forward jump: Assembler doesn t know jump quantum in pass 1.
Assembler reserves 3 bytes for the forward jump instruction.
If jump distance turns out to be >128 bytes, the instruction is
coded as E9 r16 (E9H = Long jump code).
If jump distance becomes <=128 bytes, the instruction is coded as
EB r8 followed by code for NOP (E8H = Short jump code).

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 80

81

Short Jump contd.

SHORT Assembler Directive
Assembler generates only 2 byte Short Jump code for forward jump, if the
SHORT assembler directive is used.

JMP SHORT SAME
Programmer should ensure that the
Jump distance is <=127 bytes

:
:

SAME: MOV CX, DX

22/12/2010 $

82

Long Jump

3-byte (E9 r16) instruction Range: -32768 to +32767 bytes

Long Jump can cover entire 64K bytes of Code segment
CS:0000H

Long Jump can
handle it as jump
quantum is <=32767

CS:8000H JMP FRWD
:
:

FRWD = CS:FFFFH

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 81

83

Long Jump contd.

It can cover entire 64K bytes of Code segment

Long Jump can
handle it as jump
quantum is
<=32768

BKWD = CS:0000H

CS:8000H JMP BKWD
:
:

CS:FFFFH

22/12/2010 $

84

Long Jump or Short Jump?

Can be treated
as a small
(20H) backward
branch!

CS:0000H :
: Jump distance

=FFE0H. Too
very long

forward jump

CS:000DH JMP FRWD
CS:0010H :

:
FRWD= CS:FFF0H

CS:FFFFH

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 82

86

Intra segment indirect Jump

Near Indirect Jump is uncommon.
Instruction length: 2 or more bytes
Range: complete segment

Ex.1: JMP DX

If DX = 1234H, branches to CS:1234H
1234H is not signed relative displacement

Ex. 2: JMP wordptr 2000H[BX]

BX 1234H DS:3234H 5678H Branches to

DS:3236H AB22H CS:5678H

22/12/2010 $

85

Long Jump or Short Jump?

Can be treated
as a small
(20H) forward
branch!

CS:0000H :
: Jump distance

=FFE0H. Too
very long

backward jump

BKWD= CS:0010H :
:

JMP BKWD
CS:FFF0H
CS:FFFFH

22/12/2010 $ 85

Long Jump or Short Jump?

Can be treated
as a small
(20H) forward
branch!

CS:0000H :
: Jump distance

=FFE0H. Too
very long

backward jump

BKWD= CS:0010H :
:

JMP BKWD
CS:FFF0H
CS:FFFFH

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 83

87

Far Jump

Far Jump

Direct Jump
(common)

Indirect Jump
(uncommon)

5 bytes

2 or more bytes
Starting with FFH
Range: anywhere

EA,2 byte offset, 2 byte segment

Range: anywhere

3 Near Jump and 2 Far Jump instructions have the same mnemonic
JMP but different opcodes

22/12/2010 $

88

Inter segment Direct Jump

Also called Far Direct Jump
It is the common inter segment jump scheme

It is a 5 byte instruction
1 byte opcode (EAH)
2 byte offset value
2 byte segment value

Ex. JMP Far ptr LOC

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 84

89

Inter segment Indirect Jump

Instruction length depends on the way jump location is
specified
It can be a minimum of 2 bytes

Ex. JMP DWORD PTR 2000H[BX]

22/12/2010 $

90

Inter segment Indirect Jump

Also called Far Indirect Jump
It is not commonly used
Instruction length is a minimum of 2 bytes.
It depends on the way jump location is specified
Ex. JMP DWORD PTR 2000H[BX]

BX 1234H Branches to

ABCDH:5678H

DS:3234H 5678H It is a 4-byte instruction

DS:3236H ABCDH

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 85

91

Flag control instructions or Processor control ins.
MNEM-
ONIC

MEANING OPERATION Flags
Affected

CLC Clear Carry Flag (CF) ß 0 CF

STC Set Carry Flag (CF) ß 1 CF

CMC Complement
Carry Flag

(CF) ß (CF)l CF

CLD Clear Direction
Flag

(DF)ß 0
SI & DI will be auto incremented while
string instructions are executed.

DF

STD Set Direction
Flag

(DF)ß 1
SI & DI will be auto decremented
while string instructions are executed.

DF

CLI Clear Interrupt
Flag

(IF)ß 0 IF

STI Set Interrupt
Flag

(IF)ß 1 IF
22/12/2010 $

92

MACHINE CONTROL (OR) EXT. H/W SYNC.
INSTRUCTIONS

HLT instruction HALT processing
the HLT instruction will cause the 8086 to stop fetching and executing

instructions. The 8086 will enter a halt state. The only way to get the processor
out of the halt state are with an interrupt signal on the INTR pin or an interrupt
signal on NMI pin or a reset signal on the RESET input.

NOP instruction
this instruction simply takes up three clock cycles and does no

processing. After this, it will execute the next instruction. This instruction is
normally used to provide delays in between instructions.

ESC instruction
whenever this instruction executes, the microprocessor does NOP or

access a data from memory for coprocessor. This instruction passes the
information to 8087 math processor. Six bits of ESC instruction provide the
opcode to coprocessor.

when 8086 fetches instruction bytes, co-processor also picks up these
bytes and puts in its queue. The co-processor will treat normal 8086
instructions as NOP. Floating point instructions are executed by 8087 and
during this 8086 will be in WAIT.

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 86

93

Machine control instructions contd

LOCK instruction
this is a prefix to an instruction. This prefix makes sure that during

execution of the instruction, control of system bus is not taken by other
microprocessor.

in multiprocessor systems, individual microprocessors are connected
together by a system bus. This is to share the common resources. Each
processor will take control of this bus only when it needs to use common
resource.

the lock prefix will ensure that in the middle of an instruction, system
bus is not taken by other processors. This is achieved by hardware signal
LOCK available on one of the CPU pin. This signal will be made active
during this instruction and it is used by the bus control logic to prevent
others from taking the bus.

once this instruction is completed, lock signal becomes inactive and
microprocessors can take the system bus.

WAIT instruction
this instruction takes 8086 to an idle condition. The CPU will not do

any processing during this. It will continue to be in idle state until TEST pin
of 8086 becomes low or an interrupt signal is received on INTR or NMI. On
valid interrupt, ISR is executed and processor enters the idle state again.

22/12/2010 $

94

INTERRUPT INSTRUCTIONS
INT instruction
ü TO CALL A FAR PROCEDURE
ü Type is a no b/w 0-255 denotes a element in the

IVT(interrupt vector table)
ü Syn: INT Type
INTO instruction
ü If Overflow flag is set this ins. calls a procedure to

handle that overflow condition

IRET instruction
ü Is used at the end of interrupt service routine

to return to the main program

22/12/2010 $

Micro Processors Notes

Ch.Uma SankarM.Tech Page 87

CHAPTER - 4

PROGRAMMABLE PERIPHERAL INTERFACE (8255)
• The parallel input-output port chip 8255 is also called as programmable peripheral

input-output port. The Intel s 8255 is designed for use with Intel s 8-bit, 16-bit and

higher capability microprocessors. It has 24 input/output lines which may be

individually programmed in two groups of twelve lines each, or three groups of eight

lines.

 The two groups of I/O pins are named as Group A and Group B. Each of these two

groups contains a subgroup of eight I/O lines called as 8-bit port and another subgroup

of four lines or a 4-bit port. Thus Group A contains an 8-bit port A along with a 4-bit

port C upper.

 The port A lines are identified by symbols PA0-PA7 while the port C lines are identified

as PC4-PC7. Similarly, Group B contains an 8-bit port B, containing lines PB0-PB7

and a 4-bit port C with lower bits PC0- PC3. The port C upper and port C lower can be

used in combination as an 8-bit port C.

 Both the port C are assigned the same address. Thus one may have either three 8-bit I/O

ports or two 8-bit and two 4-bit ports from 8255. All of these ports can function

independently either as input or as output ports. This can be achieved by programming

the bits of an internal register of 8255 called as control word register (CWR).

 The internal block diagram and the pin configuration of 8255 are shown in fig.

 The 8-bit data bus buffer is controlled by the read/write control logic. The read/write

control logic manages all of the internal and external transfers of both data and control

words. RD , WR , A1, A0 and RESET are the inputs provided by the microprocessor

to the READ/ WRITE control logic of 8255. The 8-bit, 3-state bidirectional buffer is

used to interface the 8255 internal data bus with the external system data bus.

 This buffer receives or transmits data upon the execution of input or output instructions

by the microprocessor. The control words or status information is also transferred

through the buffer.

The signal description of 8255 are briefly presented as follows :

PA7-PA0: These are eight port A lines that acts as either latched output or buffered input

lines depending upon the control word loaded into the control word register.

PC7-PC4 : Upper nibble of port C lines. They may act as either output latches or input

buffers lines.

 This port also can be used for generation of handshake lines in mode 1 or mode 2.

Micro Processors Notes

PC3-PC0 : These are the lower port C lines, other details are the same as PC7-PC4 lines.

PB0-PB7 : These are the eight port B lines which are used as latched output lines or

buffered input lines in the same way as port A.

RD : This is the input line driven by the microprocessor and should be low to indicate

read operation to 8255.

WR : This is an input line driven by the microprocessor. A low on this line indicates

write operation.

Micro Processors Notes

CS : This is a chip select line. If this line goes low, it enables the 8255 to respond to RD

and WR signals, otherwise RD and WR signal are neglected.

A1-A0 : These are the address input lines and are driven by the microprocessor. These

lines A1-A0 with RD , WR and CS from the following operations for 8255. These

address lines are used for addressing any one of the four registers, i.e. three ports and a

control word register as given in table below.

 In case of 8086 systems, if the 8255 is to be interfaced with lower order data bus, the A0

and A1 pins of 8255 are connected with A1 and A2 respectively.

D0-D7 : These are the data bus lines those carry data or control word to/from the

microprocessor.

RESET : A logic high on this line clears the control word register of 8255. All ports are

set as input ports by default after reset.

Data Transfer Scheme using Control Lines

Micro Processors Notes

Block Diagram of 8255 (Architecture)
 It has a 40 pins of 4 groups.

1. Data bus buffer

2. Read Write control logic

3. Group A and Group B controls

4. Port A, B and C

Data bus buffer: This is a tristate bidirectional buffer used to interface the 8255 to

system databus. Data is transmitted or received by the buffer on execution of input or

output instruction by the CPU.

 Control word and status information are also transferred through this unit.

Read/Write control logic: This unit accepts control signals (RD, WR) and also inputs

from address bus and issues commands to individual group of control blocks (Group

A, Group B).

 It has the following pins.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 91

a) CS Chip select : A low on this PIN enables the communication between CPU and

8255.

b) RD (Read) A low on this pin enables the CPU to read the data in the ports or the

status word through data bus buffer.

c) WR (Write) : A low on this pin, the CPU can write data on to the ports or on to the

control register through the data bus buffer.

d) RESET: A high on this pin clears the control register and all ports are set to the input

mode

e) A0 and A1 (Address pins): These pins in conjunction with RD and WR pins control the

selection of one of the 3 ports.

Group A and Group B controls : These block receive control from the CPU and issues

commands to their respective ports.

 Group A - PA and PCU (PC7 PC4)

 Group B - PCL (PC3 PC0)

 Control word register can only be written into no read operation of the CW register is

allowed.

 a) Port A: This has an 8 bit latched/buffered O/P and 8 bit input latch. It can be

programmed in 3 modes mode 0, mode 1, mode 2.

b) Port B: This has an 8 bit latched / buffered O/P and 8 bit input latch. It can be

programmed in mode 0, mode1.

c) Port C : This has an 8 bit latched input buffer and 8 bit out put latched/buffer. This port

can be divided into two 4 bit ports and can be used as control signals for port A and

port B. it can be programmed in mode 0.

Modes of Operation of 8255
 These are two basic modes of operation of 8255. I/O mode and Bit Set-Reset mode

(BSR).

 In I/O mode, the 8255 ports work as programmable I/O ports, while in BSR mode only

port C (PC0-PC7) can be used to set or reset its individual port bits.

 Under the I/O mode of operation, further there are three modes of operation of 8255, so

as to support different types of applications, mode 0, mode 1 and mode 2.

BSR Mode: In this mode any of the 8-bits of port C can be set or reset depending on

D0 of the control word. The bit to be set or reset is selected by bit select flags D3, D2

and D1 of the CWR as given in table.

Micro Processors Notes

BSR Mode: CWR Format

I/O Modes:
a) Mode 0 (Basic I/O mode): This mode is also called as basic input/output mode. This

mode provides simple input and output capabilities using each of the three ports. Data

can be simply read from and written to the input and output ports respectively, after

appropriate initialization

 The salient features of this mode are as listed below:

Micro Processors Notes

1. Two 8-bit ports (port A and port B)and two 4-bit ports (port C upper and lower) are

available. The two 4-bit ports can be combinedly used as a third 8-bit port.

2. Any port can be used as an input or output port.

3. Output ports are latched. Input ports are not latched.

4. A maximum of four ports are available so that overall 16 I/O configuration are possible.

 All these modes can be selected by programming a register internal to 8255 known as

CWR.

 The control word register has two formats. The first format is valid for I/O modes of

operation, i.e. modes 0, mode 1 and mode 2 while the second format is valid for bit

set/reset (BSR) mode of operation. These formats are shown in following fig.

b) Mode 1: (Strobed input/output mode): In this mode the handshaking control

the input and output action of the specified port. Port C lines PC0-PC2, provide strobe

or handshake lines for port B. This group which includes port B and PC0-PC2 is called

as group B for Strobed data input/output. Port C lines PC3-PC5 provide strobe lines

for port A.

This group including port A and PC3-PC5 from group A. Thus port C is utilized for

generating handshake signals. The salient features of mode 1 are listed as follows:

1. Two groups group A and group B are available for strobed data transfer.

2. Each group contains one 8-bit data I/O port and one 4-bit control/data port.

3. The 8-bit data port can be either used as input and output port. The inputs and outputs

both are latched.

4. Out of 8-bit port C, PC0-PC2 are used to generate control signals for port B and PC3-

PC5 are used to generate control signals for port A. the lines PC6, PC7 may be used as

independent data lines.

Micro Processors Notes

The control signals for both the groups in input and output modes are explained as

follows:

Input control signal definitions (mode 1):

STB(Strobe input) If this lines falls to logic low level, the data available at 8-bit input

port is loaded into input latches.

IBF (Input buffer full) If this signal rises to logic 1, it indicates that data has been

loaded into latches, i.e. it works as an acknowledgement. IBF is set by a low on STB

and is reset by the rising edge of RD input.

INTR (Interrupt request) This active high output signal can be used to interrupt the

CPU whenever an input device requests the service. INTR is set by a high STB pin

and a high at IBF pin. INTE is an internal flag that can be controlled by the bit

set/reset mode of either PC4 (INTEA) or PC2 (INTEB) as shown in fig. INTR is

reset by a falling edge of RD input. Thus an external input device can be request the

service of the processor by putting the data on the bus and sending the strobe signal.

Output control signal definitions (mode 1) :

OBF (Output buffer full) This status signal, whenever falls to low, indicates that CPU

has written data to the specified output port. The OBF flip-flop will be set by a rising

edge of WR signal and reset by a low going edge at the ACK input.

 ACK (Acknowledge input) ACK signal acts as an acknowledgement to be given by an
output device. ACK signal, whenever low, informs the CPU that the data transferred
by the CPU to the output device through the port is received by the output device.

INTR (Interrupt request) Thus an output signal that can be used to interrupt the CPU

when an output device acknowledges the data received from the CPU. INTR is set

when ACK, OBF and INTE are 1. It is reset by a falling edge on WR input. The

Micro Processors Notes

INTEA and INTEB flags are controlled by the bit set-reset mode of PC6 and PC2

respectively.

Mode 2 (Strobed bidirectional I/O):
This mode of operation of 8255 is also called as strobed bidirectional I/O. This mode of

operation provides 8255 with an additional features for communicating with a

peripheral device on an 8-bit data bus. Handshaking signals are provided to maintain

proper data flow and synchronization between the data transmitter and receiver. The

interrupt generation and other functions are similar to mode 1.

 In this mode, 8255 is a bidirectional 8-bit port with handshake signals. The Rd and WR

signals decide whether the 8255 is going to operate as an input port or output port.

 The Salient features of Mode 2 of 8255 are listed as follows:

1. The single 8-bit port in group A is available.

2. The 8-bit port is bidirectional and additionally a 5-bit control port is available.

3. Three I/O lines are available at port C.(PC2 PC0)

4. Inputs and outputs are both latched.

5. The 5-bit control port C (PC3-PC7) is used for generating / accepting handshake signals

for the 8-bit data transfer on port A.

Control signal definitions in mode 2:

Micro Processors Notes

INTR (Interrupt request) As in mode 1, this control signal is active high and is used to

interrupt the microprocessor to ask for transfer of the next data byte to/from it. This

signal is used for input (read) as well as output (write) operations.

Mode 2 pin description

Control Signals for Output operations:

OBF (Output buffer full) This signal, when falls to low level, indicates that the CPU

has written data to port A.

ACK (Acknowledge)- This control input, when falls to logic low level, acknowledges

that the previous data byte is received by the destination and next byte may be sent by

the processor. This signal enables the internal tristate buffers to send the next data byte

on port A.

INTE1 (A flag associated with OBF)- This can be controlled by bit set/reset mode with

PC6.

Control signals for input operations:

 STB (Strobe input)- A low on this line is used to strobe in the data into the input latches

of 8255.

 IBF (Input buffer full)- When the data is loaded into input buffer, this signal rises to

logic . This can be used as an acknowledge that the data has been received by the

receiver.

 Note: WR must occur before ACK and STB must be activated before RD

The following fig shows a schematic diagram containing an 8-bit bidirectional port, 5-bit

control port and the relation of INTR with the control pins. Port B can either be set to

Mode 0 or 1 with port A(Group A) is in Mode 2.

 Mode 2 is not available for port B. The following fig shows the control word.

Micro Processors Notes

 The INTR goes high only if either IBF, INTE2, STB and RD go high or OBF, INTE1,

ACK and WR go high. The port C can be read to know the status of the peripheral

device, in terms of the control signals, using the normal I/O instructions.

Mode-2 control word format

.

3.2 Interfacing I/O Devices

3.2.1 Keyboard Circuit Connections and Interfacing:
 In most keyboards, the keyswitches are connecting in a matrix of rows and columns, as

shown in fig.

 We will use simple mechanical switches for our examples, but the principle is same for

other type of switches.

 Getting meaningful data from a keyboard, it requires the following three major tasks:

1. Detect a keypress.

2. Debounce the keypress.

3. Encode the keypress

 Three tasks can be done with hardware, software, or a combination of two, depending on

the application.

1. Software Keyboard Interfacing:

Circuit connection and algorithm: The following fig (a) shows how a hexadecimal

keypad can be connected to a couple of microcomputer ports so the three interfacing

tasks can be done as part of a program.

 The rows of the matrix are connected to four output port lines. The column lines of

matrix are connected to four input-port lines. To make the program simpler, the row

lines are also connected to four input lines.

 When no keys are pressed, the column lines are held high by the pull-up resistor

connected to +5V. Pressing a key connects a row to a column. If a low is output on a

row and a key in that row is pressed, then the low will appear on the column which

contains that key and can be detected on the input port.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 98

 If you know the row and column of the pressed key, you then know which key was

pressed, and you can convert this information into any code you want to represent that

key.

 The following flow chart for a procedure to detect, debounce and produce the hex code

for a pressed key.

 An easy way to detect if any key in the matrix is pressed is to output 0 s to all rows and

then check the column to see if a pressed key has connected a low to a column.

 In the algorithm we first output lows to all the rows and check the columns over and over

until the column are all high. This is done before the previous key has been released

before looking for the next one. In the standard keyboard terminology, this is called

two-key lockout

 Once the columns are found to be all high, the program enters another loop, which waits

until a low appears on one of the columns, indicating that a key has been pressed. This

second loop does the detect task for us. A simple 20-ms delay procedure then does the

debounce task.

 After the debounce time, another check is made to see if the key is still pressed. If the

columns are now all high, then no key is pressed and the initial detection was caused

by a noise pulse or a light brushing past a key. If any of the columns are still low, then

the assumption is made that it was a valid keypress.

 The final task is to determine the row and column of the pressed key and convert this

row and column information to the hex code for the pressed key. To get the row and

column information, a low is output to one row and the column are read.

 If none of the columns is low, the pressed key is not in that row. So the low is rotated to

the next row and the column are checked again. The process is repeated until a low on

a row produces a low on one of the column.

 The pressed key then is in the row which is low at that time.

 The connection fig shows the byte read in from the input port will contain a 4-bit code

which represents the row of the pressed key and a 4-bit code which represent the

column of the pressed key.

Error trapping: The concept of detecting some error condition such as no match

found is called error trapping. Error trapping is a very important part of real

programs. Even in simple programs, think what might happen with no error trap if two

keys in the same row were pressed at exactly at the same time and a column code with

two lows in it was produced.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 99

 This code would not match any of the row-column codes in the table, so after all the

values in the table were checked, assigned register in program would be decremented

from 0000H to FFFFH. The compare decrement cycle would continue through 65,536

memory locations until, by change the value in a memory location matched the row-

column code. The contents of the lower byte register at hat point would be passed back

to the calling routine. The changes are 1 in 256 that would be the correct value for one

of the pressed keys. You should keep an error trap in a program whenever there is a

chance for it.

2. Keyboard Interfacing with Hardware: For the system where the CPU is too busy to

be bothered doing these tasks in software, an external device is used to do them.

 One of a MOS device which can be do this is the General Instruments AY5-2376 which

can be connected to the rows and columns of a keyboard switch matrix.

 The AY5-2376 independently detects a keypress by cycling a low down through the

rows and checking the columns. When it finds a key pressed, it waits a debounce time.

 If the key is still pressed after the debounce time, the AY5-2376 produces the 8-bit code

for the pressed key and send it out to microcomputer port on 8 parallel lines. The

microcomputer knows that a valid ASCII code is on the data lines, the AY5-2376

outputs a strobe pulse.

Micro Processors Notes

 The microcomputer can detect this strobe pulse and read in ASCII code on a polled basis

or it can detect the strobe pulse on an interrupt basis.

 With the interrupt method the microcomputer doesn t have to pay any attention to the

keyboard until it receives an interrupt signal.

 So this method uses very little of the microcomputer time. The AY5-2376 has a feature

called two-key rollover. This means that if two keys are pressed at nearly the same

time, each key will be detected, debounced and converted to ASCII.

 The ASCII code for the first key and a strobe signal for it will be sent out then the ASCII

code for the second key and a strobe signal for it will be sent out and compare this

with two-key lockout.

Example : Interface a 4 * 4 keyboard with 8086 using 8255 an write an ALP for

detecting a key closure and return the key code in AL. The debounce period for a key

is 10ms. Use software debouncing technique. DEBOUNCE is an available 10ms delay

routine.

 Solution:

Port A is used as output port for selecting a row of keys while Port B is used as an input

port for sensing a closed key. Thus the keyboard lines are selected one by one through

Micro Processors Notes

port A and the port B lines are polled continuously till a key closure is sensed. The

routine DEBOUNCE is called for key debouncing. The key code is depending upon

the selected row and a low sensed column.

The higher order lines of port A and port B are left unused. The address of port A and port

B will respectively 8000H and 8002H while address of CWR will be 8006H. The flow

chart of the complete program is as given. The control word for this problem will be

82H. Code segment CS is used for storing the program code.

Key Debounce : Whenever a mechanical push-button is pressed or released once, the

mechanical components of the key do not change the position smoothly, rather it

generates a transient response .

 These transient variations may be interpreted as the multiple key pressure and responded

accordingly by the microprocessor system.

Micro Processors Notes

 To avoid this problem, two schemes are suggested: the first one utilizes a bistable

multivibrator at the output of the key to debounce .

 The other scheme suggests that the microprocessor should be made to wait for the

transient period (usually 10ms), so that the transient response settles down and reaches

a steady state.

 A logic will be read by the microprocessor when the key is pressed.

 In a number of high precision applications, a designer may have two options- the first is

to have more than one 8-bit port, read (write) the port one by one and then from the

multibyte data, the second option allows forming 16-bit ports using two 8-bit ports and

use 16-bit read or write operations

3.2.2 Interfacing To Alphanumeric Displays

 To give directions or data values to users, many microprocessor-controlled instruments

and machines need to display letters of the alphabet and numbers. In systems where a

large amount of data needs to be displayed a CRT is used to display the data. In

system where only a small amount of data needs to be displayed, simple digit-type

displays are often used.

 There are several technologies used to make these digit-oriented displays but we are

discussing only the two major types.

 These are light emitting diodes (LED) and liquid-crystal displays (LCD).

 LCD displays use very low power, so they are often used in portable, battery-powered

instruments. They do not emit their own light, they simply change the reflection of

Micro Processors Notes

Ch.Uma SankarM.Tech Page 103

available light. Therefore, for an instrument that is to be used in low-light conditions,

you have to include a light source for LCDs or use LEDs which emit their own light.

 Alphanumeric LED displays are available in three common formats. For displaying only

number and hexadecimal letters, simple 7-segment displays such as that as shown in

fig are used.

 To display numbers and the entire alphabet, 18 segment displays such as shown in fig or

5 by 7 dot-matrix displays such as that shown in fig can be used. The 7-segment type

is the least expensive, most commonly used and easiest to interface with, so we will

concentrate first on how to interface with this type.

1. Directly Driving LED Displays: Figure shows a circuit that you might connect to a

parallel port on a microcomputer to drive a single 7-segment , common-anode display.

For a common-anode display, a segment is tuned on by applying a logic low to it.

 The 7447 converts a BCD code applied to its inputs to the pattern of lows required to

display the number represented by the BCD code. This circuit connection is referred to

as a static display because current is being passed through the display at all times.

 Each segment requires a current of between 5 and 30mA to light. Let s assume you want
a current of 20mA. The voltage drop across the LED when it is lit is about 1.5V.

 The output low voltage for the 7447 is a maximum of 0.4V at 40mA. So assume that it is

about 0.2V at 20mA. Subtracting these two voltage drop from the supply voltage of

5V leaves 3.3V across the current limiting resistor. Dividing 3.3V by 20mA gives a

value of 168 for the current-limiting resistor. The voltage drops across the LED and

the output of 7447 are not exactly predictable and exact current through the LED is not

critical as long as we don t exceed its maximum rating.

2. Software-Multiplexed LED Display:

 The circuit in fig works for driving just one or two LED digits with a parallel output port.
However, this scheme has several problem if you want to drive, eight digits.

 The first problem is power consumption. For worst-case calculations, assume that all 8
digits are displaying the digit 8, so all 7 segments are all lit. Seven segment time
20mA per segment gives a current of 140mA per digit. Multiplying this by 8 digits
gives a total current of 1120mA or 1.12A for 8 digits.

 A second problem of the static approach is that each display digit requires a separate
7447 decoder, each of which uses of another 13mA. The current required by the
decoders and the LED displays might be several times the current required by the reset
of the circuitry in the instrument.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 104

 To solve the problem of the static display approach, we use a multiplex method, example
for an explanation of the multiplexing.

 The fig shows a circuit you can add to a couple of microcomputer ports to drive some
common anode LED displays in a multiplexed manner. The circuit has only one 7447
and that the segment outputs of the 7447 are bused in parallel to the segment inputs of
all the digits.

 The question that may occur to you on first seeing this is: Aren t all the digits going to
display the same number? The answer is that they would if all the digits were turned
on at the same time. The tricky of multiplexing displays is that only one display digit
is turned on at a time.

 The PNP transistor is series with the common anode of each digit acts as on/off switch
for that digit. Here s how the multiplexing process works.

 The BCD code for digit 1 is first output from port B to the 7447. the 7447 outputs the
corresponding 7-segment code on the segment bus lines. The transistor connected to
digit 1 is then turned on by outputting a low to the appropriate bit of port A. All the
rest of the bits of port A are made high to make sure no other digits are turned on.
After 1 or 2 ms, digit 1 is turned off by outputting all highs to port A.

 The BCD code for digit 2 is then output to the 7447 on port B, and a word to turn on
digit 2 is output on port A.

 After 1 or 2 ms, digit 2 is turned off and the process is repeated for digit 3. the process is
continued until all the digits have had a turn. Then digit 1 and the following digits are
lit again in turn.

 A procedure which is called on an interrupt basis every 2ms to keep these displays

refreshed wit some values stored in a table. With 8 digits and 2ms per digit, you get

back to digit 1 every 16ms or about 60 times a second.

 This refresh rate is fast enough so that the digits will each appear to be lit all time.

Refresh rates of 40 to 200 times a second are acceptable.

Micro Processors Notes

 The immediately obvious advantages of multiplexing the displays are that only one 7447

is required, and only one digit is lit at a time. We usually increase the current per

segment to between 40 and 60 mA for multiplexed displays so that they will appear as

bright as they would if they were not multiplexed. Even with this increased segment

current, multiplexing gives a large saving in power and parts.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 106

 The software-multiplexed approach we have just described can also be used to drive 18-

segment LED devices and dot-matrix LED device. For these devices, however you

replace the 7447 in fig with ROM which generates the required segment codes when

the ASCII code for a character is applied to the address inputs of the ROM.

3.2.3 Interfacing Analog to Digital Data Converters

 In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters

with microprocessor.

 We have already studied 8255 interfacing with 8086 as an I/O port, in previous section.

This section we will only emphasize the interfacing techniques of analog to digital

converters with 8255.

 The analog to digital converters is treaded as an input device by the microprocessor, that

sends an initialising signal to the ADC to start the analogy to digital data conversation

process. The start of conversation signal is a pulse of a specific duration.

 The process of analog to digital conversion is a slow process, and the microprocessor has

to wait for the digital data till the conversion is over. After the conversion is over, the

ADC sends end of conversion EOC signal to inform the microprocessor that the

conversion is over and the result is ready at the output buffer of the ADC. These tasks

of issuing an SOC pulse to ADC, reading EOC signal from the ADC and reading the

digital output of the ADC are carried out by the CPU using 8255 I/O ports.

 The time taken by the ADC from the active edge of SOC pulse till the active edge of

EOC signal is called as the conversion delay of the ADC.

 It may range any where from a few microseconds in case of fast ADC to even a few

hundred milliseconds in case of slow ADCs.

 The available ADC in the market use different conversion techniques for conversion of

analog signal to digitals. Successive approximation techniques and dual slope

integration techniques are the most popular techniques used in the integrated ADC

chip.

 General algorithm for ADC interfacing contains the following steps:

1. Ensure the stability of analog input, applied to the ADC.

2. Issue start of conversion pulse to ADC

3. Read end of conversion signal to mark the end of conversion processes.

4. Read digital data output of the ADC as equivalent digital output.

5. Analog input voltage must be constant at the input of the ADC right from the start of

conversion till the end of the conversion to get correct results. This may be ensured by

Micro Processors Notes

Ch.Uma SankarM.Tech Page 107

a sample and hold circuit which samples the analog signal and holds it constant for a

specific time duration. The microprocessor may issue a hold signal to the sample and

hold circuit.

6. If the applied input changes before the complete conversion process is over, the digital

equivalent of the analog input calculated by the ADC may not be correct.

ADC 0808/0809 :

 The analog to digital converter chips 0808 and 0809 are 8-bit CMOS, successive

approximation converters. This technique is one of the fast techniques for analog to

digital conversion. The conversion delay is 100 s at a clock frequency of 640 KHz,

which is quite low as compared to other converters. These converters do not need any

external zero or full scale adjustments as they are already taken care of by internal

circuits.

These converters internally have a 3:8 analog multiplexer so that at a time eight different

analog conversion by using address lines - ADD A, ADD B, ADD C. Using these

address inputs, multichannel data acquisition system can be designed using a single

ADC.

The CPU may drive these lines using output port lines in case of multichannel

applications. In case of single input applications, these may be hardwired to select the

proper input.

 There are unipolar analog to digital converters, i.e. they are able to convert only positive

analog input voltage to their digital equivalent. These chips do no contain any internal

sample and hold circuit.

Micro Processors Notes

3.2.4 INTERFACING DIGITAL TO ANALOG CONVERTERS:

The digital to analog converters convert binary number into their equivalent voltages. The

DAC find applications in areas like digitally controlled gains, motors speed controls,

programmable gain amplifiers etc.

AD 7523 8-bit Multiplying DAC : This is a 16 pin DIP, multiplying digital to analog

converter, containing R-2R ladder for D-A conversion along with single pole double

thrown NMOS switches to connect the digital inputs to the ladder.

 The pin diagram of AD7523 is shown in fig the supply range is from +5V to +15V,

while Vref may be any where between -10V to +10V. The maximum analog output

voltage will be any where between -10V to +10V, when all the digital inputs are at

logic high state.

 Usually a zener is connected between OUT1 and OUT2 to save the DAC from negative

transients. An operational amplifier is used as a current to voltage converter at the

output of AD to convert the current out put of AD to a proportional output voltage.

 It also offers additional drive capability to the DAC output. An external feedback resistor

acts to control the gain. One may not connect any external feedback resistor, if no gain

control is required.

Micro Processors Notes

EXAMPLE: Interfacing DAC AD7523 with an 8086 CPU running at 8MHZ and write

an assembly language program to generate a sawtooth waveform of period 1ms with

Vmax 5V.

 Solution: Fig shows the interfacing circuit of AD 74523 with 8086 using 8255. program

gives an ALP to generate a sawtooth waveform using circuit.

ASSUME CS:CODE
CODE SEGMENT
START :MOV AL,80h ; make all ports output
OUT CW, AL
AGAIN :MOV AL,00h ; start voltage for ramp
BACK : OUT PA, AL
INC AL
CMP AL, 0FFh
JB BACK
JMP AGAIN
CODE ENDS
END START

Micro Processors Notes

Ch.Uma SankarM.Tech Page 110

 In the above program, port A is initialized as the output port for sending the digital data

as input to DAC. The ramp starts from the 0V (analog), hence AL starts with 00H. To

increment the ramp, the content of AL is increased during each execution of loop till it

reaches F2H.

 After that the saw tooth wave again starts from 00H, i.e. 0V(analog) and the procedure is

repeated. The ramp period given by this program is precisely 1.000625 ms. Here the

count F2H has been calculated by dividing the required delay of 1ms by the time

required for the execution of the loop once. The ramp slope can be controlled by

calling a controllable delay after the OUT instruction.

Micro Processors Notes

CHAPTER - 5

Programmable DMA Controller

The Intel* 8257 is a 4-channel direct memory access (DMA) controller. It is

specifically designed to simplify the transfer of data at high speeds for the Intel®

microcomputer systems. Its primary function is to generate, upon a peripheral request, a

sequential memory address which will allow the peripheral to read or write data directly

to or from memory. Acquisition of the system bus in accomplished via the CPU's hold

function. The 8257 has priority logic that resolves the peripherals requests and issues a

composite hold request to the CPU.

It maintains the DMA cycle count for each channel and outputs a control signal to notify

the peripheral that the programmed number of DMA cycles is complete. Other output

control signals simplify sectored data transfers. The 8257 represents a significant savings

in component count for DMA-based microcomputer systems and greatly simplifies the

transfer of data at high speed between peripherals and memories.

Micro Processors Notes

FUNCTIONAL DESCRIPTION:
General:
The 8257 is a programmable. Direct Memory Access (DMA) device which, when coupled

with a single Intel 8212 I/O port device, provides a complete four-channel DMA
controller for use in Intel® microcomputer systems. After being initialized by
software, the 8257 can transfer a block of data, containing up to 16.384 bytes, between
memory and a peripheral device directly, without further intervention required of the
CPU.

Upon receiving a DMA transfer request from an enabled peripheral, the 8257:
1. Acquires control of the system bus.
2. Acknowledges that requesting peripheral which is connected to the highest priority

channel.
3. Outputs the least significant eight bits of the memory address onto system address lines

A0-A7. Outputs the most significant eight bits of the memory address to the 8212 I/O
port via.the data bus (the 8212 places these address bits on lines A8-A15), and

Micro Processors Notes

4. Generates the appropriate memory and I/O read/write control signals that cause the
peripheral to receive or deposit a data byte directly from or to the addressed location in
memory. The 8257 will retain control of the system bus and repeat the transfer
sequence, as long as a peripheral maintains its DMA request.

Thus, the 8257 can transfer a block of data to/from a high speed peripheral (e.g.. a
sector of data on a floppy disk) in a single "burst". When the specified number of data
bytes have been transferred, the 8257 activates its Terminal Count (TC) output, informing
the CPU that the operation is complete.

The 8257 offers three different modes of operation:
(1) DMA read, which causes data to be transferred from memory to a peripheral:
(2) DMA write, which causes data to be transferred from a peripheral to memory:and
(3) DMA verify, which does not actually involve the transfer of data.

When an 8257 channel is in the DMA verify mode, it will respond the same as
described for transfer operations, except that no memory or I/O read/write control signals
will be generated, thus preventing the transfer of data The 8257. however, will gain

Micro Processors Notes

Ch.Uma SankarM.Tech Page 114

control of the system bus and will acknowledge the peripheral's DMA request for each
DMA cycle. The peripheral can use these acknowledge signals to enable an internal access
of each byte of a data block in order to execute some verification procedure, such as the
accumulation of a CRC (Cyclic Redundancy Code) checkword. For example, a block of
DMA verify cycles might follow a block of DMA read cycles (memory to peripheral) to
allow the peripheral to verify its newly acquired data.

Block Diagram Description
1. DMA Channels

The 8257 provides four separate DMA channels (labeled CH-0 to CH-3). Each channel
includes two sixteen-bit registers: (1) a DMA address register, and (2) a termi nal count
register. Both registers must be initialized before a channel is enabled. The DMA address
register is loaded with the address of the first memory location to be accessed. The value
loaded into the low-order 14-bits of the terminal count register specifies the number of
DMA cycles minus one before the Terminal Count (TC) output is activated. For instance,
a terminal count of 0 would cause the TC output to be active in the first DMA cycle for
that channel. In general, if N = the number of desired DMA cycles, load the value N-1 into
the low-order 14-bits of the terminal count register. The most significant two bits of the
terminal count register specify the type of DMA operation for that channel.

These two bits are not modified during a DMA cycle, but can be changed between
DMA blocks. Each channel accepts a DMA Request (DRQn) input and provides a DMA
Acknowledge (DACKn) output
(DRQ 0-DRQ 3)

DMA Request: These are individual asynchronous channel request inputs used by the
peripherals to obtain a DMA cycle. If not in the rotating priority mode then DRQ 0 has the
highest priority and DRQ 3 has the lowest. A request can be generated by raising the
request line and holding it high until DMA acknowledge. For multiple DMA cycles (Burst
Mode) the request line is held high until the DMA acknowledge of the last cycle arrives.
(DACK 0 - DACK 3)

DMA Acknowledge: An active low level on the acknowledge output informs the
peripheral connected to that channel that it has been selected for a DMA cycle. The
DACK output acts as a "chip select'* for the peripheral device requesting service. This
line goes active (low) and inactive (high) once for each byte transferred even if a burst of
data is being transferred.
2. Data Bus Buffer

This three-state, bi-directional, eight bit buffer interfaces the 8257 to the system data
bus.
(D0-D7)

Data Bus Lines: These are bi-directional three-state lines. When the 8257 is being
programmed by the CPU. Eightbits of data for a DMA address register, a terminal count
register or the Mode Set register are received on the data bus. When the CPU reads a
DMA address register, a terminal count register or the Status register, the data is sent to
the CPU over the data bus. During DMA cycles (when the 8257 is the bus master), the
8257 will output the most significant eight-bits of the memory address (from one of the
DMA address registers) to the 8212 latch via the data bus. These address bits will be

Micro Processors Notes

transferred at the beginning of the DMA cycle: the bus will then be released to handle the
memory data transfer during the balance of the DMA cycle.

3. Read/Write Logic:
When the CPU is programming or reading one of the 8257*s registers (i.e., when the

8257 is a "slave" device onthe system bus), the Read/Write Logic accepts the I/O Read
(USE) or I/O Write (175OT) signal, decodes the least significant four address bits, (A0-
A3), and either writes the contents of the data bus into the addressed register (if I/OW is
true) or places the contents of the addressed register onto the data bus (if I/OR is true).
During DMA cycles (i.e., when the 8257 is the bus "master"), the Read/Write Logic
generates the I/O read and memory write (DMA write cycle) or I/O Write and memory
read (DMA read cycle) signals which control the data link with the peripheral that has
been granted the DMA cycle. Note that during DMA transfers Non-DMA I/O devices
should be de-selected (disabled) using "AEN" signal to inhibit I/O device decoding of the
memory address as an erroneous device address.
(I/OR)

I/O Read: An active-low, bi-directional three-state line. In the "slave" mode, it is an
input which allows the 8-bit status register or the upper/lower byte of a 18-bit DMA
address register or terminal count register to be read. In the "master" mode, I/OR is a
control output which is used to access data from a peripheral during the DMA write cycle.
(I/OW)

I/O Write: An active-low, bi-directional three-state line. In the "slave" mode, it is an
input which allows the contents of the data bus to be loaded into the 8-bit mode set
register or the upper/lower byte of a 18-bit DMA address register or terminal count
register. In the "master" mode. I/OW is a control output which allows data to be output to
a peripheral during a DMA read cycle.
(CLK)

Clock Input: Generally from an Intel® 8224 Clock Gen erator device. (*2 TTL) or
Intel® 8085A CLK output.
(RESET)

Reset: An asynchronous input (generally from an 8224 or 8085 device) which disables
all DMA channels by clearing the mode register and 3-states all control lines.
(A0-A3)

Address Lines:These least significant four address lines are bi-directional. In the
"slave" mode they are inputs which select one of the registers to be read or programmed.
In the "master" mode, they are outputs which constitute the least significant four bits of
the 16-bit memory address generated by the 8257.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 116

(CS)
Chip Select: An active-low input which enables the I/O Read or I/O Write input when

the 8257 is being read or programmed in the "slave" mode. In the "master" mode. CS is
autDMAtically disabled to prevent the chip from selecting itself while performing the
DMA function.
4. Control Logic:

This block controls the sequence of operations during all DMA cycles by generating the
appropriate control signals and the 16-bit address that specifies the memory location to be
accessed.
(A4-A7)
Address Lines: These four address lines are three-state outputs which constitute bits 4
through 7 of the 16-bit memory address generated by the 8257 during all DMA cycles.
(READY)

Ready: This asynchronous input is used to elongate the memory read and write cycles
in the 8257 with wait states if the selected memory requires longer cycles. READY must
conform to specified setup and hold times.
(HRQ)

Hold Request: This output requests control of the system bus. In systems with only one
8257, HRQ will normally be applied to the HOLD input on the CPU. HRQ must conform
to specified setup and hold times.
(HLDA)

Hold Acknowledge: This input from the CPU indicates that the 8257 has acquired
control of the system bus.
(MEMR)

Memory Read: This active-low three-state output is used to read data from the
addressed memory location during DMA Read cycles.
(MEMW)

Memory Write: This active-low three-state output is used to write data into the
addressed memory location during DMA Write cycles.
(ADSTB)

Address Strobe: This output strobes the most significant byte of the memory address
into the 8212 device from the data bus.
(AEN)

Address Enable: This output is used to disable (float) the System Data Bus and the
System Control Bus. It may also be used to disable (float) the System Address Bus by use
of an enable on the Address Bus drivers in systems to inhibit non-DMA devices from
responding during DMA cycles. It may be further used to isolate the 8257 data bus from
the System Data Bus to facilitate the transfer of the 8 most significant DMA address bits
over the 8257 data I/O pins without subjecting the System Data Bus to any timing
constraints for the transfer. When the 8257 is used in an I/O device structure (as opposed
to memory mapped), this AEN output should be used to disable the selection of an I/O
device when the DMA address is on the address bus. The I/O device selection should be
determined by the DMA acknowledge outputs for the 4 channels.

(TC)
Terminal Count: This output notifies the currently selected peripheral that the present

DMA cycle should be the last cycle for this data block. If the TC STOP bit in the Mode

Micro Processors Notes

Set register is set. The selected channel will be autDMAtically disabled at the end of that
DMA cycle. TC is activated when the 14-bit value in the selected channel s terminal count
register equals zero. Recall that the loworder 14-bits of the terminal count register should
be loaded with the values (n-1). Where n = the desired number of the DMA cycles.
(MARK)

Modulo 128 Mark: This output notifies the selected peripheral that the current DMA
cycle is the 128th cycle since the previous MARK output. MARK always occurs at 128
(and all multiples of 128) cycles from the end of the data block. Only if the total number
of DMA cycles (n) is evenly divisable by 128 (and the terminal count register was loaded
with n-1). Will MARK occur at 128 (and each succeeding multiple of 128) cycles from
the beginning of the data block.

5. Mode Set Register:
When set, the various bits in the Mode Set register enable each of the four DMA

channels, and allow four different options for the 8257:

The Mode Set register is normally programmed by the CPU after the DMA address
register(s) and terminal count register(s) are initialized. The Mode Set Register is cleared
by the RESET input, thus disabling all options, inhibiting all channels, and preventing bus
conflicts on power-up. A channel should not be left enabled unless its DMA address and
terminal count registers contain valid values; otherwise, an inadvertent DMA request
(DROn) from a peripheral could initiate a DMA cycle that would destroy memory data.
The various options which can be enabled by bits in the Mode Set register are explained
below:

Rotating Priority Bit 4
In the Rotating Priority Mode, the priority of the channels has a circular sequence.

After each DMA cycle, the priority of each channel changes. The channel which had just
been serviced will have the lowest priority.

Micro Processors Notes

If the ROTATING PRIORITY bit is not set (set to a zero).each DMA channel has a
fixed priority. In the fixed priority mode. Channel 0 has the highest priority and Channel 3
has the lowest priority. If the ROTATING PRIORITY bit is set to a one. the priority of
each channel changes after each DMA cycle (not each DMA request).

Each channel moves up to the next highest priority assignment, while the channel
which has just been serviced moves to the lowest priority assignment:

Note that rotating priority will prevent any one channel from monopolizing the PMA
mode; consecutive DMA cycles will service different channels if more,than one channel is
enabled and requesting service. There is no overhead penalty associated with this mode of
opera tion. All DMA operations began with Channel 0 initially assigned to the highest
priority for the first DMA cycle.

Extended Write Bit 5
If the EXTENDED WRITE bit is set. the duration of both the MEMW and I/OW

signals is extended by activating them earlier in the DMA cycle. Data transfers within
micro computer systems proceed asynchronously to allow use of various types of memory
and I/O devices with different access times. If a device cannot be accessed within a
specific amount of time it returns a "not ready" indication to the 8257 that causes the 8257
to insert one or more wait states in its internal sequencing. Some devices are fast enough
to be accessed without the use of wait states, but if they generate their READY response
with the leading edge of the f/SW or MEMW signal (which generally occurs late in the
transfer sequence), they would normally cause the 8257 to enter a wait state because it
does not receive READY in time. For systems with these types of devices, the Extended
Write option provides alternative timing for the I/O and memory write signals which

Micro Processors Notes

Ch.Uma SankarM.Tech Page 119

allows the devices to return an early READY and prevents the unnecessary occurrence of
wait states in the 8257. thus increasing system throughput.

TC Stop Bit 6
If the TC STOP bit is set. a channel is disabled (i.e.. its enable bit is reset) after the

Terminal Count (TC) output goes true, thus autDMAtically preventing further DMA
operation on that channel. The enable bit for that channel must be re-programmed to
continue or begin another DMA operation. If the TC STOP bit is not set. The occurrence
of the TC output has no effect on the channel enable bits. In this case, it is generally the
responsibility of the peripheral to cease DMA requests in order to terminate a DMA
operation.

Auto Load Bit 7
The Auto Load mode permits Channel 2 to be used for repeat block or block chaining

operations, without immediate software intervention between blocks. Chan nel 2 registers
are initialized as usual for the first data block; Channel 3 registers, however, are used to
store the block re-initialization parameters (DMA starting address, terminal count and
DMA transfer mode). After the first block of DMA cycles is executed by Channel 2 (i.e..
after the TC output goes true), the parameters stored in the Channel 3 registers are
transferred to Channel 2 during an "update" cycle. Note that the TC STOP feature,
described above, has no effect on Channel 2 when the Auto Load bit is set.

If the Auto Load bit is set. the initial parameters for Channel 2 are autDMAtically
duplicated in the Channel 3 registers when Channel 2 is programmed.

This permits repeat block operations to be set up with the programming of a single
channel. Repeat block operations can be used in applications such as CRT refreshing.
Channels 2 and 3 can still be loaded with separate values if Channel 2 is loaded before
loading Channel 3. Note that in the Auto Load mode, Channel 3 is still available to the
user if the Channel 3 enable bit is set. but use of this channel will change the values to be
auto loaded into Channel 2 at update time. All that is necessary to use the Auto Load
feature for chaining operations is to reload Channel 3 registers at the conclusion of each
update cycle with the new parameters for the next data block transfer. Each time that the
8257 enters an update cycle, the update flag in the status register is set and parameters in
Channel 3 are transferred to Channel 2. non-destructively for Channel 3.

The actual re-initialization of Channel 2 occurs at the beginning of the next channel 2
DMA cycle after the TC cycle. This will be the first DMA cycle of the new data block for
Channel 2. The update flag is cleared at the conclusion of this DMA cycle. For chaining
operations, the update flag in the status register can be monitored by the CPU to determine
when the re-initialization process has been completed so that the next block parameters
can be safely loaded into Channel 3.

6. Status Register
The eight-bit status register indicates which channels have reached a terminal count

condition and includes the update flag described previously.

Micro Processors Notes

The TC status bits are set when the Terminal Count (TC) output is activated for that
channel. These bits remain set until the status register is read or the 8257 is reset. The
UPDATE FLAG, however, is not affected by a status register read operation. The
UPDATE FLAG can be cleared by resetting the 8257. by changing to the non-auto load
mode (i.e.. by resetting the AUTO LOAD bit in the Mode Set register) or it can be left to
clear itself at the completion of the update cycle. The purpose of the UPDATE FLAG is to
prevent the CPU from inadvertently skipping a data block by overwriting a starting
address or terminal count in the Channel 3 registers before those parameters are properly
auto-loaded into Channel 2.

The user is cautioned against reading the TC status register and using this information
to re enable channels that have not completed operation. Unless the DMA channels are
inhibited a channel could reach terminal count (TC) between the status read and the mode
write. DMA can be inhibited by a hardware gate on the HRQ line or by disabling channels
with a mode word before reading the TC status.

Micro Processors Notes

CHAPTER-6

UNIVERSAL SYNCHRONOUS ASYNCHRONOUS

RECEIVER TRANSMITTER (USART)-8251
Block Diagram:

The 8251 is a USART (Universal Synchronous Asynchronous Receiver Transmitter)

for serial data communication. As a peripheral device of a microcomputer system, the

8251 receives parallel data from the CPU and transmits serial data after conversion. This

device also receives serial data from the outside and transmits parallel data to the CPU

after conversion.

Block diagram of the 8251 USART

The 8251 functional configuration is programmed by software. Operation between the

8251 and a CPU is executed by program control. Table 1 shows the operation between a

CPU and the device.

Micro Processors Notes

Table : Operation between a CPU and 8251

Control Words

There are two types of control word.

1. Mode instruction (setting of function)

2. Command (setting of operation)

1) Mode Instruction

Mode instruction is used for setting the function of the 8251. Mode instruction will be

in "wait for write" at either internal reset or external reset. That is, the writing of a

control word after resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:

 Synchronous/asynchronous mode

 Stop bit length (asynchronous mode)

 Character length

 Parity bit

 Baud rate factor (asynchronous mode)

 Internal/external synchronization (synchronous mode)

 Number of synchronous characters (Synchronous mode)

The bit configuration of mode instruction is shown in Figures 2 and 3. In the case of

synchronous mode, it is necessary to write one-or two byte sync characters. If sync

characters were written, a function will be set because the writing of sync characters

constitutes part of mode instruction.

Micro Processors Notes

Micro Processors Notes

2) Command

Command is used for setting the operation of the 8251. It is possible to write a

command whenever necessary after writing a mode instruction and sync characters.

Items to be set by command are as follows:

 Transmit Enable/Disable

 Receive Enable/Disable

 DTR, RTS Output of data.

 Resetting of error flag.

 Sending to break characters

 Internal resetting

 Hunt mode (synchronous mode)

Micro Processors Notes

Status Word

It is possible to see the internal status of the 8251 by reading a status word. The bit

configuration of status word is shown in Fig. 5.

D 0 to D 7 (l/O terminal)

This is bidirectional data bus which receive control words and transmits data from the

CPU and sends status words and received data to CPU.

RESET (Input terminal)

A "High" on this input forces the 8251 into "reset status." The device waits for the

writing of "mode instruction." The min. reset width is six clock inputs during the

operating status of CLK.

CLK (Input terminal)

CLK signal is used to generate internal device timing. CLK signal is independent of

RXC or TXC. However, the frequency of CLK must be greater than 30 times the RXC

Micro Processors Notes

Ch.Uma SankarM.Tech Page 126

and TXC at Synchronous mode and Asynchronous "x1" mode, and must be greater than

5 times at Asynchronous "x16" and "x64" mode.

WR (Input terminal)

This is the "active low" input terminal which receives a signal for writing transmit

data and control words from the CPU into the 8251.

RD (Input terminal)

This is the "active low" input terminal which receives a signal for reading receive data

and status words from the 8251.

C/D (Input terminal)

This is an input terminal which receives a signal for selecting data or command words

and status words when the 8251 is accessed by the CPU. If C/D = low, data will be

accessed. If C/D = high, command word or status word will be accessed.

CS (Input terminal)

This is the "active low" input terminal which selects the 8251 at low level when the

CPU accesses. Note: The device won t be in "standby status"; only setting CS = High.

TXD (output terminal)

This is an output terminal for transmitting data from which serial-converted data is

sent out. The device is in "mark status" (high level) after resetting or during a status

when transmit is disabled. It is also possible to set the device in "break status" (low

level) by a command.

TXRDY (output terminal)

This is an output terminal which indicates that the 8251is ready to accept a

transmitted data character. But the terminal is always at low level if CTS = high or the

device was set in "TX disable status" by a command. Note: TXRDY status word

indicates that transmit data character is receivable, regardless of CTS or command. If the

CPU writes a data character, TXRDY will be reset by the leading edge or WR signal.

TXEMPTY (Output terminal)

This is an output terminal which indicates that the 8251 has transmitted all the

characters and had no data character. In "synchronous mode," the terminal is at high

level, if transmit data characters are no longer remaining and sync characters are

automatically transmitted. If the CPU writes a data character, TXEMPTY will be reset

by the leading edge of WR signal. Note : As the transmitter is disabled by setting CTS

"High" or command, data written before disable will be sent out. Then TXD and

TXEMPTY will be "High". Even if a data is written after disable, that data is not sent

Micro Processors Notes

Ch.Uma SankarM.Tech Page 127

out and TXE will be "High".After the transmitter is enabled, it sent out. (Refer to Timing

Chart of Transmitter Control and Flag Timing)

TXC (Input terminal)

This is a clock input signal which determines the transfer speed of transmitted data. In

"synchronous mode," the baud rate will be the same as the frequency of TXC. In

"asynchronous mode", it is possible to select the baud rate factor by mode instruction. It

can be 1, 1/16 or 1/64 the TXC. The falling edge of TXC sifts the serial data out of the

8251.

RXD (input terminal)

This is a terminal which receives serial data.

RXRDY (Output terminal)

This is a terminal which indicates that the 8251 contains a character that is ready to

READ. If the CPU reads a data character, RXRDY will be reset by the leading edge of

RD signal. Unless the CPU reads a data character before the next one is received

completely, the preceding data will be lost. In such a case, an overrun error flag status

word will be set.

RXC (Input terminal)

This is a clock input signal which determines the transfer speed of received data. In

"synchronous mode," the baud rate is the same as the frequency of RXC. In

"asynchronous mode," it is possible to select the baud rate factor by mode instruction. It

can be 1, 1/16, 1/64 the RXC.

SYNDET/BD (Input or output terminal)

This is a terminal whose function changes according to mode. In "internal

synchronous mode." this terminal is at high level, if sync characters are received and

synchronized. If a status word is read, the terminal will be reset. In "external

synchronous mode, "this is an input terminal. A "High" on this input forces the 8251 to

start receiving data characters.

In "asynchronous mode," this is an output terminal which generates "high

level"output upon the detection of a "break" character if receiver data contains a "low-

level" space between the stop bits of two continuous characters. The terminal will be

reset, if RXD is at high level. After Reset is active, the terminal will be output at low

level.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 128

DSR (Input terminal)

This is an input port for MODEM interface. The input status of the terminal can be

recognized by the CPU reading status words.

DTR (Output terminal)

This is an output port for MODEM interface. It is possible to set the status of DTR by

a command.

CTS (Input terminal)

This is an input terminal for MODEM interface which is used for controlling a

transmit circuit. The terminal controls data transmission if the device is set in "TX

Enable" status by a command. Data is transmitable if the terminal is at low level.

RTS (Output terminal)

This is an output port for MODEM interface. It is possible to set the status RTS by a

command.

Communication Media:
The purpose of this application note is to attempt to describe the main elements in

Serial Communication. This application note attempts to cover enough technical details

of RS232, RS422 and RS485.

RS422 Serial Communication

RS422 is a Standard interfaces approved by the Electronic Industries Association

(EIA), and designed for greater distances and higher Baud rates than RS232. In its

simplest form, a pair of converters from RS232 to RS422 (and back again) can be used

to form an "RS232 extension cord." Data rates of up to 100K bits / second and distances

up to 4000 Ft. can be accommodated with RS422. RS422 is also specified for multi-drop

(party-line) applications where only one driver is connected to, and transmits on, a "bus"

of up to 10 receivers. RS422 devices cannot be used to construct a truly multi-point

network. A true multi-point network consists of multiple drivers and receivers connected

on a single bus, where any node can transmit or receive data.

DCE and DTE Devices

DTE stands for Data Terminal Equipment, and DCE stands for Data Communications

Equipment. These terms are used to indicate the pin-out for the connectors on a device

and the direction of the signals on the pins. Your computer is a DTE device, while most

other devices such as modem and other serial devices are usually DCE devices.

Micro Processors Notes

RS-232 has been around as a standard for decades as an electrical interface between

Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) such

as modems or DSUs. It appears under different incarnations such as RS-232C, RS-232D,

V.24, V.28 or V.10. RS-232 is used for asynchronous data transfer as well as

synchronous links such as SDLC, HDLC, Frame Relay and X.25

 RS232

RS-232 (Recommended standard-232) is a standard interface approved by the

Electronic Industries Association (EIA) for connecting serial devices. In other words,

RS-232 is a longestablished standard that describes the physical interface and protocol

for relatively low-speed serial data communication between computers and related

devices. An industry trade group, the Electronic Industries Association (EIA), defined it

originally for teletypewriter devices. In 1987, the EIA released a new version of the

standard and changed the name to EIA-232-D. Many people, however, still refer to the

standard as RS-232C, or just RS- 232. RS-232 is the interface that your computer uses to

talk to and exchange data with your modem and other serial devices. The serial ports on

most computers use a subset of the RS- 232C standard.

RS232 on DB9 (9-pin D-type connector)

There is a standardized pinout for RS-232 on a DB9 connector, as shown below

Micro Processors Notes

RS232 on DB25 (25-pin D-type connector)

In DB-25 connector most of the pins are not needed for normal PC communications,

and indeed, most new PCs are equipped with male D type connectors having only 9 pins.

Using a 25- pin DB-25 or 9-pin DB-9 connector, its normal cable limitation of 50 feet

can be extended to several hundred feet with high-quality cable. RS-232 defines the

purpose and signal timing for each of the 25 lines; however, many applications use less

than a dozen. There is a standardized pinout for RS-232 on a DB25 connector, as shown

below.

Signal Description

TxD: - This pin carries data from the computer to the serial device

RXD: - This pin carries data from the serial device to the computer

DTR signals: - DTR is used by the computer to signal that it is ready to communicate

with the serial device like modem. In other words, DTR indicates to the Dataset (i.e., the

modem or DSU/CSU) that the DTE (computer) is ON.

DSR: - Similarly to DTR, Data set ready (DSR) is an indication from the Dataset that

it is ON.

DCD: - Data Carrier Detect (DCD) indicates that carrier for the transmit data is ON.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 131

RTS: - This pin is used to request clearance to send data to a modem

CTS: - This pin is used by the serial device to acknowledge the computer's RTS

Signal. In most situations, RTS and CTS are constantly on throughout the

communication session.

 Clock signals (TC, RC, and XTC): - The clock signals are only used for

synchronous communications. The modem or DSU extracts the clock from the data

stream and provides a steady clock signal to the DTE. Note that the transmit and receive

clock signals do not have to be the same, or even at the same baud rate.

CD: - CD stands for Carrier Detect. Carrier Detect is used by a modem to signal that

it has a made a connection with another modem, or has detected a carrier tone. In other

words, this is used by the modem to signal that a carrier signal has been received from a

remote modem.

RI: - RI stands for Ring Indicator. A modem toggles(keystroke) the state of this line

when an incoming call rings your phone. In other words, this is used by an auto answer

modem to signal the receipt of a telephone ring signal

The Carrier Detect (CD) and the Ring Indicator (RI) lines are only available in

connections to a modem. Because most modems transmit status information to a PC

when either a carrier signal is detected (i.e. when a connection is made to another

modem) or when the line is ringing, these two lines are rarely used.

Limitations of RS-232

RS-232 has some serious shortcomings as an electrical interface.

Firstly, the interface presupposes a common ground between the DTE and DCE. This

is a reasonable assumption where a short cable connects a DTE and DCE in the same

room, but with longer lines and connections between devices that may be on different

electrical busses, this may not be true. We have seen some spectacular electrical events

causes by "uncommon grounds".

Secondly, a signal on a single line is impossible to screen effectively for noise. By

screening the entire cable one can reduce the influence of outside noise, but internally

generated noise remains a problem. As the baud rate and line length increase, the effect

of capacitance between the cables introduces serious crosstalk until a point is reached

where the data itself is unreadable.

Converters

Converters in general can be used to change the electrical characteristic of one

communications standard into another, to take advantage of the best properties of the

alternate standard selected.

Micro Processors Notes

For example, an Automatic RS232<=>RS485 converter, could be connected to a

computer's RS232, full-duplex port, and transform it into an RS485 half-duplex, multi-

drop network at distances up to 4000ft. Converters in most instances, pass data through

the interface without changing the timing and/or protocol. While the conversion is

"transparent" the software must be able to communicate with the expanded network

features. An "Automatic Converter" (RS232<=>RS485) will turn on the RS485

transmitter when data is detected on the RS232 port, and revert back into the receive

mode after a character has been sent.

This avoids timing problems (and software changes) that are difficult to deal with in

typical systems. When fullduplex is converted into half-duplex only one device at a time

can transmit data. Automatic Converters take care of the timing problems and allow fast

communications without software intervention.

Pin assignment of the DB-9 connector Pin layout of the DB-9 connector

Micro Processors Notes

Ch.Uma SankarM.Tech Page 133

CHAPTER-7

INTRODUCTION TO MICROCONTROLLERS
OVERVIEW OF 8051 MICRO CONTROLLER

Basically used for control actions. It is used to control the operation of machine using

fixed program that is stored in ROM/EPROM and that does not change over the life

time.The Intel 8051 (Official designation for 8051 family is MCS-51)is a Harvard

architecture.A single chip microcontroller(µC) which was developed by Intel in 1980 for

use in embedded systems. Intel's original versions were popular in the 1980s and early

1990s, but has today largely been superseded by a vast range of faster and/or

functionally enhanced 8051-compatible devices manufactured by more than 20

independent manufacturers including Atmel, Infineon Technologies (formerly Siemens

AG), Maxim Integrated Products (via its Dallas Semiconductor subsidiary), NXP

(formerly Philips Semiconductor), Nuvoton (formerly Winbond), ST Microelectronics,

Silicon Laboratories (formerly Cygnal), Texas Instruments and Cypress Semiconductor.

FEATURE OF 8051 MICRO CONTROLLER
Ø It provides many functions (CPU, RAM, ROM, I/O, interrupt logic, timer, etc.) in

a single package.

Ø 8-bit data bus - It can access 8 bits of data in one operation (hence it is an 8-bit

microcontroller).

Ø 16-bit address bus - 64 kB each of RAM and ROM.

Ø On-chip RAM - 128 bytes ("DATA Memory").

Ø On-chip ROM - 4 kB ("CODE (program) Memory").

Ø Four 8-bit bi-directional input/output ports.

Ø UART (serial port).

Ø Two 16-bit Counter/timers.

Ø Two-level interrupt priority.

Ø Power saving mod.

Ø Full duplex serial Port.

Ø 32 bits arranged as four,8 bit ports P0-P3.

Ø 16 bit PC and DPTR.

Ø 8 bit ALU.

Ø Control Registers are TCON,TMOD,SCON,PCON,IP,IE etc (SFR s).

Ø Two External and three internal interrupt sources.

Ø 0-12 MHz clock.

Micro Processors Notes

Ø 40 pin DIP package.

Ø Powerful Instruction set.

Ø Works in Power Down and Idle mod.

 Microcontrollers producers have been struggling for a long time for attracting

more and more choosy customers. Every couple of days a new chip with a higher

operating frequency, more memory and more high-quality A/D converters comes on the

market.Nevertheless, by analyzing their structure it is concluded that most of them have

the same (or at least very similar)architecture known in the product catalogs as 8051

compatible . What is all this about? The whole story began in the far 80s when Intel

launched its series of the microcontrollers labeled with MCS 051.Although, several

circuits belonging to this series had quite modest features in comparison to the new ones,

they took over the world very fast and became a standard for what nowadays is meant by

a word microcontroller.

 The reason for success and such a big popularity is a skillfully chosen

configuration which satisfies needs of a great number of the users allowing at the same

time stable expanding (refers to the new types of the microcontrollers). Besides, since a

great deal of software has been developed in the meantime, it simply was not profitable

to change anything in the microcontroller s basic core. That is the reason for having a

great number of various microcontrollers which actually are solely upgraded versions of

the 8051 family. What is it what makes this microcontroller so special and universal so

that almost all the world producers manufacture it today under different name ?

8051 MICRO CONTROLLER PINS

Micro Processors Notes

PIN DIAGRAM OF 8051 MICRO CONTROLLER

Pins 1-8: Port 1 Each of these pins can be configured as input or output.

Pin 9: RS Logical one on this pin stops microcontroller s operating and erases the

contents of most registers. By applying logical zero to this pin, the program starts

execution from the beginning. In other words, a positive voltage pulse on this pin resets

the microcontroller.

Pins10-17: Port 3 Similar to port 1, each of these pins can serve as universal input or

output . Besides, all of them have alternative functions:

Pin 10: RXD Serial asynchronous communication input or Serial synchronous

communication output.

Pin 11: TXD Serial asynchronous communication output or Serial synchronous

communication clock output.

Pin 12: INT0 Interrupt 0 input

Pin 13: INT1 Interrupt 1 input

Pin 14: T0 Counter 0 clock input

Pin 15: T1 Counter 1 clock input

Pin 16: WR Signal for writing to external (additional) RAM

Pin 17: RD Signal for reading from external RAM

Micro Processors Notes

Ch.Uma SankarM.Tech Page 136

Pin 18, 19: X2, X1 Internal oscillator input and output. A quartz crystal which

determines operating frequency is usually connected to these pins. Instead of quartz

crystal, the miniature ceramics resonators can be also used for frequency stabilization.

Later versions of the microcontrollers operate at a frequency of 0 Hz up to over 50 Hz.

Pin 20: GND Ground

Pin 21-28: Port 2 If there is no intention to use external memory then these port pins

are configured as universal inputs/outputs. In case external memory is used then the

higher address byte, i.e. addresses A8-A15 will appear on this port.It is important to

know that even memory with capacity of 64Kb is not used (i.e. note all bits on port are

used for memory addressing) the rest of bits are not available as inputs or outputs.

Pin 29: PSEN If external ROM is used for storing program then it has a logic-0 value

every time the microcontroller reads a byte from memory.

Pin 30: ALE Prior to each reading from external memory, the microcontroller will set

the lower address byte (A0-A7) on P0 and immediately after that activates the output

ALE. Upon receiving signal from the ALE pin, the external register (74HCT373 or

74HCT375 circuit is usually embedded) memorizes the State of P0 and uses it as an

address for memory chip. In the second part of the microcontroller s machine cycle, a

signal on this pin stops being emitted and P0 is used now for data transmission (Data

Bus). In this way, by means of only one additional (and cheap) integrated circuit, data

multiplexing from the port is performed. This port at the same time used for data and

address transmission.

Pin 31: EA By applying logic zero to this pin, P2 and P3 are used for data and address

transmission with no regard to whether there is internal memory or not. That means that

even there is a program written to the microcontroller, it will not be executed, the

program written to external ROM will be used instead. Otherwise, by applying logic one

to the EA pin, the microcontroller will use both memories, first internal and afterwards

external (if it exists), up to End address space.

Pin 32-39: Port 0 Similar to port 2, if external memory is not used, these pins can be

used as universal inputs or outputs.Otherwise, P0 is configured as address output (A0-

A7) when the ALE pin is at high level (1) and as data output (Data Bus),when logic zero

(0) is applied to the ALE pin.

Pin 40: VCC Power supply +5V nd of address space.

Micro Processors Notes

BLOCK DIAGRAM OF 8051 MICRO CONTROLLER

Micro Processors Notes

Ch.Uma SankarM.Tech Page 138

REGISTER SET OF 8051
The 8051 is a flexible microcontroller with a relatively large number of modes of

operations. Your program may inspect and/or change the operating mode of the 8051 by

manipulating the values of the 8051's Special Function Registers (SFRs) ..

SFRs are accessed as if they were normal Internal RAM. The only difference is that

Internal RAM is from address 00h through 7Fh whereas SFR registers exist in the

address range of 80h through FFh.

SP (Stack Pointer, Address 81h): This is the stack pointer of the

microcontroller. This SFR indicates where the next value to be taken from the stack will

be read from in Internal RAM. If you push a value onto the stack, the value will be

written to the address of SP + 1. That is to say, if SP holds the value 07h, a PUSH

instruction will push the value onto the stack at address 08h. This SFR is modified by all

instructions which modify the stack, such as PUSH, POP, LCALL, RET, RETI, and

whenever interrupts are provoked by the microcontroller.

DPL/DPH (Data Pointer Low/High, Addresses 82h/83h): The SFRs DPL

and DPH work together to represent a 16-bit value called the Data Pointer. The data

pointer is used in operations regarding external RAM and some instructions involving

code memory. Since it is an unsigned two-byte integer value, it can represent values

from 0000h to FFFFh (0 through 65,535 decimal).

PCON (Power Control, Addresses 87h): The Power Control SFR is used to

control the 8051's power control modes. Certain operation modes of the 8051 allow the

8051 to go into a type of "sleep" mode which requires much less power. These modes of

operation are controlled through PCON. Additionally, one of the bits in PCON is used to

double the effective baud rate of the 8051's serial port.

PCON Power Control Register
 D7 D6 D5 D4 D3 D2 D1 D0

SMOD X X X GF1 GF0 PD IDL

If SMOD = 0 then N = 384. If SMOD = 1 then N = 192. TH1 is the high byte of timer 1

when it is in 8-bit autoreload mode.

GF1 and GF0 are General purpose flags not implemented on the standard device

PD is the power down bit. Not implemented on the standard device

Micro Processors Notes

Ch.Uma SankarM.Tech Page 139

IDL activate the idle mode to save power. Not implemented on the standard device

TR1 Timer 1 run control bit

TF0 Timer 0 overflow flag

TR0 Timer 0 run control bit

IE1 External interrupt 1 edge flag. Set to 1 when edge detected.

IT1 Edge control bit for external interrupt 1. 1 = edge, 0 = level

TCON (Timer Control, Addresses 88h, Bit-Addressable): The Timer

Control SFR is used to configure and modify the way in which the 8051's two timers

operate. This SFR controls whether each of the two timers is running or stopped and

contains a flag to indicate that each timer has overflowed. Additionally, some non-timer

related bits are located in the TCON SFR. These bits are used to configure the way in

which the external interrupts are activated and also contain the external interrupt flags

which are set when an external interrupt has occured.

TCON Timer Control Register
 D7 D6 D5 D4 D3 D2 D1 D0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

TF1 Timer 1 overflow flag

TR1 Timer 1 run control bit

TF0 Timer 0 overflow flag

TR0 Timer 0 run control bit

IE1 External interrupt 1 edge flag. Set to 1 when edge detected.

IT1 Edge control bit for external interrupt 1. 1 = edge, 0 = level

IE0 External interrupt 0 edge flag. Set to 1 when edge detectd

IT0 Edge control bit for external interrupt 0. 1 = edge, 0 = level

TMOD (Timer Mode, Addresses 89h): The Timer Mode SFR is used to

configure the mode of operation of each of the two timers. Using this SFR your program

may configure each timer to be a 16-bit timer, an 8-bit autoreload timer, a 13-bit timer,

or two separate timers. Additionally, you may configure the timers to only count when

an external pin is activated or to count "events" that are indicated on an external pin.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 140

TL0/TH0 (Timer 0 Low/High, Addresses 8Ah/8Ch): These two SFRs,

taken together, represent timer 0. Their exact behavior depends on how the timer is

configured in the TMOD SFR; however, these timers always count up. What is

configurable is how and when they increment in value.

TL1/TH1 (Timer 1 Low/High, Addresses 8Bh/8Dh): These two SFRs,

taken together, represent timer 1. Their exact behavior depends on how the timer is

configured in the TMOD SFR; however, these timers always count up. What is

configurable is how and when they increment in value.

SCON (Serial Control, Addresses 98h, Bit-Addressable): The Serial

Control SFR is used to configure the behavior of the 8051's on-board serial port. This

SFR controls the baud rate of the serial port, whether the serial port is activated to

receive data, and also contains flags that are set when a byte is successfully sent or

received.

SCON Serial Control Register

 D7 D6 D5 D4 D3 D2 D1 D0

SM0 SM1 SM2 REN TB8 RB8 TI RI

SM0 SM1 Operation Baud rate

0 0 Shift register Osc/12

0 1 8-bit UART Set by timer

1 0 9-bit UART Osc/12 or Osc/64

1 1 9-bit UART Set by timer

SM2 Enables multiprocessor communication in modes 2 and 3.

REN Receiver enable

TB8 Transmit bit 8. This is the 9th bit transmitted in modes 2 and 3.

RB8 Receive bit 8. This is the 9th bit received in modes 2 and 3.

TI Transmit interrupt flag. Set at end of character transmission. Cleared in software.

RI Receive interrupt flag. Set at end of character reception. Cleared in software.

SBUF (Serial Control, Addresses 99h): The Serial Buffer SFR is used to

send and receive data via the on-board serial port. Any value written to SBUF will be

sent out the serial port's TXD pin. Likewise, any value which the 8051 receives via the

serial port's RXD pin will be delivered to the user program via SBUF. In other words,

SBUF serves as the output port when written to and as an input port when read from.

Micro Processors Notes

Ch.Uma SankarM.Tech Page 141

IE (Interrupt Enable, Addresses A8h): The Interrupt Enable SFR is used to

enable and disable specific interrupts. The low 7 bits of the SFR are used to

enable/disable the specific interrupts, where as the highest bit is used to enable or disable

ALL interrupts. Thus, if the high bit of IE is 0 all interrupts are disabled regardless of

whether an individual interrupt is enabled by setting a lower bit.

D7 D6 D5 D4 D3 D2 D1 D0

EA X ET2 ES ET1 EX1 ET0 EX0

EA Global interrupt enable

x not defined

ET2 Timer 2 interrupt enable

ES Serial port interrupt enable

ET1 Timer 1 interrupt enable

EX1 External interrupt 1 enable

ET0 Timer 0 interrupt enable

EX0 External interrupt 0 enable

IP (Interrupt Priority, Addresses B8h, Bit-Addressable): The Interrupt

Priority SFR is used to specify the relative priority of each interrupt. On the 8051, an

interrupt may either be of low (0) priority or high (1) priority. An interrupt may only

interrupt interrupts of lower priority. For example, if we configure the 8051 so that all

interrupts are of low priority except the serial interrupt, the serial interrupt will always

be able to interrupt the system, even if another interrupt is currently executing. However,

if a serial interrupt is executing no other interrupt will be able to interrupt the serial

interrupt routine since the serial interrupt routine has the highest priority.

 D7 D6 D5 D4 D3 D2 D1

 D0

X X PT2 PS PT1 PX1 PT0 PX0

x not defined

PT2 Priority for timer 2 interrupt

PS Priority for serial port interrupt

PT1 Priority for timer 1 interrupt

PX1 Proiority for external interrupt 1

PT0 Priority for timer 0 interrupt

PX0 Priority for external interrupt 0

Micro Processors Notes

Ch.Uma SankarM.Tech Page 142

ACC (Accumulator, Addresses E0h, Bit-Addressable): The Accumulator

is one of the most-used SFRs on the 8051 since it is involved in so many instructions.

The Accumulator resides as an SFR at E0h, which means the instruction MOV A,#20h

is really the same as MOV E0h,#20h. However, it is a good idea to use the first method

since it only requires two bytes whereas the second option requires three bytes.

B (B Register, Addresses F0h, Bit-Addressable): The "B" register is used

in two instructions: the multiply and divide operations. The B register is also commonly

used by programmers as an auxiliary register to temporarily store values

PSW (Program Status Word, Addresses D0h, Bit-Addressable):
The register PSW (Program Status Word) contains information on the status of the

CPU. Contains indicators or flags to use conditional statements to make decisions. These

indicators are changed automatically when any of the instructions shown in the

following table is executed. The Program Status Word is used to store a number of

important bits that are set and cleared by 8051 instructions. The PSW SFR contains the

carry flag, the auxiliary carry flag, the overflow flag, and the parity flag. Additionally,

the PSW register contains the register bank select flags which are used to select which of

the "R" register banks are currently selected.

D7 D6 D5 D4 D3 D2 D1

 D0

C AC FO RS1 RS0 OV X P

Indicators or flags

• C: Carry Flag.

• AC: Auxiliary Carry Flag indicates the carry from bit 3, is used for BCD

operations.

• F0: User Indicator or general purpose.

• Ov: overflow indicator, when a drift in the 6 th and 7 th bit at a time.

• P: parity indicator indicates 1 when the number is odd about the Acc.

• Rs 0 and Rs 1: Selection of bank records.

Micro Processors Notes

Rs1 Rs0 Bank Address

0 0 0 00H to 07H

0 1 1 08H to 0FH

1 0 2 10H 17H

1 1 3 18H to 1FH

INPUT/OUTPUT PORTS OF 8051
All 8051 microcontrollers have 4 I/O ports, each consisting of 8 bits which can be

configured as inputs or outputs. This means that the user has on disposal in total of 32

input/output lines connecting the microcontroller to peripheral devices.A logic state on a

pin determines whether it Is configured as input or output: 0=output, 1=input. If a pin on

the microcontroller needs to be configured as output, then a logic zero (0) should be

applied to the appropriate bit on I/O port.In his way, a voltage level on the appropriate

pin will be 0.Similar to that, if a pin needs to be configured as input, then a logic one (1)

should be applied to the appropriate port. In this way, as a side effect a voltage level on

the appropriate pin will be 5V (as it is case with any TTL input). This may sound a bit

confusing but everything becomes clear after studying a simplified electronic circuit

connected to one I/O pin.

Micro Processors Notes

Input/Output (I/O) pin
This is a simplified overview of what is connected to a pin inside the

microcontroller. It concerns all pins except those included in P0 which do not have

embedded pullup resistor.

Input Output pin
A logic zero (0) is applied to a bit in the P register. By

turning output FE transistor on, the appropriate pin is

directly connected to ground.

Micro Processors Notes

INPUT PIN

A logic one (1) is applied to a bit in the P register.Output FE transistor is turned off.

The appropriate pin remains connected to voltage power supply through a pull-up

resistor of high resistance.

PORT0

It is specific to this port to have a double purpose. If external memory is used then the

lower address byte (addresses A0-A7) is applied on it. Otherwise, all bits on this port are

configured as inputs or outputs.Another characteristic is expressed when it is configured

as output. Namely, unlike other ports consisting of pins with embedded pull-up resistor (

connected by its end to 5 V power supply), this resistor is left out here. This, apparently

little change has its consequences:

If any pin on this port is configured as input then it performs as if it floats . Such

input has unlimited input resistance and has no voltage coming from inside .

When the pin is configured as output, it performs as open drain ,meaning that by

writing 0 to some port s bit, the appropriate pin will be connected to ground (0V). By

writing 1, the external output will keep on floating . In order to apply 1 (5V) on this

output, an external pull-up resistor must be embedded.

PORT1

This is a true I/O port, because there are no role assigning as it is the case with P0.

Since it has embedded pull-up resistors it is completely compatible with TTL circuits.

PORT 2

Similar to P0, when using external memory, lines on this port occupy addresses

intended for external memory chip. This time it is the higher address byte with addresses

A8-A15. When there is no additional memory, this port can be used as universal input-

output port similar by its features to the port 1.

PORT3

Micro Processors Notes

Ch.Uma SankarM.Tech Page 146

Even though all pins on this port can be used as universal I/O port, they also have an

alternative function. Since each of these functions use inputs, then the appropriate pins

have to be configured like that. In other words, prior to using some of reserve port

functions, a logical one (1) must be written to the appropriate bit in the P3 register. From

hardware s perspective , this port is also similar to P0, with the difference that its outputs

have a pull-up resistor embedded.

CURRENT LIMITATIONS OF PINS
When configured as outputs (logic zero (0)), single port pins can "receive" current of

10mA. If all 8 bits on a port are active, total current must be limited to 15mA (port P0:

26mA). If all ports (32 bits) are active, total maximal current must be limited to 71mA.

When configured as inputs (logic 1), embedded pull-up resistor provides very weak

current, but strong enough to activate up to 4 TTL inputs from LS series.

8051 MICRO CONTROLLER MEMORY ORGANIZATION
The microcontroller memory is divided into Program Memory and Data Memory.

Program Memory (ROM) is used for permanent saving program being executed, while

Data Memory (RAM) is used for temporarily storing and keeping intermediate results

and variables. Depending on the model in use (still referring to the whole 8051

microcontroller family)at most a few Kb of ROM and 128 or 256 bytes of RAM can be

used. However All 8051 microcontrollers have 16-bit addressing bus and can address

64 kb memory. It is neither a mistake nor a big ambition of engineers who were working

on basic core development. It is a matter of very clever memory organization which

makes these controllers a real programmers Tibbited.

PROGRAM MEMORY (ROM)
Program Memory (ROM) is used for permanent saving program (CODE) being

executed. The memory is read only. Depending on the settings made in compiler,

program memory may also used to store a constant variables. The 8051 executes

programs stored in program memory only. code memory type specifier is used to refer to

program memory.

8051 memory organization alows external program memory to be added.

How does the microcontroller handle external memory depends on the pin EA logical

state.

Micro Processors Notes

DATA MEMORY

Internal Data Memory
Up to 256 bytes of internal data memory are available depending on the 8051

derivative. Locations available to the user occupy addressing space from 0 to 7Fh, i.e.

first 128 registers and this part of RAM is divided in several blocks. The first 128 bytes

of internal data memory are both directly and indirectly addressable. The upper 128

bytes of data memory (from 0x80 to 0xFF) can be addressed only indirectly.

Since internal data memory is used for CALL stack also and there is only 256 bytes

splited over few different memory areas fine utilizing of this memory is crucial for fast

and compact code.

The first block consists of 4 banks each including 8 registers designated as R0 to R7.

Prior to access them, a bank containing that register must be selected. Next memory

block (in the range of 20h to 2Fh) is bit- addressable, which means that each bit being

there has its own address from 0 to 7Fh. Since there are 16 such registers, this block

contains in total of 128 bits with separate addresses (The 0th bit of the 20h byte has the

bit address 0 and the 7th bit of th 2Fh byte has the bit address 7Fh). The third group of

registers occupy addresses 2Fh-7Fh (in total of 80 locations) and does not have any

special purpose or feature.

Micro Processors Notes

External Data Memory
Access to external memory is slower than access to internal data memory. There may

be up to 64K Bytes of external data memory. Several 8051 devices provide on-chip

XRAM space that is accessed with the same instructions as the traditional external data

space. This XRAM space is typically enabled via proper setting of SFR register and

overlaps the external memory space. Setting of that register must be manualy done in

code, before any access to external memory or XRAM space is made.

SFR Memory
The 8051 provides 128 bytes of memory for Special Function Registers (SFRs).

SFRs are bit, byte, or word-sized registers that are used to control timers, counters, serial

I/O, port I/O, and peripherals.

ADDRESSING MODES OF 8051
While operating, processor processes data according to the program instructions. Each

nstruction consists of two parts.One part describes what should be done and another part

indicates what to use to do it. This later part can be data (binary number) or address

where the data is stored. All 8051 microcontrollers use two ways of addressing

depending on which part of memory should be accessed:

Micro Processors Notes

Ch.Uma SankarM.Tech Page 149

 DIRECT ADDRESSING
In direct addressing, you specify the address to operate in absolute terms. For the

family of 8051 microcontrollers are available direct address 256, corresponding to

(internal + Ram Records SFR). The OpCode is followed by a byte representing the

address.

On direct addressing, a value is obtained from a memory location while the address of

that location is specified in instruction. Only after that, the instruction can process data

(howdepends on the type of instruction: addition, subtraction,copy). Obviously, a

number being changed during operating a variable can reside at that specified address.

For example:Since the address is only one byte in size (the greatest number is 255), this

is how only the first 255 locations in RAM can be accessed in this case the first half of

the basic RAM is intended to be used freely, while another half is reserved for the SFRs.

MOV A,33h; Means: move a number from address 33 hex. to accumulator

INDIRECT ADDRESSING
On indirect addressing, a register which contains address of another register is

specified in the instruction. A value used in operating process resides in that another

register. For example:

Only RAM locations available for use are accessed by indirect addressing (never in

the SFRs). For all latest versions of the microcontrollers with additional memory block (

those 128 locations in Data Memory), this is the only way of accessing them. Simply,

when during operating, the instruction including sign is encountered and if the

specified address is higher than 128 (7F hex.), the processor knows that indirect

addressing is used and jumps over memory space Reserved for the SFRs.

MOV A,@R0; Means: Store the value from the register whose address is in the R0

register into accumulator

THE 8051 INSTRUCTION SETS
Writing program for the microcontroller mainly consists of giving instructions

(commands) in that order in which they should be executed later in order to carry out

specific task. As Electronics can not understand what for example instruction if the

push button is pressed- turn the light on means, then a certain number of more simpler

and precisely defined orders that decoder can recognise must be used. All commands are

Micro Processors Notes

Ch.Uma SankarM.Tech Page 150

known as INSTRUCTION SET. All microcontrollers compatibile with the 8051 have in

total of 255 instructions, i.e. 255 different words available for program writing.

TYPES OF INSTUCTION SETS
Depending on operation they perform, all instructions are divided in several groups:

• Arithmetic Instructions

• Branch Instructions

• Data Transfer Instructions

• Logical Instructions

• Logical Instructions with bits

ARITHMETIC INSTRUCTIONS
These instructions perform several basic operations (addition, subtraction, division,

multiplication etc.) After execution,the result is stored in the first operand.

 For example:

ADD A,R1 - The result of addition (A+R1) will be stored in the accumulator.

Examples

ADD A,Rn Add R Register to accumulator

ADD A,Rx Add directly addressed Rx Register to accumulator

ADD A,@Ri Add indirectly addressed Register to accumulator

ADD A,#X Add number X to accumulator

BRANCH INSTRUCTIONS
There are two kinds of these instructions:Unconditional jump instructions: after their

execution a jump to a new location from where the program continues execution is

executed.Conditional Jump instructions: if some condition is met - a jump is executed.

Otherwise, the program normally proceeds with the next instruction.

Examples

ACALL adr11 Call subroutine located at addreess within 2 K byte Program Memory

space LCALL adr16 Call subroutine located at any address within 64 K byte Program

Memory space RET Return from subroutine

RETI Return from interrupt routine

Micro Processors Notes

Ch.Uma SankarM.Tech Page 151

DATA TRANSFER INSTRUCTIONS
These instructions move the content of one register to another one. The register which

content is moved remains unchanged. If they have the suffix (MOVX), the data is

exchanged with external memory.

Examples

MOV A,Rn Move R register to accumulator

MOV A,Rx Move directly addressed Rx register to accumulator

MOV A,@Ri Move indirectly addressed register to accumulator

MOV A,#X Move number X to accumulator

MOV Rn,A Move accumulator to R register

MOV Rn,Rx Move directly addressed Rx register to R register

LOGICAL INSTRUCTIONS
These instructions perform logical operations between corresponding bits of two

registers. After execution, the result is stored in the first operand.

Examples

ANL A,Rn Logical AND between accumulator and R register

ANL A,Rx Logical AND between accumulator and directly addressed register Rx

ANL A,@Ri Logical AND between accumulator and indirectly addressed register

ANL A,#X Logical AND between accumulator and number X

ANL Rx,A Logical AND between accumulator and directly addressed register Rx

ANL Rx,#X Logical AND between directly addressed register Rx and number X

ORL A,Rn Logical OR between accumulator

LOGICAL OPERATIONS ON BITS
Similar to logical instructions, these instructions perform logical operations. The

difference is that these operations are performed on single bits.

Examples

CLR C Clear Carry bit

CLR bit Clear directly addressed bit

SETB C Set Carry bit

SETB bit Set directly addressed bit

CPL C Complement Carry bit

Micro Processors Notes

CPL bit Complement directly addressed bit

ANL C, bit Logical AND between Carry bit and directly addressed bit

ANL C,/bit Logical AND between Carry bit and inverted directly addressed bit

ORL C,bit Logical OR between Carry bit and directly addressed bit

Courtesy:
Data Sheets of Different Processors from Intel Corp.

 (Umsankar.ch)

